Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(303)

Unified Diff: runtime/vm/intermediate_language.cc

Issue 328503003: Extend Range analysis to 64-bit range and mint operations (Closed) Base URL: https://dart.googlecode.com/svn/branches/bleeding_edge/dart
Patch Set: Created 6 years, 6 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « runtime/vm/intermediate_language.h ('k') | runtime/vm/intermediate_language_test.cc » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: runtime/vm/intermediate_language.cc
diff --git a/runtime/vm/intermediate_language.cc b/runtime/vm/intermediate_language.cc
index 29af9f25adaf9a58fb286fb17b41fd3634805748..25d12d8d7d471e5bec1db28e5f3c30b3b7b91919 100644
--- a/runtime/vm/intermediate_language.cc
+++ b/runtime/vm/intermediate_language.cc
@@ -2449,7 +2449,7 @@ void Environment::DeepCopyToOuter(Isolate* isolate, Instruction* instr) const {
}
-RangeBoundary RangeBoundary::FromDefinition(Definition* defn, intptr_t offs) {
+RangeBoundary RangeBoundary::FromDefinition(Definition* defn, int64_t offs) {
if (defn->IsConstant() && defn->AsConstant()->value().IsSmi()) {
return FromConstant(Smi::Cast(defn->AsConstant()->value()).Value() + offs);
}
@@ -2458,7 +2458,9 @@ RangeBoundary RangeBoundary::FromDefinition(Definition* defn, intptr_t offs) {
RangeBoundary RangeBoundary::LowerBound() const {
- if (IsNegativeInfinity()) return *this;
+ if (IsInfinity()) {
+ return NegativeInfinity();
+ }
if (IsConstant()) return *this;
return Add(Range::ConstantMin(symbol()->range()),
RangeBoundary::FromConstant(offset_),
@@ -2467,7 +2469,9 @@ RangeBoundary RangeBoundary::LowerBound() const {
RangeBoundary RangeBoundary::UpperBound() const {
- if (IsPositiveInfinity()) return *this;
+ if (IsInfinity()) {
+ return PositiveInfinity();
+ }
if (IsConstant()) return *this;
return Add(Range::ConstantMax(symbol()->range()),
RangeBoundary::FromConstant(offset_),
@@ -2475,6 +2479,72 @@ RangeBoundary RangeBoundary::UpperBound() const {
}
+RangeBoundary RangeBoundary::Add(const RangeBoundary& a,
+ const RangeBoundary& b,
+ const RangeBoundary& overflow) {
+ ASSERT(a.IsConstant() && b.IsConstant());
+
+ if (Utils::WillAddOverflow(a.ConstantValue(), b.ConstantValue())) {
+ return overflow;
+ }
+
+ int64_t result = a.ConstantValue() + b.ConstantValue();
+
+ return RangeBoundary::FromConstant(result);
+}
+
+
+RangeBoundary RangeBoundary::Sub(const RangeBoundary& a,
+ const RangeBoundary& b,
+ const RangeBoundary& overflow) {
+ ASSERT(a.IsConstant() && b.IsConstant());
+
+ if (Utils::WillSubOverflow(a.ConstantValue(), b.ConstantValue())) {
+ return overflow;
+ }
+
+ int64_t result = a.ConstantValue() - b.ConstantValue();
+
+ return RangeBoundary::FromConstant(result);
+}
+
+
+bool RangeBoundary::SymbolicAdd(const RangeBoundary& a,
+ const RangeBoundary& b,
+ RangeBoundary* result) {
+ if (a.IsSymbol() && b.IsConstant()) {
+ if (Utils::WillAddOverflow(a.offset(), b.ConstantValue())) {
+ return false;
+ }
+
+ const int64_t offset = a.offset() + b.ConstantValue();
+
+ *result = RangeBoundary::FromDefinition(a.symbol(), offset);
+ return true;
+ } else if (b.IsSymbol() && a.IsConstant()) {
+ return SymbolicAdd(b, a, result);
+ }
+ return false;
+}
+
+
+bool RangeBoundary::SymbolicSub(const RangeBoundary& a,
+ const RangeBoundary& b,
+ RangeBoundary* result) {
+ if (a.IsSymbol() && b.IsConstant()) {
+ if (Utils::WillSubOverflow(a.offset(), b.ConstantValue())) {
+ return false;
+ }
+
+ const int64_t offset = a.offset() - b.ConstantValue();
+
+ *result = RangeBoundary::FromDefinition(a.symbol(), offset);
+ return true;
+ }
+ return false;
+}
+
+
static Definition* UnwrapConstraint(Definition* defn) {
while (defn->IsConstraint()) {
defn = defn->AsConstraint()->value()->definition();
@@ -2502,41 +2572,47 @@ static bool DependOnSameSymbol(const RangeBoundary& a, const RangeBoundary& b) {
}
-// Returns true if range has a least specific minimum value.
-static bool IsMinSmi(Range* range) {
- return (range == NULL) ||
- (range->min().IsConstant() &&
- (range->min().value() <= Smi::kMinValue));
+bool RangeBoundary::Equals(const RangeBoundary& other) const {
+ if (IsConstant() && other.IsConstant()) {
+ return ConstantValue() == other.ConstantValue();
+ } else if (IsInfinity() && other.IsInfinity()) {
+ return kind() == other.kind();
+ } else if (IsSymbol() && other.IsSymbol()) {
+ return (offset() == other.offset()) && DependOnSameSymbol(*this, other);
+ } else if (IsUnknown() && other.IsUnknown()) {
+ return true;
+ }
+ return false;
}
-// Returns true if range has a least specific maximium value.
-static bool IsMaxSmi(Range* range) {
- return (range == NULL) ||
- (range->max().IsConstant() &&
- (range->max().value() >= Smi::kMaxValue));
-}
-
+RangeBoundary RangeBoundary::Shl(const RangeBoundary& value_boundary,
+ int64_t shift_count,
+ const RangeBoundary& overflow) {
+ ASSERT(value_boundary.IsConstant());
+ ASSERT(shift_count >= 0);
+ int64_t limit = 64 - shift_count;
+ int64_t value = static_cast<int64_t>(value_boundary.ConstantValue());
-// Returns true if two range boundaries can be proven to be equal.
-static bool IsEqual(const RangeBoundary& a, const RangeBoundary& b) {
- if (a.IsConstant() && b.IsConstant()) {
- return a.value() == b.value();
- } else if (a.IsSymbol() && b.IsSymbol()) {
- return (a.offset() == b.offset()) && DependOnSameSymbol(a, b);
- } else {
- return false;
+ if ((value == 0) ||
+ (shift_count == 0) ||
+ ((limit > 0) && (Utils::IsInt(limit, value)))) {
+ // Result stays in 64 bit range.
+ int64_t result = value << shift_count;
+ return Smi::IsValid64(result) ? RangeBoundary(result) : overflow;
}
+
+ return overflow;
}
static RangeBoundary CanonicalizeBoundary(const RangeBoundary& a,
const RangeBoundary& overflow) {
- if (a.IsConstant() || a.IsNegativeInfinity() || a.IsPositiveInfinity()) {
+ if (a.IsConstant() || a.IsInfinity()) {
return a;
}
- intptr_t offset = a.offset();
+ int64_t offset = a.offset();
Definition* symbol = a.symbol();
bool changed;
@@ -2552,11 +2628,19 @@ static RangeBoundary CanonicalizeBoundary(const RangeBoundary& a,
switch (op->op_kind()) {
case Token::kADD:
if (right->IsConstant()) {
- offset += Smi::Cast(right->AsConstant()->value()).Value();
+ int64_t rhs = Smi::Cast(right->AsConstant()->value()).Value();
+ if (Utils::WillAddOverflow(offset, rhs)) {
+ return overflow;
+ }
+ offset += rhs;
symbol = left;
changed = true;
} else if (left->IsConstant()) {
- offset += Smi::Cast(left->AsConstant()->value()).Value();
+ int64_t rhs = Smi::Cast(left->AsConstant()->value()).Value();
+ if (Utils::WillAddOverflow(offset, rhs)) {
+ return overflow;
+ }
+ offset += rhs;
symbol = right;
changed = true;
}
@@ -2564,7 +2648,11 @@ static RangeBoundary CanonicalizeBoundary(const RangeBoundary& a,
case Token::kSUB:
if (right->IsConstant()) {
- offset -= Smi::Cast(right->AsConstant()->value()).Value();
+ int64_t rhs = Smi::Cast(right->AsConstant()->value()).Value();
+ if (Utils::WillSubOverflow(offset, rhs)) {
+ return overflow;
+ }
+ offset -= rhs;
symbol = left;
changed = true;
}
@@ -2574,8 +2662,6 @@ static RangeBoundary CanonicalizeBoundary(const RangeBoundary& a,
break;
}
}
-
- if (!Smi::IsValid(offset)) return overflow;
} while (changed);
return RangeBoundary::FromDefinition(symbol, offset);
@@ -2588,13 +2674,15 @@ static bool CanonicalizeMaxBoundary(RangeBoundary* a) {
Range* range = a->symbol()->range();
if ((range == NULL) || !range->max().IsSymbol()) return false;
- const intptr_t offset = range->max().offset() + a->offset();
- if (!Smi::IsValid(offset)) {
+ if (Utils::WillAddOverflow(range->max().offset(), a->offset())) {
*a = RangeBoundary::PositiveInfinity();
return true;
}
+ const int64_t offset = range->max().offset() + a->offset();
+
+
*a = CanonicalizeBoundary(
RangeBoundary::FromDefinition(range->max().symbol(), offset),
RangeBoundary::PositiveInfinity());
@@ -2609,12 +2697,13 @@ static bool CanonicalizeMinBoundary(RangeBoundary* a) {
Range* range = a->symbol()->range();
if ((range == NULL) || !range->min().IsSymbol()) return false;
- const intptr_t offset = range->min().offset() + a->offset();
- if (!Smi::IsValid(offset)) {
+ if (Utils::WillAddOverflow(range->min().offset(), a->offset())) {
*a = RangeBoundary::NegativeInfinity();
return true;
}
+ const int64_t offset = range->min().offset() + a->offset();
+
*a = CanonicalizeBoundary(
RangeBoundary::FromDefinition(range->min().symbol(), offset),
RangeBoundary::NegativeInfinity());
@@ -2623,44 +2712,172 @@ static bool CanonicalizeMinBoundary(RangeBoundary* a) {
}
-RangeBoundary RangeBoundary::Min(RangeBoundary a, RangeBoundary b) {
+RangeBoundary RangeBoundary::Min(RangeBoundary a, RangeBoundary b,
+ RangeSize size) {
+ ASSERT(!(a.IsNegativeInfinity() || b.IsNegativeInfinity()));
+ ASSERT(!a.IsUnknown() || !b.IsUnknown());
+ if (a.IsUnknown() && !b.IsUnknown()) {
+ return b;
+ }
+ if (!a.IsUnknown() && b.IsUnknown()) {
+ return a;
+ }
+ if (size == kRangeBoundarySmi) {
+ if (a.IsSmiMaximumOrAbove() && !b.IsSmiMaximumOrAbove()) {
+ return b;
+ }
+ if (!a.IsSmiMaximumOrAbove() && b.IsSmiMaximumOrAbove()) {
+ return a;
+ }
+ } else {
+ ASSERT(size == kRangeBoundaryInt64);
+ if (a.IsMaximumOrAbove() && !b.IsMaximumOrAbove()) {
+ return b;
+ }
+ if (!a.IsMaximumOrAbove() && b.IsMaximumOrAbove()) {
+ return a;
+ }
+ }
+
+ if (a.Equals(b)) {
+ return b;
+ }
+
+ {
+ RangeBoundary canonical_a =
+ CanonicalizeBoundary(a, RangeBoundary::PositiveInfinity());
+ RangeBoundary canonical_b =
+ CanonicalizeBoundary(b, RangeBoundary::PositiveInfinity());
+ do {
+ if (DependOnSameSymbol(canonical_a, canonical_b)) {
+ a = canonical_a;
+ b = canonical_b;
+ break;
+ }
+ } while (CanonicalizeMaxBoundary(&canonical_a) ||
+ CanonicalizeMaxBoundary(&canonical_b));
+ }
+
if (DependOnSameSymbol(a, b)) {
return (a.offset() <= b.offset()) ? a : b;
}
- const intptr_t min_a = a.LowerBound().Clamp().value();
- const intptr_t min_b = b.LowerBound().Clamp().value();
+ const int64_t min_a = a.UpperBound().Clamp(size).ConstantValue();
+ const int64_t min_b = b.UpperBound().Clamp(size).ConstantValue();
return RangeBoundary::FromConstant(Utils::Minimum(min_a, min_b));
}
-RangeBoundary RangeBoundary::Max(RangeBoundary a, RangeBoundary b) {
+RangeBoundary RangeBoundary::Max(RangeBoundary a, RangeBoundary b,
+ RangeSize size) {
+ ASSERT(!(a.IsPositiveInfinity() || b.IsPositiveInfinity()));
+ ASSERT(!a.IsUnknown() || !b.IsUnknown());
+ if (a.IsUnknown() && !b.IsUnknown()) {
+ return b;
+ }
+ if (!a.IsUnknown() && b.IsUnknown()) {
+ return a;
+ }
+ if (size == kRangeBoundarySmi) {
+ if (a.IsSmiMinimumOrBelow() && !b.IsSmiMinimumOrBelow()) {
+ return b;
+ }
+ if (!a.IsSmiMinimumOrBelow() && b.IsSmiMinimumOrBelow()) {
+ return a;
+ }
+ } else {
+ ASSERT(size == kRangeBoundaryInt64);
+ if (a.IsMinimumOrBelow() && !b.IsMinimumOrBelow()) {
+ return b;
+ }
+ if (!a.IsMinimumOrBelow() && b.IsMinimumOrBelow()) {
+ return a;
+ }
+ }
+ if (a.Equals(b)) {
+ return b;
+ }
+
+ {
+ RangeBoundary canonical_a =
+ CanonicalizeBoundary(a, RangeBoundary::NegativeInfinity());
+ RangeBoundary canonical_b =
+ CanonicalizeBoundary(b, RangeBoundary::NegativeInfinity());
+
+ do {
+ if (DependOnSameSymbol(canonical_a, canonical_b)) {
+ a = canonical_a;
+ b = canonical_b;
+ break;
+ }
+ } while (CanonicalizeMinBoundary(&canonical_a) ||
+ CanonicalizeMinBoundary(&canonical_b));
+ }
+
if (DependOnSameSymbol(a, b)) {
- return (a.offset() >= b.offset()) ? a : b;
+ return (a.offset() <= b.offset()) ? b : a;
}
- const intptr_t max_a = a.UpperBound().Clamp().value();
- const intptr_t max_b = b.UpperBound().Clamp().value();
+ const int64_t max_a = a.LowerBound().Clamp(size).ConstantValue();
+ const int64_t max_b = b.LowerBound().Clamp(size).ConstantValue();
return RangeBoundary::FromConstant(Utils::Maximum(max_a, max_b));
}
+int64_t RangeBoundary::ConstantValue() const {
+ ASSERT(IsConstant());
+ return value_;
+}
+
+
void Definition::InferRange() {
- ASSERT(Type()->ToCid() == kSmiCid); // Has meaning only for smis.
- if (range_ == NULL) {
- range_ = Range::Unknown();
+ if (Type()->ToCid() == kSmiCid) {
+ if (range_ == NULL) {
+ range_ = Range::UnknownSmi();
+ }
+ } else if (IsMintDefinition()) {
+ if (range_ == NULL) {
+ range_ = Range::Unknown();
+ }
+ } else {
+ // Only Smi and Mint supported.
+ UNREACHABLE();
}
}
void ConstantInstr::InferRange() {
- ASSERT(value_.IsSmi());
+ if (value_.IsSmi()) {
+ if (range_ == NULL) {
+ int64_t value = Smi::Cast(value_).Value();
+ range_ = new Range(RangeBoundary::FromConstant(value),
+ RangeBoundary::FromConstant(value));
+ }
+ } else if (value_.IsMint()) {
+ if (range_ == NULL) {
+ int64_t value = Mint::Cast(value_).value();
+ range_ = new Range(RangeBoundary::FromConstant(value),
+ RangeBoundary::FromConstant(value));
+ }
+ } else {
+ // Only Smi and Mint supported.
+ UNREACHABLE();
+ }
+}
+
+
+void UnboxIntegerInstr::InferRange() {
if (range_ == NULL) {
- intptr_t value = Smi::Cast(value_).Value();
- range_ = new Range(RangeBoundary::FromConstant(value),
- RangeBoundary::FromConstant(value));
+ Definition* unboxed = value()->definition();
+ ASSERT(unboxed != NULL);
+ Range* range = unboxed->range();
+ if (range == NULL) {
+ range_ = Range::Unknown();
+ return;
+ }
+ range_ = new Range(range->min(), range->max());
}
}
@@ -2668,72 +2885,32 @@ void ConstantInstr::InferRange() {
void ConstraintInstr::InferRange() {
Range* value_range = value()->definition()->range();
+ // Only constraining smi values.
+ ASSERT(value()->IsSmiValue());
+
RangeBoundary min;
RangeBoundary max;
- if (IsMinSmi(value_range) && !IsMinSmi(constraint())) {
- min = constraint()->min();
- } else if (IsMinSmi(constraint()) && !IsMinSmi(value_range)) {
- min = value_range->min();
- } else if ((value_range != NULL) &&
- IsEqual(constraint()->min(), value_range->min())) {
- min = constraint()->min();
- } else {
- if (value_range != NULL) {
- RangeBoundary canonical_a =
- CanonicalizeBoundary(constraint()->min(),
- RangeBoundary::NegativeInfinity());
- RangeBoundary canonical_b =
- CanonicalizeBoundary(value_range->min(),
- RangeBoundary::NegativeInfinity());
-
- do {
- if (DependOnSameSymbol(canonical_a, canonical_b)) {
- min = (canonical_a.offset() <= canonical_b.offset()) ? canonical_b
- : canonical_a;
- }
- } while (CanonicalizeMinBoundary(&canonical_a) ||
- CanonicalizeMinBoundary(&canonical_b));
- }
-
- if (min.IsUnknown()) {
- min = RangeBoundary::Max(Range::ConstantMin(value_range),
- Range::ConstantMin(constraint()));
- }
+ {
+ RangeBoundary value_min = (value_range == NULL) ?
+ RangeBoundary() : value_range->min();
+ RangeBoundary constraint_min = constraint()->min();
+ min = RangeBoundary::Max(value_min, constraint_min,
+ RangeBoundary::kRangeBoundarySmi);
}
- if (IsMaxSmi(value_range) && !IsMaxSmi(constraint())) {
- max = constraint()->max();
- } else if (IsMaxSmi(constraint()) && !IsMaxSmi(value_range)) {
- max = value_range->max();
- } else if ((value_range != NULL) &&
- IsEqual(constraint()->max(), value_range->max())) {
- max = constraint()->max();
- } else {
- if (value_range != NULL) {
- RangeBoundary canonical_b =
- CanonicalizeBoundary(value_range->max(),
- RangeBoundary::PositiveInfinity());
- RangeBoundary canonical_a =
- CanonicalizeBoundary(constraint()->max(),
- RangeBoundary::PositiveInfinity());
-
- do {
- if (DependOnSameSymbol(canonical_a, canonical_b)) {
- max = (canonical_a.offset() <= canonical_b.offset()) ? canonical_a
- : canonical_b;
- break;
- }
- } while (CanonicalizeMaxBoundary(&canonical_a) ||
- CanonicalizeMaxBoundary(&canonical_b));
- }
+ ASSERT(!min.IsUnknown());
- if (max.IsUnknown()) {
- max = RangeBoundary::Min(Range::ConstantMax(value_range),
- Range::ConstantMax(constraint()));
- }
+ {
+ RangeBoundary value_max = (value_range == NULL) ?
+ RangeBoundary() : value_range->max();
+ RangeBoundary constraint_max = constraint()->max();
+ max = RangeBoundary::Min(value_max, constraint_max,
+ RangeBoundary::kRangeBoundarySmi);
}
+ ASSERT(!max.IsUnknown());
+
range_ = new Range(min, max);
// Mark branches that generate unsatisfiable constraints as constant.
@@ -2805,6 +2982,22 @@ void LoadIndexedInstr::InferRange() {
range_ = new Range(RangeBoundary::FromConstant(0),
RangeBoundary::FromConstant(65535));
break;
+ case kTypedDataInt32ArrayCid:
+ if (CanDeoptimize()) {
+ range_ = Range::UnknownSmi();
+ } else {
+ range_ = new Range(RangeBoundary::FromConstant(kMinInt32),
+ RangeBoundary::FromConstant(kMaxInt32));
+ }
+ break;
+ case kTypedDataUint32ArrayCid:
+ if (CanDeoptimize()) {
+ range_ = Range::UnknownSmi();
+ } else {
+ range_ = new Range(RangeBoundary::FromConstant(0),
+ RangeBoundary::FromConstant(kMaxUint32));
+ }
+ break;
case kOneByteStringCid:
range_ = new Range(RangeBoundary::FromConstant(0),
RangeBoundary::FromConstant(0xFF));
@@ -2923,29 +3116,35 @@ void PhiInstr::InferRange() {
RangeBoundary new_min;
RangeBoundary new_max;
+ ASSERT(Type()->ToCid() == kSmiCid);
+
for (intptr_t i = 0; i < InputCount(); i++) {
Range* input_range = InputAt(i)->definition()->range();
if (input_range == NULL) {
- range_ = Range::Unknown();
+ range_ = Range::UnknownSmi();
return;
}
if (new_min.IsUnknown()) {
new_min = Range::ConstantMin(input_range);
} else {
- new_min = RangeBoundary::Min(new_min, Range::ConstantMin(input_range));
+ new_min = RangeBoundary::Min(new_min,
+ Range::ConstantMinSmi(input_range),
+ RangeBoundary::kRangeBoundarySmi);
}
if (new_max.IsUnknown()) {
new_max = Range::ConstantMax(input_range);
} else {
- new_max = RangeBoundary::Max(new_max, Range::ConstantMax(input_range));
+ new_max = RangeBoundary::Max(new_max,
+ Range::ConstantMaxSmi(input_range),
+ RangeBoundary::kRangeBoundarySmi);
}
}
ASSERT(new_min.IsUnknown() == new_max.IsUnknown());
if (new_min.IsUnknown()) {
- range_ = Range::Unknown();
+ range_ = Range::UnknownSmi();
return;
}
@@ -2964,184 +3163,93 @@ bool PhiInstr::IsRedundant() const {
}
-static bool SymbolicSub(const RangeBoundary& a,
- const RangeBoundary& b,
- RangeBoundary* result) {
- if (a.IsSymbol() && b.IsConstant() && !b.Overflowed()) {
- const intptr_t offset = a.offset() - b.value();
- if (!Smi::IsValid(offset)) return false;
-
- *result = RangeBoundary::FromDefinition(a.symbol(), offset);
- return true;
+static bool IsArrayLength(Definition* defn) {
+ if (defn == NULL) {
+ return false;
}
- return false;
+ LoadFieldInstr* load = defn->AsLoadField();
+ return (load != NULL) && load->IsImmutableLengthLoad();
}
-static bool SymbolicAdd(const RangeBoundary& a,
- const RangeBoundary& b,
- RangeBoundary* result) {
- if (a.IsSymbol() && b.IsConstant() && !b.Overflowed()) {
- const intptr_t offset = a.offset() + b.value();
- if (!Smi::IsValid(offset)) return false;
+void BinarySmiOpInstr::InferRange() {
+ // TODO(vegorov): canonicalize BinarySmiOp to always have constant on the
+ // right and a non-constant on the left.
+ Definition* left_defn = left()->definition();
- *result = RangeBoundary::FromDefinition(a.symbol(), offset);
- return true;
- } else if (b.IsSymbol() && a.IsConstant() && !a.Overflowed()) {
- const intptr_t offset = b.offset() + a.value();
- if (!Smi::IsValid(offset)) return false;
+ Range* left_range = left_defn->range();
+ Range* right_range = right()->definition()->range();
- *result = RangeBoundary::FromDefinition(b.symbol(), offset);
- return true;
+ if ((left_range == NULL) || (right_range == NULL)) {
+ range_ = Range::UnknownSmi();
+ return;
}
- return false;
-}
+ Range* possible_range = Range::BinaryOp(op_kind(),
+ left_range,
+ right_range,
+ left_defn);
-static bool IsArrayLength(Definition* defn) {
- LoadFieldInstr* load = defn->AsLoadField();
- return (load != NULL) && load->IsImmutableLengthLoad();
-}
-
+ if ((range_ == NULL) && (possible_range == NULL)) {
+ // Initialize.
+ range_ = Range::UnknownSmi();
+ return;
+ }
-static int64_t ConstantAbsMax(const Range* range) {
- if (range == NULL) return Smi::kMaxValue;
- const int64_t abs_min = Utils::Abs(Range::ConstantMin(range).value());
- const int64_t abs_max = Utils::Abs(Range::ConstantMax(range).value());
- return abs_min > abs_max ? abs_min : abs_max;
-}
+ if (possible_range == NULL) {
+ // Nothing new.
+ return;
+ }
+ range_ = possible_range;
-static bool OnlyPositiveOrZero(const Range* a, const Range* b) {
- if ((a == NULL) || (b == NULL)) return false;
- if (Range::ConstantMin(a).value() < 0) return false;
- if (Range::ConstantMin(b).value() < 0) return false;
- return true;
-}
+ ASSERT(!range_->min().IsUnknown() && !range_->max().IsUnknown());
+ // Calculate overflowed status before clamping.
+ const bool overflowed = range_->min().LowerBound().OverflowedSmi() ||
+ range_->max().UpperBound().OverflowedSmi();
+ // Clamp value to be within smi range.
+ range_->Clamp(RangeBoundary::kRangeBoundarySmi);
-static bool OnlyNegativeOrZero(const Range* a, const Range* b) {
- if ((a == NULL) || (b == NULL)) return false;
- if (Range::ConstantMax(a).value() > 0) return false;
- if (Range::ConstantMax(b).value() > 0) return false;
- return true;
+ set_overflow(overflowed);
}
-void BinarySmiOpInstr::InferRange() {
- // TODO(vegorov): canonicalize BinarySmiOp to always have constant on the
- // right and a non-constant on the left.
+void BinaryMintOpInstr::InferRange() {
+ // TODO(vegorov): canonicalize BinaryMintOpInstr to always have constant on
+ // the right and a non-constant on the left.
Definition* left_defn = left()->definition();
Range* left_range = left_defn->range();
Range* right_range = right()->definition()->range();
if ((left_range == NULL) || (right_range == NULL)) {
- range_ = new Range(RangeBoundary::MinSmi(), RangeBoundary::MaxSmi());
+ range_ = Range::Unknown();
return;
}
- RangeBoundary left_min =
- IsArrayLength(left_defn) ?
- RangeBoundary::FromDefinition(left_defn) : left_range->min();
-
- RangeBoundary left_max =
- IsArrayLength(left_defn) ?
- RangeBoundary::FromDefinition(left_defn) : left_range->max();
-
- RangeBoundary min;
- RangeBoundary max;
- switch (op_kind()) {
- case Token::kADD:
- if (!SymbolicAdd(left_min, right_range->min(), &min)) {
- min =
- RangeBoundary::Add(Range::ConstantMin(left_range),
- Range::ConstantMin(right_range),
- RangeBoundary::NegativeInfinity());
- }
-
- if (!SymbolicAdd(left_max, right_range->max(), &max)) {
- max =
- RangeBoundary::Add(Range::ConstantMax(right_range),
- Range::ConstantMax(left_range),
- RangeBoundary::PositiveInfinity());
- }
- break;
-
- case Token::kSUB:
- if (!SymbolicSub(left_min, right_range->max(), &min)) {
- min =
- RangeBoundary::Sub(Range::ConstantMin(left_range),
- Range::ConstantMax(right_range),
- RangeBoundary::NegativeInfinity());
- }
-
- if (!SymbolicSub(left_max, right_range->min(), &max)) {
- max =
- RangeBoundary::Sub(Range::ConstantMax(left_range),
- Range::ConstantMin(right_range),
- RangeBoundary::PositiveInfinity());
- }
- break;
-
- case Token::kMUL: {
- const int64_t left_max = ConstantAbsMax(left_range);
- const int64_t right_max = ConstantAbsMax(right_range);
- ASSERT(left_max <= -kSmiMin);
- ASSERT(right_max <= -kSmiMin);
- if ((left_max == 0) || (right_max <= kMaxInt64 / left_max)) {
- // Product of left and right max values stays in 64 bit range.
- const int64_t result_max = left_max * right_max;
- if (Smi::IsValid64(result_max) && Smi::IsValid64(-result_max)) {
- const intptr_t r_min =
- OnlyPositiveOrZero(left_range, right_range) ? 0 : -result_max;
- min = RangeBoundary::FromConstant(r_min);
- const intptr_t r_max =
- OnlyNegativeOrZero(left_range, right_range) ? 0 : result_max;
- max = RangeBoundary::FromConstant(r_max);
- break;
- }
- }
- if (range_ == NULL) {
- range_ = Range::Unknown();
- }
- return;
- }
- case Token::kSHL: {
- Range::Shl(left_range, right_range, &min, &max);
- break;
- }
- case Token::kBIT_AND:
- if (Range::ConstantMin(right_range).value() >= 0) {
- min = RangeBoundary::FromConstant(0);
- max = Range::ConstantMax(right_range);
- break;
- }
- if (Range::ConstantMin(left_range).value() >= 0) {
- min = RangeBoundary::FromConstant(0);
- max = Range::ConstantMax(left_range);
- break;
- }
+ Range* possible_range = Range::BinaryOp(op_kind(),
+ left_range,
+ right_range,
+ left_defn);
- if (range_ == NULL) {
- range_ = Range::Unknown();
- }
- return;
+ if ((range_ == NULL) && (possible_range == NULL)) {
+ // Initialize.
+ range_ = Range::Unknown();
+ return;
+ }
- default:
- if (range_ == NULL) {
- range_ = Range::Unknown();
- }
- return;
+ if (possible_range == NULL) {
+ // Nothing new.
+ return;
}
- ASSERT(!min.IsUnknown() && !max.IsUnknown());
- set_overflow(min.LowerBound().Overflowed() || max.UpperBound().Overflowed());
+ range_ = possible_range;
- if (min.IsConstant()) min.Clamp();
- if (max.IsConstant()) max.Clamp();
+ ASSERT(!range_->min().IsUnknown() && !range_->max().IsUnknown());
- range_ = new Range(min, max);
+ // Clamp value to be within mint range.
+ range_->Clamp(RangeBoundary::kRangeBoundaryInt64);
}
@@ -3149,68 +3257,61 @@ bool Range::IsPositive() const {
if (min().IsNegativeInfinity()) {
return false;
}
- if (min().LowerBound().value() < 0) {
+ if (min().LowerBound().ConstantValue() < 0) {
return false;
}
if (max().IsPositiveInfinity()) {
return true;
}
- return max().UpperBound().value() >= 0;
+ return max().UpperBound().ConstantValue() >= 0;
}
-bool Range::IsNegative() const {
+bool Range::OnlyLessThanOrEqualTo(int64_t val) const {
if (max().IsPositiveInfinity()) {
+ // Cannot be true.
return false;
}
- if (max().UpperBound().value() >= 0) {
+ if (max().UpperBound().ConstantValue() > val) {
+ // Not true.
return false;
}
- if (min().IsNegativeInfinity()) {
- return true;
- }
- return min().LowerBound().value() < 0;
+ return true;
}
-bool Range::OnlyLessThanOrEqualTo(intptr_t val) const {
- if (max().IsPositiveInfinity()) {
- // Cannot be true.
+bool Range::OnlyGreaterThanOrEqualTo(int64_t val) const {
+ if (min().IsNegativeInfinity()) {
return false;
}
- if (max().UpperBound().value() > val) {
- // Not true.
+ if (min().LowerBound().ConstantValue() < val) {
return false;
}
- if (!min().IsNegativeInfinity()) {
- if (min().LowerBound().value() > val) {
- // Lower bound is > value.
- return false;
- }
- }
return true;
}
// Inclusive.
-bool Range::IsWithin(intptr_t min_int, intptr_t max_int) const {
+bool Range::IsWithin(int64_t min_int, int64_t max_int) const {
RangeBoundary lower_min = min().LowerBound();
- if (lower_min.IsNegativeInfinity() || (lower_min.value() < min_int)) {
+ if (lower_min.IsNegativeInfinity() || (lower_min.ConstantValue() < min_int)) {
return false;
}
RangeBoundary upper_max = max().UpperBound();
- if (upper_max.IsPositiveInfinity() || (upper_max.value() > max_int)) {
+ if (upper_max.IsPositiveInfinity() || (upper_max.ConstantValue() > max_int)) {
return false;
}
return true;
}
-bool Range::Overlaps(intptr_t min_int, intptr_t max_int) const {
- const intptr_t this_min = min().IsNegativeInfinity() ?
- kIntptrMin : min().LowerBound().value();
- const intptr_t this_max = max().IsPositiveInfinity() ?
- kIntptrMax : max().UpperBound().value();
+bool Range::Overlaps(int64_t min_int, int64_t max_int) const {
+ RangeBoundary lower = min().LowerBound();
+ RangeBoundary upper = max().UpperBound();
+ const int64_t this_min = lower.IsNegativeInfinity() ?
+ RangeBoundary::kMin : lower.ConstantValue();
+ const int64_t this_max = upper.IsPositiveInfinity() ?
+ RangeBoundary::kMax : upper.ConstantValue();
if ((this_min <= min_int) && (min_int <= this_max)) return true;
if ((this_min <= max_int) && (max_int <= this_max)) return true;
if ((min_int < this_min) && (max_int > this_max)) return true;
@@ -3224,7 +3325,8 @@ bool Range::IsUnsatisfiable() const {
return true;
}
// Constant case: For example [0, -1].
- if (Range::ConstantMin(this).value() > Range::ConstantMax(this).value()) {
+ if (Range::ConstantMin(this).ConstantValue() >
+ Range::ConstantMax(this).ConstantValue()) {
return true;
}
// Symbol case: For example [v+1, v].
@@ -3235,35 +3337,232 @@ bool Range::IsUnsatisfiable() const {
}
-void Range::Shl(Range* left,
- Range* right,
+void Range::Clamp(RangeBoundary::RangeSize size) {
+ min_ = min_.Clamp(size);
+ max_ = max_.Clamp(size);
+}
+
+
+void Range::Shl(const Range* left,
+ const Range* right,
RangeBoundary* result_min,
RangeBoundary* result_max) {
+ ASSERT(left != NULL);
+ ASSERT(right != NULL);
+ ASSERT(result_min != NULL);
+ ASSERT(result_max != NULL);
RangeBoundary left_max = Range::ConstantMax(left);
RangeBoundary left_min = Range::ConstantMin(left);
// A negative shift count always deoptimizes (and throws), so the minimum
// shift count is zero.
- intptr_t right_max = Utils::Maximum(Range::ConstantMax(right).value(),
- static_cast<intptr_t>(0));
- intptr_t right_min = Utils::Maximum(Range::ConstantMin(right).value(),
- static_cast<intptr_t>(0));
+ int64_t right_max = Utils::Maximum(Range::ConstantMax(right).ConstantValue(),
+ static_cast<int64_t>(0));
+ int64_t right_min = Utils::Maximum(Range::ConstantMin(right).ConstantValue(),
+ static_cast<int64_t>(0));
*result_min = RangeBoundary::Shl(
left_min,
- left_min.value() > 0 ? right_min : right_max,
- left_min.value() > 0
+ left_min.ConstantValue() > 0 ? right_min : right_max,
+ left_min.ConstantValue() > 0
? RangeBoundary::PositiveInfinity()
: RangeBoundary::NegativeInfinity());
*result_max = RangeBoundary::Shl(
left_max,
- left_max.value() > 0 ? right_max : right_min,
- left_max.value() > 0
+ left_max.ConstantValue() > 0 ? right_max : right_min,
+ left_max.ConstantValue() > 0
? RangeBoundary::PositiveInfinity()
: RangeBoundary::NegativeInfinity());
}
+bool Range::And(const Range* left_range,
+ const Range* right_range,
+ RangeBoundary* result_min,
+ RangeBoundary* result_max) {
+ ASSERT(left_range != NULL);
+ ASSERT(right_range != NULL);
+ ASSERT(result_min != NULL);
+ ASSERT(result_max != NULL);
+
+ if (Range::ConstantMin(right_range).ConstantValue() >= 0) {
+ *result_min = RangeBoundary::FromConstant(0);
+ *result_max = Range::ConstantMax(right_range);
+ return true;
+ }
+
+ if (Range::ConstantMin(left_range).ConstantValue() >= 0) {
+ *result_min = RangeBoundary::FromConstant(0);
+ *result_max = Range::ConstantMax(left_range);
+ return true;
+ }
+
+ return false;
+}
+
+
+void Range::Add(const Range* left_range,
+ const Range* right_range,
+ RangeBoundary* result_min,
+ RangeBoundary* result_max,
+ Definition* left_defn) {
+ ASSERT(left_range != NULL);
+ ASSERT(right_range != NULL);
+ ASSERT(result_min != NULL);
+ ASSERT(result_max != NULL);
+
+ RangeBoundary left_min =
+ IsArrayLength(left_defn) ?
+ RangeBoundary::FromDefinition(left_defn) : left_range->min();
+
+ RangeBoundary left_max =
+ IsArrayLength(left_defn) ?
+ RangeBoundary::FromDefinition(left_defn) : left_range->max();
+
+ if (!RangeBoundary::SymbolicAdd(left_min, right_range->min(), result_min)) {
+ *result_min = RangeBoundary::Add(left_range->min().LowerBound(),
+ right_range->min().LowerBound(),
+ RangeBoundary::NegativeInfinity());
+ }
+ if (!RangeBoundary::SymbolicAdd(left_max, right_range->max(), result_max)) {
+ *result_max = RangeBoundary::Add(right_range->max().UpperBound(),
+ left_range->max().UpperBound(),
+ RangeBoundary::PositiveInfinity());
+ }
+}
+
+
+void Range::Sub(const Range* left_range,
+ const Range* right_range,
+ RangeBoundary* result_min,
+ RangeBoundary* result_max,
+ Definition* left_defn) {
+ ASSERT(left_range != NULL);
+ ASSERT(right_range != NULL);
+ ASSERT(result_min != NULL);
+ ASSERT(result_max != NULL);
+
+ RangeBoundary left_min =
+ IsArrayLength(left_defn) ?
+ RangeBoundary::FromDefinition(left_defn) : left_range->min();
+
+ RangeBoundary left_max =
+ IsArrayLength(left_defn) ?
+ RangeBoundary::FromDefinition(left_defn) : left_range->max();
+
+ if (!RangeBoundary::SymbolicSub(left_min, right_range->max(), result_min)) {
+ *result_min = RangeBoundary::Sub(left_range->min().LowerBound(),
+ right_range->max().UpperBound(),
+ RangeBoundary::NegativeInfinity());
+ }
+ if (!RangeBoundary::SymbolicSub(left_max, right_range->min(), result_max)) {
+ *result_max = RangeBoundary::Sub(left_range->max().UpperBound(),
+ right_range->min().LowerBound(),
+ RangeBoundary::PositiveInfinity());
+ }
+}
+
+
+bool Range::Mul(const Range* left_range,
+ const Range* right_range,
+ RangeBoundary* result_min,
+ RangeBoundary* result_max) {
+ ASSERT(left_range != NULL);
+ ASSERT(right_range != NULL);
+ ASSERT(result_min != NULL);
+ ASSERT(result_max != NULL);
+
+ const int64_t left_max = ConstantAbsMax(left_range);
+ const int64_t right_max = ConstantAbsMax(right_range);
+ if ((left_max <= -kSmiMin) && (right_max <= -kSmiMin) &&
+ ((left_max == 0) || (right_max <= kMaxInt64 / left_max))) {
+ // Product of left and right max values stays in 64 bit range.
+ const int64_t mul_max = left_max * right_max;
+ if (Smi::IsValid64(mul_max) && Smi::IsValid64(-mul_max)) {
+ const intptr_t r_min =
+ OnlyPositiveOrZero(*left_range, *right_range) ? 0 : -mul_max;
+ *result_min = RangeBoundary::FromConstant(r_min);
+ const intptr_t r_max =
+ OnlyNegativeOrZero(*left_range, *right_range) ? 0 : mul_max;
+ *result_max = RangeBoundary::FromConstant(r_max);
+ return true;
+ }
+ }
+ return false;
+}
+
+
+// Both the a and b ranges are >= 0.
+bool Range::OnlyPositiveOrZero(const Range& a, const Range& b) {
+ return a.OnlyGreaterThanOrEqualTo(0) && b.OnlyGreaterThanOrEqualTo(0);
+}
+
+
+// Both the a and b ranges are <= 0.
+bool Range::OnlyNegativeOrZero(const Range& a, const Range& b) {
+ return a.OnlyLessThanOrEqualTo(0) && b.OnlyLessThanOrEqualTo(0);
+}
+
+
+// Return the maximum absolute value included in range.
+int64_t Range::ConstantAbsMax(const Range* range) {
+ if (range == NULL) {
+ return RangeBoundary::kMax;
+ }
+ const int64_t abs_min = Utils::Abs(Range::ConstantMin(range).ConstantValue());
+ const int64_t abs_max = Utils::Abs(Range::ConstantMax(range).ConstantValue());
+ return Utils::Maximum(abs_min, abs_max);
+}
+
+
+Range* Range::BinaryOp(const Token::Kind op,
+ const Range* left_range,
+ const Range* right_range,
+ Definition* left_defn) {
+ ASSERT(left_range != NULL);
+ ASSERT(right_range != NULL);
+
+ // Both left and right ranges are finite.
+ ASSERT(left_range->IsFinite());
+ ASSERT(right_range->IsFinite());
+
+ RangeBoundary min;
+ RangeBoundary max;
+ ASSERT(min.IsUnknown() && max.IsUnknown());
+
+ switch (op) {
+ case Token::kADD:
+ Range::Add(left_range, right_range, &min, &max, left_defn);
+ break;
+ case Token::kSUB:
+ Range::Sub(left_range, right_range, &min, &max, left_defn);
+ break;
+ case Token::kMUL: {
+ if (!Range::Mul(left_range, right_range, &min, &max)) {
+ return NULL;
+ }
+ break;
+ }
+ case Token::kSHL: {
+ Range::Shl(left_range, right_range, &min, &max);
+ break;
+ }
+ case Token::kBIT_AND:
+ if (!Range::And(left_range, right_range, &min, &max)) {
+ return NULL;
+ }
+ break;
+ default:
+ return NULL;
+ break;
+ }
+
+ ASSERT(!min.IsUnknown() && !max.IsUnknown());
+
+ return new Range(min, max);
+}
+
+
bool CheckArrayBoundInstr::IsFixedLengthArrayType(intptr_t cid) {
return LoadFieldInstr::IsFixedLengthArrayCid(cid);
}
@@ -3278,14 +3577,14 @@ bool CheckArrayBoundInstr::IsRedundant(RangeBoundary length) {
}
// Range of the index is not positive. Check can't be redundant.
- if (Range::ConstantMin(index_range).value() < 0) {
+ if (Range::ConstantMinSmi(index_range).ConstantValue() < 0) {
return false;
}
RangeBoundary max = CanonicalizeBoundary(index_range->max(),
RangeBoundary::PositiveInfinity());
- if (max.Overflowed()) {
+ if (max.OverflowedSmi()) {
return false;
}
@@ -3293,17 +3592,17 @@ bool CheckArrayBoundInstr::IsRedundant(RangeBoundary length) {
RangeBoundary max_upper = max.UpperBound();
RangeBoundary length_lower = length.LowerBound();
- if (max_upper.Overflowed() || length_lower.Overflowed()) {
+ if (max_upper.OverflowedSmi() || length_lower.OverflowedSmi()) {
return false;
}
// Try to compare constant boundaries.
- if (max_upper.value() < length_lower.value()) {
+ if (max_upper.ConstantValue() < length_lower.ConstantValue()) {
return true;
}
length = CanonicalizeBoundary(length, RangeBoundary::PositiveInfinity());
- if (length.Overflowed()) {
+ if (length.OverflowedSmi()) {
return false;
}
« no previous file with comments | « runtime/vm/intermediate_language.h ('k') | runtime/vm/intermediate_language_test.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698