Chromium Code Reviews| Index: runtime/vm/intermediate_language.cc |
| diff --git a/runtime/vm/intermediate_language.cc b/runtime/vm/intermediate_language.cc |
| index 29af9f25adaf9a58fb286fb17b41fd3634805748..ffcfb67f70be78d6795ff7cf7f94d0e495a88629 100644 |
| --- a/runtime/vm/intermediate_language.cc |
| +++ b/runtime/vm/intermediate_language.cc |
| @@ -2449,7 +2449,7 @@ void Environment::DeepCopyToOuter(Isolate* isolate, Instruction* instr) const { |
| } |
| -RangeBoundary RangeBoundary::FromDefinition(Definition* defn, intptr_t offs) { |
| +RangeBoundary RangeBoundary::FromDefinition(Definition* defn, int64_t offs) { |
| if (defn->IsConstant() && defn->AsConstant()->value().IsSmi()) { |
| return FromConstant(Smi::Cast(defn->AsConstant()->value()).Value() + offs); |
| } |
| @@ -2458,7 +2458,9 @@ RangeBoundary RangeBoundary::FromDefinition(Definition* defn, intptr_t offs) { |
| RangeBoundary RangeBoundary::LowerBound() const { |
| - if (IsNegativeInfinity()) return *this; |
| + if (IsInfinity()) { |
| + return NegativeInfinity(); |
| + } |
| if (IsConstant()) return *this; |
| return Add(Range::ConstantMin(symbol()->range()), |
| RangeBoundary::FromConstant(offset_), |
| @@ -2467,7 +2469,9 @@ RangeBoundary RangeBoundary::LowerBound() const { |
| RangeBoundary RangeBoundary::UpperBound() const { |
| - if (IsPositiveInfinity()) return *this; |
| + if (IsInfinity()) { |
| + return PositiveInfinity(); |
| + } |
| if (IsConstant()) return *this; |
| return Add(Range::ConstantMax(symbol()->range()), |
| RangeBoundary::FromConstant(offset_), |
| @@ -2475,6 +2479,77 @@ RangeBoundary RangeBoundary::UpperBound() const { |
| } |
| +RangeBoundary RangeBoundary::Add(const RangeBoundary& a, |
| + const RangeBoundary& b, |
| + const RangeBoundary& overflow) { |
| + if (a.IsInfinity() || b.IsInfinity()) { |
| + // In that case that a or b is +/- inf, return the overflow boundary. |
| + return overflow; |
|
Florian Schneider
2014/06/18 10:14:10
Can this case ever occur?
Cutch
2014/06/18 22:16:52
Not now that I clamp.
|
| + } |
| + ASSERT(a.IsConstant() && b.IsConstant()); |
| + |
| + int64_t result = a.ConstantValue() + b.ConstantValue(); |
| + |
| + if (Utils::DidAddOverflow(a.ConstantValue(), b.ConstantValue(), result)) { |
| + return overflow; |
| + } |
| + |
| + return RangeBoundary::FromConstant(result); |
| +} |
| + |
| + |
| +RangeBoundary RangeBoundary::Sub(const RangeBoundary& a, |
| + const RangeBoundary& b, |
| + const RangeBoundary& overflow) { |
| + if (a.IsInfinity() || b.IsInfinity()) { |
| + // In that case that a or b is +/- inf, return the overflow boundary. |
| + return overflow; |
|
Florian Schneider
2014/06/18 10:14:10
Is this case ever hit?
Cutch
2014/06/18 22:16:52
Not now that I clamp.
|
| + } |
| + ASSERT(a.IsConstant() && b.IsConstant()); |
| + |
| + int64_t result = a.ConstantValue() - b.ConstantValue(); |
| + |
| + if (Utils::DidSubOverflow(a.ConstantValue(), b.ConstantValue(), result)) { |
| + return overflow; |
| + } |
| + return RangeBoundary::FromConstant(result); |
| +} |
| + |
| + |
| +bool RangeBoundary::SymbolicAdd(const RangeBoundary& a, |
| + const RangeBoundary& b, |
| + RangeBoundary* result) { |
| + if (a.IsSymbol() && b.IsConstant()) { |
| + const int64_t offset = a.offset() + b.ConstantValue(); |
| + if (Utils::DidAddOverflow(a.offset(), b.ConstantValue(), offset)) { |
| + return false; |
| + } |
| + |
| + *result = RangeBoundary::FromDefinition(a.symbol(), offset); |
| + return true; |
| + } else if (b.IsSymbol() && a.IsConstant()) { |
| + return SymbolicAdd(b, a, result); |
| + } |
| + return false; |
| +} |
| + |
| + |
| +bool RangeBoundary::SymbolicSub(const RangeBoundary& a, |
| + const RangeBoundary& b, |
| + RangeBoundary* result) { |
| + if (a.IsSymbol() && b.IsConstant()) { |
| + const int64_t offset = a.offset() - b.ConstantValue(); |
| + if (Utils::DidSubOverflow(a.offset(), b.ConstantValue(), offset)) { |
| + return false; |
| + } |
| + |
| + *result = RangeBoundary::FromDefinition(a.symbol(), offset); |
| + return true; |
| + } |
| + return false; |
| +} |
| + |
| + |
| static Definition* UnwrapConstraint(Definition* defn) { |
| while (defn->IsConstraint()) { |
| defn = defn->AsConstraint()->value()->definition(); |
| @@ -2502,41 +2577,47 @@ static bool DependOnSameSymbol(const RangeBoundary& a, const RangeBoundary& b) { |
| } |
| -// Returns true if range has a least specific minimum value. |
| -static bool IsMinSmi(Range* range) { |
| - return (range == NULL) || |
| - (range->min().IsConstant() && |
| - (range->min().value() <= Smi::kMinValue)); |
| +bool RangeBoundary::Equals(const RangeBoundary& other) const { |
| + if (IsConstant() && other.IsConstant()) { |
| + return ConstantValue() == other.ConstantValue(); |
| + } else if (IsInfinity() && other.IsInfinity()) { |
| + return kind() == other.kind(); |
| + } else if (IsSymbol() && other.IsSymbol()) { |
| + return (offset() == other.offset()) && DependOnSameSymbol(*this, other); |
| + } else if (IsUnknown() && other.IsUnknown()) { |
| + return true; |
| + } |
| + return false; |
| } |
| -// Returns true if range has a least specific maximium value. |
| -static bool IsMaxSmi(Range* range) { |
| - return (range == NULL) || |
| - (range->max().IsConstant() && |
| - (range->max().value() >= Smi::kMaxValue)); |
| -} |
| +RangeBoundary RangeBoundary::Shl(const RangeBoundary& value_boundary, |
| + int64_t shift_count, |
| + const RangeBoundary& overflow) { |
| + ASSERT(value_boundary.IsConstant()); |
| + ASSERT(shift_count >= 0); |
| + int64_t limit = 64 - shift_count; |
| + int64_t value = static_cast<int64_t>(value_boundary.ConstantValue()); |
| - |
| -// Returns true if two range boundaries can be proven to be equal. |
| -static bool IsEqual(const RangeBoundary& a, const RangeBoundary& b) { |
| - if (a.IsConstant() && b.IsConstant()) { |
| - return a.value() == b.value(); |
| - } else if (a.IsSymbol() && b.IsSymbol()) { |
| - return (a.offset() == b.offset()) && DependOnSameSymbol(a, b); |
| - } else { |
| - return false; |
| + if ((value == 0) || |
| + (shift_count == 0) || |
| + ((limit > 0) && (Utils::IsInt(limit, value)))) { |
| + // Result stays in 64 bit range. |
| + int64_t result = value << shift_count; |
| + return Smi::IsValid64(result) ? RangeBoundary(result) : overflow; |
| } |
| + |
| + return overflow; |
| } |
| static RangeBoundary CanonicalizeBoundary(const RangeBoundary& a, |
| const RangeBoundary& overflow) { |
| - if (a.IsConstant() || a.IsNegativeInfinity() || a.IsPositiveInfinity()) { |
| + if (a.IsConstant() || a.IsInfinity()) { |
| return a; |
| } |
| - intptr_t offset = a.offset(); |
| + int64_t offset = a.offset(); |
| Definition* symbol = a.symbol(); |
| bool changed; |
| @@ -2552,11 +2633,21 @@ static RangeBoundary CanonicalizeBoundary(const RangeBoundary& a, |
| switch (op->op_kind()) { |
| case Token::kADD: |
| if (right->IsConstant()) { |
| - offset += Smi::Cast(right->AsConstant()->value()).Value(); |
| + int64_t rhs = Smi::Cast(right->AsConstant()->value()).Value(); |
| + int64_t old_offset = offset; |
| + offset += rhs; |
| + if (Utils::DidAddOverflow(old_offset, rhs, offset)) { |
| + return overflow; |
| + } |
| symbol = left; |
| changed = true; |
| } else if (left->IsConstant()) { |
| - offset += Smi::Cast(left->AsConstant()->value()).Value(); |
| + int64_t rhs = Smi::Cast(left->AsConstant()->value()).Value(); |
| + int64_t old_offset = offset; |
| + offset += rhs; |
| + if (Utils::DidAddOverflow(old_offset, rhs, offset)) { |
| + return overflow; |
| + } |
| symbol = right; |
| changed = true; |
| } |
| @@ -2564,7 +2655,12 @@ static RangeBoundary CanonicalizeBoundary(const RangeBoundary& a, |
| case Token::kSUB: |
| if (right->IsConstant()) { |
| - offset -= Smi::Cast(right->AsConstant()->value()).Value(); |
| + int64_t rhs = Smi::Cast(right->AsConstant()->value()).Value(); |
| + int64_t old_offset = offset; |
| + offset -= rhs; |
| + if (Utils::DidSubOverflow(old_offset, rhs, offset)) { |
| + return overflow; |
| + } |
| symbol = left; |
| changed = true; |
| } |
| @@ -2574,8 +2670,6 @@ static RangeBoundary CanonicalizeBoundary(const RangeBoundary& a, |
| break; |
| } |
| } |
| - |
| - if (!Smi::IsValid(offset)) return overflow; |
| } while (changed); |
| return RangeBoundary::FromDefinition(symbol, offset); |
| @@ -2588,9 +2682,9 @@ static bool CanonicalizeMaxBoundary(RangeBoundary* a) { |
| Range* range = a->symbol()->range(); |
| if ((range == NULL) || !range->max().IsSymbol()) return false; |
| - const intptr_t offset = range->max().offset() + a->offset(); |
| + const int64_t offset = range->max().offset() + a->offset(); |
| - if (!Smi::IsValid(offset)) { |
| + if (Utils::DidAddOverflow(range->max().offset(), a->offset(), offset)) { |
| *a = RangeBoundary::PositiveInfinity(); |
| return true; |
| } |
| @@ -2609,8 +2703,9 @@ static bool CanonicalizeMinBoundary(RangeBoundary* a) { |
| Range* range = a->symbol()->range(); |
| if ((range == NULL) || !range->min().IsSymbol()) return false; |
| - const intptr_t offset = range->min().offset() + a->offset(); |
| - if (!Smi::IsValid(offset)) { |
| + const int64_t offset = range->min().offset() + a->offset(); |
| + |
| + if (Utils::DidAddOverflow(range->min().offset(), a->offset(), offset)) { |
| *a = RangeBoundary::NegativeInfinity(); |
| return true; |
| } |
| @@ -2623,44 +2718,175 @@ static bool CanonicalizeMinBoundary(RangeBoundary* a) { |
| } |
| -RangeBoundary RangeBoundary::Min(RangeBoundary a, RangeBoundary b) { |
| +RangeBoundary RangeBoundary::Min(RangeBoundary a, RangeBoundary b, |
| + RangeSize size) { |
| + ASSERT(!(a.IsNegativeInfinity() || b.IsNegativeInfinity())); |
| + ASSERT(!a.IsUnknown() || !b.IsUnknown()); |
| + if (a.IsUnknown() && !b.IsUnknown()) { |
| + return b; |
| + } |
| + if (!a.IsUnknown() && b.IsUnknown()) { |
| + return a; |
| + } |
| + if (size == kRangeBoundarySmi) { |
| + if (a.IsSmiMaximumOrAbove() && !b.IsSmiMaximumOrAbove()) { |
| + return b; |
| + } |
| + if (!a.IsSmiMaximumOrAbove() && b.IsSmiMaximumOrAbove()) { |
| + return a; |
| + } |
| + } else { |
| + ASSERT(size == kRangeBoundaryInt64); |
| + if (a.IsMaximumOrAbove() && !b.IsMaximumOrAbove()) { |
| + return b; |
| + } |
| + if (!a.IsMaximumOrAbove() && b.IsMaximumOrAbove()) { |
| + return a; |
| + } |
| + } |
| + |
| + if (a.Equals(b)) { |
| + return b; |
| + } |
| + |
| + { |
| + RangeBoundary canonical_a = |
| + CanonicalizeBoundary(a, RangeBoundary::PositiveInfinity()); |
| + RangeBoundary canonical_b = |
| + CanonicalizeBoundary(b, RangeBoundary::PositiveInfinity()); |
| + do { |
| + if (DependOnSameSymbol(canonical_a, canonical_b)) { |
| + a = canonical_a; |
| + b = canonical_b; |
| + break; |
| + } |
| + } while (CanonicalizeMaxBoundary(&canonical_a) || |
| + CanonicalizeMaxBoundary(&canonical_b)); |
| + } |
| + |
| if (DependOnSameSymbol(a, b)) { |
| return (a.offset() <= b.offset()) ? a : b; |
| } |
| - const intptr_t min_a = a.LowerBound().Clamp().value(); |
| - const intptr_t min_b = b.LowerBound().Clamp().value(); |
| + const int64_t min_a = a.UpperBound().Clamp(size).ConstantValue(); |
| + const int64_t min_b = b.UpperBound().Clamp(size).ConstantValue(); |
| return RangeBoundary::FromConstant(Utils::Minimum(min_a, min_b)); |
| } |
| -RangeBoundary RangeBoundary::Max(RangeBoundary a, RangeBoundary b) { |
| +RangeBoundary RangeBoundary::Max(RangeBoundary a, RangeBoundary b, |
| + RangeSize size) { |
| + ASSERT(!(a.IsPositiveInfinity() || b.IsPositiveInfinity())); |
| + ASSERT(!a.IsUnknown() || !b.IsUnknown()); |
| + if (a.IsUnknown() && !b.IsUnknown()) { |
| + return b; |
| + } |
| + if (!a.IsUnknown() && b.IsUnknown()) { |
| + return a; |
| + } |
| + if (size == kRangeBoundarySmi) { |
| + if (a.IsSmiMinimumOrBelow() && !b.IsSmiMinimumOrBelow()) { |
| + return b; |
| + } |
| + if (!a.IsSmiMinimumOrBelow() && b.IsSmiMinimumOrBelow()) { |
| + return a; |
| + } |
| + } else { |
| + ASSERT(size == kRangeBoundaryInt64); |
| + if (a.IsMinimumOrBelow() && !b.IsMinimumOrBelow()) { |
| + return b; |
| + } |
| + if (!a.IsMinimumOrBelow() && b.IsMinimumOrBelow()) { |
| + return a; |
| + } |
| + } |
| + if (a.Equals(b)) { |
| + return b; |
| + } |
| + |
| + { |
| + RangeBoundary canonical_a = |
| + CanonicalizeBoundary(a, RangeBoundary::NegativeInfinity()); |
| + RangeBoundary canonical_b = |
| + CanonicalizeBoundary(b, RangeBoundary::NegativeInfinity()); |
| + |
| + do { |
| + if (DependOnSameSymbol(canonical_a, canonical_b)) { |
| + a = canonical_a; |
| + b = canonical_b; |
| + break; |
| + } |
| + } while (CanonicalizeMinBoundary(&canonical_a) || |
| + CanonicalizeMinBoundary(&canonical_b)); |
| + } |
| + |
| if (DependOnSameSymbol(a, b)) { |
| - return (a.offset() >= b.offset()) ? a : b; |
| + return (a.offset() <= b.offset()) ? b : a; |
| } |
| - const intptr_t max_a = a.UpperBound().Clamp().value(); |
| - const intptr_t max_b = b.UpperBound().Clamp().value(); |
| + const int64_t max_a = a.LowerBound().Clamp(size).ConstantValue(); |
| + const int64_t max_b = b.LowerBound().Clamp(size).ConstantValue(); |
| return RangeBoundary::FromConstant(Utils::Maximum(max_a, max_b)); |
| } |
| +int64_t RangeBoundary::ConstantValue() const { |
| + ASSERT(IsConstant()); |
| + return value_; |
| +} |
| + |
| + |
| void Definition::InferRange() { |
| - ASSERT(Type()->ToCid() == kSmiCid); // Has meaning only for smis. |
| - if (range_ == NULL) { |
| - range_ = Range::Unknown(); |
| + if (Type()->ToCid() == kSmiCid) { |
| + if (range_ == NULL) { |
| + range_ = Range::UnknownSmi(); |
| + } |
| + } else if (IsMintDefinition()) { |
| + if (range_ == NULL) { |
| + range_ = Range::Unknown(); |
| + } |
| + } else { |
| + // Only Smi and Mint supported. |
| + UNREACHABLE(); |
| } |
| } |
| void ConstantInstr::InferRange() { |
| - ASSERT(value_.IsSmi()); |
| + if (value_.IsSmi()) { |
| + if (range_ == NULL) { |
| + int64_t value = Smi::Cast(value_).Value(); |
| + range_ = new Range(RangeBoundary::FromConstant(value), |
| + RangeBoundary::FromConstant(value)); |
| + } |
| + } else if (value_.IsMint()) { |
| + if (range_ == NULL) { |
| + int64_t value = Mint::Cast(value_).value(); |
| + range_ = new Range(RangeBoundary::FromConstant(value), |
| + RangeBoundary::FromConstant(value)); |
| + } |
| + } else { |
| + // Only Smi and Mint supported. |
| + UNREACHABLE(); |
| + } |
| +} |
| + |
| + |
| +void UnboxIntegerInstr::InferRange() { |
| if (range_ == NULL) { |
| - intptr_t value = Smi::Cast(value_).Value(); |
| - range_ = new Range(RangeBoundary::FromConstant(value), |
| - RangeBoundary::FromConstant(value)); |
| + Definition* unboxed = value()->definition(); |
| + if (unboxed == NULL) { |
| + range_ = Range::Unknown(); |
| + return; |
| + } |
| + Range* range = unboxed->range(); |
| + if (range == NULL) { |
| + range_ = Range::Unknown(); |
| + return; |
| + } |
| + range_ = new Range(range->min(), range->max()); |
| } |
| } |
| @@ -2671,69 +2897,26 @@ void ConstraintInstr::InferRange() { |
| RangeBoundary min; |
| RangeBoundary max; |
| - if (IsMinSmi(value_range) && !IsMinSmi(constraint())) { |
| - min = constraint()->min(); |
| - } else if (IsMinSmi(constraint()) && !IsMinSmi(value_range)) { |
| - min = value_range->min(); |
| - } else if ((value_range != NULL) && |
| - IsEqual(constraint()->min(), value_range->min())) { |
| - min = constraint()->min(); |
| - } else { |
| - if (value_range != NULL) { |
| - RangeBoundary canonical_a = |
| - CanonicalizeBoundary(constraint()->min(), |
| - RangeBoundary::NegativeInfinity()); |
| - RangeBoundary canonical_b = |
| - CanonicalizeBoundary(value_range->min(), |
| - RangeBoundary::NegativeInfinity()); |
| - |
| - do { |
| - if (DependOnSameSymbol(canonical_a, canonical_b)) { |
| - min = (canonical_a.offset() <= canonical_b.offset()) ? canonical_b |
| - : canonical_a; |
| - } |
| - } while (CanonicalizeMinBoundary(&canonical_a) || |
| - CanonicalizeMinBoundary(&canonical_b)); |
| - } |
| - |
| - if (min.IsUnknown()) { |
| - min = RangeBoundary::Max(Range::ConstantMin(value_range), |
| - Range::ConstantMin(constraint())); |
| - } |
| + { |
| + RangeBoundary value_min = (value_range == NULL) ? |
| + RangeBoundary() : value_range->min(); |
| + RangeBoundary constraint_min = constraint()->min(); |
| + min = RangeBoundary::Max(value_min, constraint_min, |
| + RangeBoundary::kRangeBoundarySmi); |
| } |
| - if (IsMaxSmi(value_range) && !IsMaxSmi(constraint())) { |
| - max = constraint()->max(); |
| - } else if (IsMaxSmi(constraint()) && !IsMaxSmi(value_range)) { |
| - max = value_range->max(); |
| - } else if ((value_range != NULL) && |
| - IsEqual(constraint()->max(), value_range->max())) { |
| - max = constraint()->max(); |
| - } else { |
| - if (value_range != NULL) { |
| - RangeBoundary canonical_b = |
| - CanonicalizeBoundary(value_range->max(), |
| - RangeBoundary::PositiveInfinity()); |
| - RangeBoundary canonical_a = |
| - CanonicalizeBoundary(constraint()->max(), |
| - RangeBoundary::PositiveInfinity()); |
| - |
| - do { |
| - if (DependOnSameSymbol(canonical_a, canonical_b)) { |
| - max = (canonical_a.offset() <= canonical_b.offset()) ? canonical_a |
| - : canonical_b; |
| - break; |
| - } |
| - } while (CanonicalizeMaxBoundary(&canonical_a) || |
| - CanonicalizeMaxBoundary(&canonical_b)); |
| - } |
| + ASSERT(!min.IsUnknown()); |
| - if (max.IsUnknown()) { |
| - max = RangeBoundary::Min(Range::ConstantMax(value_range), |
| - Range::ConstantMax(constraint())); |
| - } |
| + { |
| + RangeBoundary value_max = (value_range == NULL) ? |
| + RangeBoundary() : value_range->max(); |
| + RangeBoundary constraint_max = constraint()->max(); |
| + max = RangeBoundary::Min(value_max, constraint_max, |
| + RangeBoundary::kRangeBoundarySmi); |
| } |
| + ASSERT(!max.IsUnknown()); |
| + |
| range_ = new Range(min, max); |
| // Mark branches that generate unsatisfiable constraints as constant. |
| @@ -2805,6 +2988,14 @@ void LoadIndexedInstr::InferRange() { |
| range_ = new Range(RangeBoundary::FromConstant(0), |
| RangeBoundary::FromConstant(65535)); |
| break; |
| + case kTypedDataInt32ArrayCid: |
| + range_ = new Range(RangeBoundary::FromConstant(kMinInt32), |
| + RangeBoundary::FromConstant(kMaxInt32)); |
| + break; |
| + case kTypedDataUint32ArrayCid: |
| + range_ = new Range(RangeBoundary::FromConstant(0), |
| + RangeBoundary::FromConstant(kMaxUint32)); |
| + break; |
| case kOneByteStringCid: |
| range_ = new Range(RangeBoundary::FromConstant(0), |
| RangeBoundary::FromConstant(0xFF)); |
| @@ -2926,26 +3117,30 @@ void PhiInstr::InferRange() { |
| for (intptr_t i = 0; i < InputCount(); i++) { |
| Range* input_range = InputAt(i)->definition()->range(); |
| if (input_range == NULL) { |
| - range_ = Range::Unknown(); |
| + range_ = Range::UnknownSmi(); |
| return; |
| } |
| if (new_min.IsUnknown()) { |
| new_min = Range::ConstantMin(input_range); |
| } else { |
| - new_min = RangeBoundary::Min(new_min, Range::ConstantMin(input_range)); |
| + new_min = RangeBoundary::Min(new_min, |
| + Range::ConstantMinSmi(input_range), |
| + RangeBoundary::kRangeBoundarySmi); |
| } |
| if (new_max.IsUnknown()) { |
| new_max = Range::ConstantMax(input_range); |
| } else { |
| - new_max = RangeBoundary::Max(new_max, Range::ConstantMax(input_range)); |
| + new_max = RangeBoundary::Max(new_max, |
| + Range::ConstantMaxSmi(input_range), |
| + RangeBoundary::kRangeBoundarySmi); |
| } |
| } |
| ASSERT(new_min.IsUnknown() == new_max.IsUnknown()); |
| if (new_min.IsUnknown()) { |
| - range_ = Range::Unknown(); |
| + range_ = Range::UnknownSmi(); |
| return; |
| } |
| @@ -2964,184 +3159,93 @@ bool PhiInstr::IsRedundant() const { |
| } |
| -static bool SymbolicSub(const RangeBoundary& a, |
| - const RangeBoundary& b, |
| - RangeBoundary* result) { |
| - if (a.IsSymbol() && b.IsConstant() && !b.Overflowed()) { |
| - const intptr_t offset = a.offset() - b.value(); |
| - if (!Smi::IsValid(offset)) return false; |
| - |
| - *result = RangeBoundary::FromDefinition(a.symbol(), offset); |
| - return true; |
| +static bool IsArrayLength(Definition* defn) { |
| + if (defn == NULL) { |
| + return false; |
| } |
| - return false; |
| + LoadFieldInstr* load = defn->AsLoadField(); |
| + return (load != NULL) && load->IsImmutableLengthLoad(); |
| } |
| -static bool SymbolicAdd(const RangeBoundary& a, |
| - const RangeBoundary& b, |
| - RangeBoundary* result) { |
| - if (a.IsSymbol() && b.IsConstant() && !b.Overflowed()) { |
| - const intptr_t offset = a.offset() + b.value(); |
| - if (!Smi::IsValid(offset)) return false; |
| +void BinarySmiOpInstr::InferRange() { |
| + // TODO(vegorov): canonicalize BinarySmiOp to always have constant on the |
| + // right and a non-constant on the left. |
| + Definition* left_defn = left()->definition(); |
| - *result = RangeBoundary::FromDefinition(a.symbol(), offset); |
| - return true; |
| - } else if (b.IsSymbol() && a.IsConstant() && !a.Overflowed()) { |
| - const intptr_t offset = b.offset() + a.value(); |
| - if (!Smi::IsValid(offset)) return false; |
| + Range* left_range = left_defn->range(); |
| + Range* right_range = right()->definition()->range(); |
| - *result = RangeBoundary::FromDefinition(b.symbol(), offset); |
| - return true; |
| + if ((left_range == NULL) || (right_range == NULL)) { |
| + range_ = Range::UnknownSmi(); |
| + return; |
| } |
| - return false; |
| -} |
| + Range* possible_range = Range::BinaryOp(op_kind(), |
| + left_range, |
| + right_range, |
| + left_defn); |
| -static bool IsArrayLength(Definition* defn) { |
| - LoadFieldInstr* load = defn->AsLoadField(); |
| - return (load != NULL) && load->IsImmutableLengthLoad(); |
| -} |
| - |
| + if ((range_ == NULL) && (possible_range == NULL)) { |
| + // Initialize. |
| + range_ = Range::UnknownSmi(); |
| + return; |
| + } |
| -static int64_t ConstantAbsMax(const Range* range) { |
| - if (range == NULL) return Smi::kMaxValue; |
| - const int64_t abs_min = Utils::Abs(Range::ConstantMin(range).value()); |
| - const int64_t abs_max = Utils::Abs(Range::ConstantMax(range).value()); |
| - return abs_min > abs_max ? abs_min : abs_max; |
| -} |
| + if (possible_range == NULL) { |
| + // Nothing new. |
| + return; |
| + } |
| + range_ = possible_range; |
| -static bool OnlyPositiveOrZero(const Range* a, const Range* b) { |
| - if ((a == NULL) || (b == NULL)) return false; |
| - if (Range::ConstantMin(a).value() < 0) return false; |
| - if (Range::ConstantMin(b).value() < 0) return false; |
| - return true; |
| -} |
| + ASSERT(!range_->min().IsUnknown() && !range_->max().IsUnknown()); |
| + // Calculate overflowed status before clamping. |
| + const bool overflowed = range_->min().LowerBound().OverflowedSmi() || |
| + range_->max().UpperBound().OverflowedSmi(); |
| + // Clamp value to be within smi range. |
| + range_->Clamp(RangeBoundary::kRangeBoundarySmi); |
| -static bool OnlyNegativeOrZero(const Range* a, const Range* b) { |
| - if ((a == NULL) || (b == NULL)) return false; |
| - if (Range::ConstantMax(a).value() > 0) return false; |
| - if (Range::ConstantMax(b).value() > 0) return false; |
| - return true; |
| + set_overflow(overflowed); |
| } |
| -void BinarySmiOpInstr::InferRange() { |
| - // TODO(vegorov): canonicalize BinarySmiOp to always have constant on the |
| - // right and a non-constant on the left. |
| +void BinaryMintOpInstr::InferRange() { |
| + // TODO(vegorov): canonicalize BinaryMintOpInstr to always have constant on |
| + // the right and a non-constant on the left. |
| Definition* left_defn = left()->definition(); |
| Range* left_range = left_defn->range(); |
| Range* right_range = right()->definition()->range(); |
| if ((left_range == NULL) || (right_range == NULL)) { |
| - range_ = new Range(RangeBoundary::MinSmi(), RangeBoundary::MaxSmi()); |
| + range_ = Range::Unknown(); |
| return; |
| } |
| - RangeBoundary left_min = |
| - IsArrayLength(left_defn) ? |
| - RangeBoundary::FromDefinition(left_defn) : left_range->min(); |
| - |
| - RangeBoundary left_max = |
| - IsArrayLength(left_defn) ? |
| - RangeBoundary::FromDefinition(left_defn) : left_range->max(); |
| - |
| - RangeBoundary min; |
| - RangeBoundary max; |
| - switch (op_kind()) { |
| - case Token::kADD: |
| - if (!SymbolicAdd(left_min, right_range->min(), &min)) { |
| - min = |
| - RangeBoundary::Add(Range::ConstantMin(left_range), |
| - Range::ConstantMin(right_range), |
| - RangeBoundary::NegativeInfinity()); |
| - } |
| - |
| - if (!SymbolicAdd(left_max, right_range->max(), &max)) { |
| - max = |
| - RangeBoundary::Add(Range::ConstantMax(right_range), |
| - Range::ConstantMax(left_range), |
| - RangeBoundary::PositiveInfinity()); |
| - } |
| - break; |
| - |
| - case Token::kSUB: |
| - if (!SymbolicSub(left_min, right_range->max(), &min)) { |
| - min = |
| - RangeBoundary::Sub(Range::ConstantMin(left_range), |
| - Range::ConstantMax(right_range), |
| - RangeBoundary::NegativeInfinity()); |
| - } |
| - |
| - if (!SymbolicSub(left_max, right_range->min(), &max)) { |
| - max = |
| - RangeBoundary::Sub(Range::ConstantMax(left_range), |
| - Range::ConstantMin(right_range), |
| - RangeBoundary::PositiveInfinity()); |
| - } |
| - break; |
| - |
| - case Token::kMUL: { |
| - const int64_t left_max = ConstantAbsMax(left_range); |
| - const int64_t right_max = ConstantAbsMax(right_range); |
| - ASSERT(left_max <= -kSmiMin); |
| - ASSERT(right_max <= -kSmiMin); |
| - if ((left_max == 0) || (right_max <= kMaxInt64 / left_max)) { |
| - // Product of left and right max values stays in 64 bit range. |
| - const int64_t result_max = left_max * right_max; |
| - if (Smi::IsValid64(result_max) && Smi::IsValid64(-result_max)) { |
| - const intptr_t r_min = |
| - OnlyPositiveOrZero(left_range, right_range) ? 0 : -result_max; |
| - min = RangeBoundary::FromConstant(r_min); |
| - const intptr_t r_max = |
| - OnlyNegativeOrZero(left_range, right_range) ? 0 : result_max; |
| - max = RangeBoundary::FromConstant(r_max); |
| - break; |
| - } |
| - } |
| - if (range_ == NULL) { |
| - range_ = Range::Unknown(); |
| - } |
| - return; |
| - } |
| - case Token::kSHL: { |
| - Range::Shl(left_range, right_range, &min, &max); |
| - break; |
| - } |
| - case Token::kBIT_AND: |
| - if (Range::ConstantMin(right_range).value() >= 0) { |
| - min = RangeBoundary::FromConstant(0); |
| - max = Range::ConstantMax(right_range); |
| - break; |
| - } |
| - if (Range::ConstantMin(left_range).value() >= 0) { |
| - min = RangeBoundary::FromConstant(0); |
| - max = Range::ConstantMax(left_range); |
| - break; |
| - } |
| + Range* possible_range = Range::BinaryOp(op_kind(), |
| + left_range, |
| + right_range, |
| + left_defn); |
| - if (range_ == NULL) { |
| - range_ = Range::Unknown(); |
| - } |
| - return; |
| + if ((range_ == NULL) && (possible_range == NULL)) { |
| + // Initialize. |
| + range_ = Range::Unknown(); |
| + return; |
| + } |
| - default: |
| - if (range_ == NULL) { |
| - range_ = Range::Unknown(); |
| - } |
| - return; |
| + if (possible_range == NULL) { |
| + // Nothing new. |
| + return; |
| } |
| - ASSERT(!min.IsUnknown() && !max.IsUnknown()); |
| - set_overflow(min.LowerBound().Overflowed() || max.UpperBound().Overflowed()); |
| + range_ = possible_range; |
| - if (min.IsConstant()) min.Clamp(); |
| - if (max.IsConstant()) max.Clamp(); |
| + ASSERT(!range_->min().IsUnknown() && !range_->max().IsUnknown()); |
| - range_ = new Range(min, max); |
| + // Clamp value to be within mint range. |
| + range_->Clamp(RangeBoundary::kRangeBoundaryInt64); |
| } |
| @@ -3149,68 +3253,61 @@ bool Range::IsPositive() const { |
| if (min().IsNegativeInfinity()) { |
| return false; |
| } |
| - if (min().LowerBound().value() < 0) { |
| + if (min().LowerBound().ConstantValue() < 0) { |
| return false; |
| } |
| if (max().IsPositiveInfinity()) { |
| return true; |
| } |
| - return max().UpperBound().value() >= 0; |
| + return max().UpperBound().ConstantValue() >= 0; |
| } |
| -bool Range::IsNegative() const { |
| +bool Range::OnlyLessThanOrEqualTo(int64_t val) const { |
| if (max().IsPositiveInfinity()) { |
| + // Cannot be true. |
| return false; |
| } |
| - if (max().UpperBound().value() >= 0) { |
| + if (max().UpperBound().ConstantValue() > val) { |
| + // Not true. |
| return false; |
| } |
| - if (min().IsNegativeInfinity()) { |
| - return true; |
| - } |
| - return min().LowerBound().value() < 0; |
| + return true; |
| } |
| -bool Range::OnlyLessThanOrEqualTo(intptr_t val) const { |
| - if (max().IsPositiveInfinity()) { |
| - // Cannot be true. |
| +bool Range::OnlyGreaterThanOrEqualTo(int64_t val) const { |
| + if (min().IsNegativeInfinity()) { |
| return false; |
| } |
| - if (max().UpperBound().value() > val) { |
| - // Not true. |
| + if (min().LowerBound().ConstantValue() < val) { |
| return false; |
| } |
| - if (!min().IsNegativeInfinity()) { |
| - if (min().LowerBound().value() > val) { |
| - // Lower bound is > value. |
| - return false; |
| - } |
| - } |
| return true; |
| } |
| // Inclusive. |
| -bool Range::IsWithin(intptr_t min_int, intptr_t max_int) const { |
| +bool Range::IsWithin(int64_t min_int, int64_t max_int) const { |
| RangeBoundary lower_min = min().LowerBound(); |
| - if (lower_min.IsNegativeInfinity() || (lower_min.value() < min_int)) { |
| + if (lower_min.IsNegativeInfinity() || (lower_min.ConstantValue() < min_int)) { |
| return false; |
| } |
| RangeBoundary upper_max = max().UpperBound(); |
| - if (upper_max.IsPositiveInfinity() || (upper_max.value() > max_int)) { |
| + if (upper_max.IsPositiveInfinity() || (upper_max.ConstantValue() > max_int)) { |
| return false; |
| } |
| return true; |
| } |
| -bool Range::Overlaps(intptr_t min_int, intptr_t max_int) const { |
| - const intptr_t this_min = min().IsNegativeInfinity() ? |
| - kIntptrMin : min().LowerBound().value(); |
| - const intptr_t this_max = max().IsPositiveInfinity() ? |
| - kIntptrMax : max().UpperBound().value(); |
| +bool Range::Overlaps(int64_t min_int, int64_t max_int) const { |
| + RangeBoundary lower = min().LowerBound(); |
| + RangeBoundary upper = max().UpperBound(); |
| + const int64_t this_min = lower.IsNegativeInfinity() ? |
| + RangeBoundary::kMin : lower.ConstantValue(); |
| + const int64_t this_max = upper.IsPositiveInfinity() ? |
| + RangeBoundary::kMax : upper.ConstantValue(); |
| if ((this_min <= min_int) && (min_int <= this_max)) return true; |
| if ((this_min <= max_int) && (max_int <= this_max)) return true; |
| if ((min_int < this_min) && (max_int > this_max)) return true; |
| @@ -3224,7 +3321,8 @@ bool Range::IsUnsatisfiable() const { |
| return true; |
| } |
| // Constant case: For example [0, -1]. |
| - if (Range::ConstantMin(this).value() > Range::ConstantMax(this).value()) { |
| + if (Range::ConstantMin(this).ConstantValue() > |
| + Range::ConstantMax(this).ConstantValue()) { |
| return true; |
| } |
| // Symbol case: For example [v+1, v]. |
| @@ -3235,35 +3333,232 @@ bool Range::IsUnsatisfiable() const { |
| } |
| -void Range::Shl(Range* left, |
| - Range* right, |
| +void Range::Clamp(RangeBoundary::RangeSize size) { |
| + min_ = min_.Clamp(size); |
| + max_ = max_.Clamp(size); |
| +} |
| + |
| + |
| +void Range::Shl(const Range* left, |
| + const Range* right, |
| RangeBoundary* result_min, |
| RangeBoundary* result_max) { |
| + ASSERT(left != NULL); |
| + ASSERT(right != NULL); |
| + ASSERT(result_min != NULL); |
| + ASSERT(result_max != NULL); |
| RangeBoundary left_max = Range::ConstantMax(left); |
| RangeBoundary left_min = Range::ConstantMin(left); |
| // A negative shift count always deoptimizes (and throws), so the minimum |
| // shift count is zero. |
| - intptr_t right_max = Utils::Maximum(Range::ConstantMax(right).value(), |
| - static_cast<intptr_t>(0)); |
| - intptr_t right_min = Utils::Maximum(Range::ConstantMin(right).value(), |
| - static_cast<intptr_t>(0)); |
| + int64_t right_max = Utils::Maximum(Range::ConstantMax(right).ConstantValue(), |
| + static_cast<int64_t>(0)); |
| + int64_t right_min = Utils::Maximum(Range::ConstantMin(right).ConstantValue(), |
| + static_cast<int64_t>(0)); |
| *result_min = RangeBoundary::Shl( |
| left_min, |
| - left_min.value() > 0 ? right_min : right_max, |
| - left_min.value() > 0 |
| + left_min.ConstantValue() > 0 ? right_min : right_max, |
| + left_min.ConstantValue() > 0 |
| ? RangeBoundary::PositiveInfinity() |
| : RangeBoundary::NegativeInfinity()); |
| *result_max = RangeBoundary::Shl( |
| left_max, |
| - left_max.value() > 0 ? right_max : right_min, |
| - left_max.value() > 0 |
| + left_max.ConstantValue() > 0 ? right_max : right_min, |
| + left_max.ConstantValue() > 0 |
| ? RangeBoundary::PositiveInfinity() |
| : RangeBoundary::NegativeInfinity()); |
| } |
| +bool Range::And(const Range* left_range, |
| + const Range* right_range, |
| + RangeBoundary* min, |
| + RangeBoundary* max) { |
| + ASSERT(left_range != NULL); |
| + ASSERT(right_range != NULL); |
| + ASSERT(min != NULL); |
| + ASSERT(max != NULL); |
| + |
| + if (Range::ConstantMin(right_range).ConstantValue() >= 0) { |
| + *min = RangeBoundary::FromConstant(0); |
| + *max = Range::ConstantMax(right_range); |
| + return true; |
| + } |
| + |
| + if (Range::ConstantMin(left_range).ConstantValue() >= 0) { |
| + *min = RangeBoundary::FromConstant(0); |
| + *max = Range::ConstantMax(left_range); |
| + return true; |
| + } |
| + |
| + return false; |
| +} |
| + |
| + |
| +void Range::Add(const Range* left_range, |
| + const Range* right_range, |
| + RangeBoundary* min, |
| + RangeBoundary* max, |
| + Definition* left_defn) { |
| + ASSERT(left_range != NULL); |
| + ASSERT(right_range != NULL); |
| + ASSERT(min != NULL); |
| + ASSERT(max != NULL); |
| + |
| + RangeBoundary left_min = |
| + IsArrayLength(left_defn) ? |
| + RangeBoundary::FromDefinition(left_defn) : left_range->min(); |
| + |
| + RangeBoundary left_max = |
| + IsArrayLength(left_defn) ? |
| + RangeBoundary::FromDefinition(left_defn) : left_range->max(); |
| + |
| + if (!RangeBoundary::SymbolicAdd(left_min, right_range->min(), min)) { |
| + *min = RangeBoundary::Add(left_range->min().LowerBound(), |
| + right_range->min().LowerBound(), |
| + RangeBoundary::NegativeInfinity()); |
| + } |
| + if (!RangeBoundary::SymbolicAdd(left_max, right_range->max(), max)) { |
| + *max = RangeBoundary::Add(right_range->max().UpperBound(), |
| + left_range->max().UpperBound(), |
| + RangeBoundary::PositiveInfinity()); |
| + } |
| +} |
| + |
| + |
| +void Range::Sub(const Range* left_range, |
| + const Range* right_range, |
| + RangeBoundary* min, |
| + RangeBoundary* max, |
| + Definition* left_defn) { |
| + ASSERT(left_range != NULL); |
| + ASSERT(right_range != NULL); |
| + ASSERT(min != NULL); |
| + ASSERT(max != NULL); |
| + |
| + RangeBoundary left_min = |
| + IsArrayLength(left_defn) ? |
| + RangeBoundary::FromDefinition(left_defn) : left_range->min(); |
| + |
| + RangeBoundary left_max = |
| + IsArrayLength(left_defn) ? |
| + RangeBoundary::FromDefinition(left_defn) : left_range->max(); |
| + |
| + if (!RangeBoundary::SymbolicSub(left_min, right_range->max(), min)) { |
| + *min = RangeBoundary::Sub(left_range->min().LowerBound(), |
| + right_range->max().UpperBound(), |
| + RangeBoundary::NegativeInfinity()); |
| + } |
| + if (!RangeBoundary::SymbolicSub(left_max, right_range->min(), max)) { |
| + *max = RangeBoundary::Sub(left_range->max().UpperBound(), |
| + right_range->min().LowerBound(), |
| + RangeBoundary::PositiveInfinity()); |
| + } |
| +} |
| + |
| + |
| +bool Range::Mul(const Range* left_range, |
| + const Range* right_range, |
| + RangeBoundary* min, |
| + RangeBoundary* max) { |
| + ASSERT(left_range != NULL); |
| + ASSERT(right_range != NULL); |
| + ASSERT(min != NULL); |
| + ASSERT(max != NULL); |
| + |
| + const int64_t left_max = ConstantAbsMax(left_range); |
| + const int64_t right_max = ConstantAbsMax(right_range); |
| + if ((left_max <= -kSmiMin) && (right_max <= -kSmiMin) && |
| + ((left_max == 0) || (right_max <= kMaxInt64 / left_max))) { |
| + // Product of left and right max values stays in 64 bit range. |
| + const int64_t result_max = left_max * right_max; |
| + if (Smi::IsValid64(result_max) && Smi::IsValid64(-result_max)) { |
| + const intptr_t r_min = |
| + OnlyPositiveOrZero(*left_range, *right_range) ? 0 : -result_max; |
| + *min = RangeBoundary::FromConstant(r_min); |
| + const intptr_t r_max = |
| + OnlyNegativeOrZero(*left_range, *right_range) ? 0 : result_max; |
| + *max = RangeBoundary::FromConstant(r_max); |
| + return true; |
| + } |
| + } |
| + return false; |
| +} |
| + |
| + |
| +// Both the a and b ranges are >= 0. |
| +bool Range::OnlyPositiveOrZero(const Range& a, const Range& b) { |
| + return a.OnlyGreaterThanOrEqualTo(0) && b.OnlyGreaterThanOrEqualTo(0); |
| +} |
| + |
| + |
| +// Both the a and b ranges are <= 0. |
| +bool Range::OnlyNegativeOrZero(const Range& a, const Range& b) { |
| + return a.OnlyLessThanOrEqualTo(0) && b.OnlyLessThanOrEqualTo(0); |
| +} |
| + |
| + |
| +// Return the maximum absolute value included in range. |
| +int64_t Range::ConstantAbsMax(const Range* range) { |
| + if (range == NULL) { |
| + return RangeBoundary::kMax; |
| + } |
| + const int64_t abs_min = Utils::Abs(Range::ConstantMin(range).ConstantValue()); |
| + const int64_t abs_max = Utils::Abs(Range::ConstantMax(range).ConstantValue()); |
| + return Utils::Maximum(abs_min, abs_max); |
| +} |
| + |
| + |
| +Range* Range::BinaryOp(const Token::Kind op, |
| + const Range* left_range, |
| + const Range* right_range, |
| + Definition* left_defn) { |
| + ASSERT(left_range != NULL); |
| + ASSERT(right_range != NULL); |
| + |
| + // Both left and right ranges are finite. |
| + ASSERT(left_range->IsFinite()); |
| + ASSERT(right_range->IsFinite()); |
| + |
| + RangeBoundary min; |
| + RangeBoundary max; |
| + ASSERT(min.IsUnknown() && max.IsUnknown()); |
| + |
| + switch (op) { |
| + case Token::kADD: |
| + Range::Add(left_range, right_range, &min, &max, left_defn); |
| + break; |
| + case Token::kSUB: |
| + Range::Sub(left_range, right_range, &min, &max, left_defn); |
| + break; |
| + case Token::kMUL: { |
| + if (!Range::Mul(left_range, right_range, &min, &max)) { |
| + return NULL; |
| + } |
| + break; |
| + } |
| + case Token::kSHL: { |
| + Range::Shl(left_range, right_range, &min, &max); |
| + break; |
| + } |
| + case Token::kBIT_AND: |
| + if (!Range::And(left_range, right_range, &min, &max)) { |
| + return NULL; |
| + } |
| + break; |
| + default: |
| + return NULL; |
| + break; |
| + } |
| + |
| + ASSERT(!min.IsUnknown() && !max.IsUnknown()); |
| + |
| + return new Range(min, max); |
| +} |
| + |
| + |
| bool CheckArrayBoundInstr::IsFixedLengthArrayType(intptr_t cid) { |
| return LoadFieldInstr::IsFixedLengthArrayCid(cid); |
| } |
| @@ -3278,14 +3573,14 @@ bool CheckArrayBoundInstr::IsRedundant(RangeBoundary length) { |
| } |
| // Range of the index is not positive. Check can't be redundant. |
| - if (Range::ConstantMin(index_range).value() < 0) { |
| + if (Range::ConstantMinSmi(index_range).ConstantValue() < 0) { |
| return false; |
| } |
| RangeBoundary max = CanonicalizeBoundary(index_range->max(), |
| RangeBoundary::PositiveInfinity()); |
| - if (max.Overflowed()) { |
| + if (max.OverflowedSmi()) { |
| return false; |
| } |
| @@ -3293,17 +3588,17 @@ bool CheckArrayBoundInstr::IsRedundant(RangeBoundary length) { |
| RangeBoundary max_upper = max.UpperBound(); |
| RangeBoundary length_lower = length.LowerBound(); |
| - if (max_upper.Overflowed() || length_lower.Overflowed()) { |
| + if (max_upper.OverflowedSmi() || length_lower.OverflowedSmi()) { |
| return false; |
| } |
| // Try to compare constant boundaries. |
| - if (max_upper.value() < length_lower.value()) { |
| + if (max_upper.ConstantValue() < length_lower.ConstantValue()) { |
| return true; |
| } |
| length = CanonicalizeBoundary(length, RangeBoundary::PositiveInfinity()); |
| - if (length.Overflowed()) { |
| + if (length.OverflowedSmi()) { |
| return false; |
| } |