Index: runtime/vm/intermediate_language.cc |
diff --git a/runtime/vm/intermediate_language.cc b/runtime/vm/intermediate_language.cc |
index 5635b46b3ccd7ced362438d7bb157e894ce95c57..b0b0e22c445d9d65128ebb0e3d00a54801d1bcbf 100644 |
--- a/runtime/vm/intermediate_language.cc |
+++ b/runtime/vm/intermediate_language.cc |
@@ -2449,7 +2449,7 @@ void Environment::DeepCopyToOuter(Isolate* isolate, Instruction* instr) const { |
} |
-RangeBoundary RangeBoundary::FromDefinition(Definition* defn, intptr_t offs) { |
+RangeBoundary RangeBoundary::FromDefinition(Definition* defn, int64_t offs) { |
if (defn->IsConstant() && defn->AsConstant()->value().IsSmi()) { |
return FromConstant(Smi::Cast(defn->AsConstant()->value()).Value() + offs); |
} |
@@ -2458,7 +2458,9 @@ RangeBoundary RangeBoundary::FromDefinition(Definition* defn, intptr_t offs) { |
RangeBoundary RangeBoundary::LowerBound() const { |
- if (IsNegativeInfinity()) return *this; |
+ if (IsInfinity()) { |
+ return NegativeInfinity(); |
+ } |
if (IsConstant()) return *this; |
return Add(Range::ConstantMin(symbol()->range()), |
RangeBoundary::FromConstant(offset_), |
@@ -2467,7 +2469,9 @@ RangeBoundary RangeBoundary::LowerBound() const { |
RangeBoundary RangeBoundary::UpperBound() const { |
- if (IsPositiveInfinity()) return *this; |
+ if (IsInfinity()) { |
+ return PositiveInfinity(); |
+ } |
if (IsConstant()) return *this; |
return Add(Range::ConstantMax(symbol()->range()), |
RangeBoundary::FromConstant(offset_), |
@@ -2475,6 +2479,77 @@ RangeBoundary RangeBoundary::UpperBound() const { |
} |
+RangeBoundary RangeBoundary::Add(const RangeBoundary& a, |
+ const RangeBoundary& b, |
+ const RangeBoundary& overflow) { |
+ if (a.IsInfinity() || b.IsInfinity()) { |
+ // In that case that a or b is +/- inf, return the overflow boundary. |
+ return overflow; |
+ } |
+ ASSERT(a.IsConstant() && b.IsConstant()); |
+ |
+ int64_t result = a.ConstantValue() + b.ConstantValue(); |
+ |
+ if (Utils::DidAddOverflow(a.ConstantValue(), b.ConstantValue(), result)) { |
+ return overflow; |
+ } |
+ |
+ return RangeBoundary::FromConstant(result); |
+} |
+ |
+ |
+RangeBoundary RangeBoundary::Sub(const RangeBoundary& a, |
+ const RangeBoundary& b, |
+ const RangeBoundary& overflow) { |
+ if (a.IsInfinity() || b.IsInfinity()) { |
+ // In that case that a or b is +/- inf, return the overflow boundary. |
+ return overflow; |
+ } |
+ ASSERT(a.IsConstant() && b.IsConstant()); |
+ |
+ int64_t result = a.ConstantValue() - b.ConstantValue(); |
+ |
+ if (Utils::DidSubOverflow(a.ConstantValue(), b.ConstantValue(), result)) { |
+ return overflow; |
+ } |
+ return RangeBoundary::FromConstant(result); |
+} |
+ |
+ |
+bool RangeBoundary::SymbolicAdd(const RangeBoundary& a, |
+ const RangeBoundary& b, |
+ RangeBoundary* result) { |
+ if (a.IsSymbol() && b.IsConstant()) { |
+ const int64_t offset = a.offset() + b.ConstantValue(); |
+ if (Utils::DidAddOverflow(a.offset(), b.ConstantValue(), offset)) { |
+ return false; |
+ } |
+ |
+ *result = RangeBoundary::FromDefinition(a.symbol(), offset); |
+ return true; |
+ } else if (b.IsSymbol() && a.IsConstant()) { |
+ return SymbolicAdd(b, a, result); |
+ } |
+ return false; |
+} |
+ |
+ |
+bool RangeBoundary::SymbolicSub(const RangeBoundary& a, |
+ const RangeBoundary& b, |
+ RangeBoundary* result) { |
+ if (a.IsSymbol() && b.IsConstant()) { |
+ const int64_t offset = a.offset() - b.ConstantValue(); |
+ if (Utils::DidSubOverflow(a.offset(), b.ConstantValue(), offset)) { |
+ return false; |
+ } |
+ |
+ *result = RangeBoundary::FromDefinition(a.symbol(), offset); |
+ return true; |
+ } |
+ return false; |
+} |
+ |
+ |
static Definition* UnwrapConstraint(Definition* defn) { |
while (defn->IsConstraint()) { |
defn = defn->AsConstraint()->value()->definition(); |
@@ -2502,41 +2577,45 @@ static bool DependOnSameSymbol(const RangeBoundary& a, const RangeBoundary& b) { |
} |
-// Returns true if range has a least specific minimum value. |
-static bool IsMinSmi(Range* range) { |
- return (range == NULL) || |
- (range->min().IsConstant() && |
- (range->min().value() <= Smi::kMinValue)); |
+bool RangeBoundary::Equals(const RangeBoundary& other) const { |
+ if (IsConstant() && other.IsConstant()) { |
+ return ConstantValue() == other.ConstantValue(); |
+ } else if (IsInfinity() && other.IsInfinity()) { |
+ return kind() == other.kind(); |
+ } else if (IsSymbol() && other.IsSymbol()) { |
+ return (offset() == other.offset()) && DependOnSameSymbol(*this, other); |
+ } |
+ return false; |
} |
-// Returns true if range has a least specific maximium value. |
-static bool IsMaxSmi(Range* range) { |
- return (range == NULL) || |
- (range->max().IsConstant() && |
- (range->max().value() >= Smi::kMaxValue)); |
-} |
- |
+RangeBoundary RangeBoundary::Shl(const RangeBoundary& value_boundary, |
+ int64_t shift_count, |
+ const RangeBoundary& overflow) { |
+ ASSERT(value_boundary.IsConstant()); |
+ ASSERT(shift_count >= 0); |
+ int64_t limit = 64 - shift_count; |
+ int64_t value = static_cast<int64_t>(value_boundary.ConstantValue()); |
-// Returns true if two range boundaries can be proven to be equal. |
-static bool IsEqual(const RangeBoundary& a, const RangeBoundary& b) { |
- if (a.IsConstant() && b.IsConstant()) { |
- return a.value() == b.value(); |
- } else if (a.IsSymbol() && b.IsSymbol()) { |
- return (a.offset() == b.offset()) && DependOnSameSymbol(a, b); |
- } else { |
- return false; |
+ if ((value == 0) || |
+ (shift_count == 0) || |
+ ((limit > 0) && (Utils::IsInt(limit, value)))) { |
+ // Result stays in 64 bit range. |
+ int64_t result = value << shift_count; |
+ return Smi::IsValid64(result) ? RangeBoundary(result) : overflow; |
} |
+ |
+ return overflow; |
} |
static RangeBoundary CanonicalizeBoundary(const RangeBoundary& a, |
const RangeBoundary& overflow) { |
- if (a.IsConstant() || a.IsNegativeInfinity() || a.IsPositiveInfinity()) { |
+ if (a.IsConstant() || a.IsInfinity()) { |
return a; |
} |
- intptr_t offset = a.offset(); |
+ int64_t offset = a.offset(); |
Definition* symbol = a.symbol(); |
bool changed; |
@@ -2552,11 +2631,21 @@ static RangeBoundary CanonicalizeBoundary(const RangeBoundary& a, |
switch (op->op_kind()) { |
case Token::kADD: |
if (right->IsConstant()) { |
- offset += Smi::Cast(right->AsConstant()->value()).Value(); |
+ int64_t rhs = Smi::Cast(right->AsConstant()->value()).Value(); |
+ int64_t old_offset = offset; |
+ offset += rhs; |
+ if (Utils::DidAddOverflow(old_offset, rhs, offset)) { |
+ return overflow; |
+ } |
symbol = left; |
changed = true; |
} else if (left->IsConstant()) { |
- offset += Smi::Cast(left->AsConstant()->value()).Value(); |
+ int64_t rhs = Smi::Cast(left->AsConstant()->value()).Value(); |
+ int64_t old_offset = offset; |
+ offset += rhs; |
+ if (Utils::DidAddOverflow(old_offset, rhs, offset)) { |
+ return overflow; |
+ } |
symbol = right; |
changed = true; |
} |
@@ -2564,7 +2653,12 @@ static RangeBoundary CanonicalizeBoundary(const RangeBoundary& a, |
case Token::kSUB: |
if (right->IsConstant()) { |
- offset -= Smi::Cast(right->AsConstant()->value()).Value(); |
+ int64_t rhs = Smi::Cast(right->AsConstant()->value()).Value(); |
+ int64_t old_offset = offset; |
+ offset -= rhs; |
+ if (Utils::DidSubOverflow(old_offset, rhs, offset)) { |
+ return overflow; |
+ } |
symbol = left; |
changed = true; |
} |
@@ -2574,8 +2668,6 @@ static RangeBoundary CanonicalizeBoundary(const RangeBoundary& a, |
break; |
} |
} |
- |
- if (!Smi::IsValid(offset)) return overflow; |
} while (changed); |
return RangeBoundary::FromDefinition(symbol, offset); |
@@ -2588,9 +2680,9 @@ static bool CanonicalizeMaxBoundary(RangeBoundary* a) { |
Range* range = a->symbol()->range(); |
if ((range == NULL) || !range->max().IsSymbol()) return false; |
- const intptr_t offset = range->max().offset() + a->offset(); |
+ const int64_t offset = range->max().offset() + a->offset(); |
- if (!Smi::IsValid(offset)) { |
+ if (Utils::DidAddOverflow(range->max().offset(), a->offset(), offset)) { |
*a = RangeBoundary::PositiveInfinity(); |
return true; |
} |
@@ -2609,8 +2701,9 @@ static bool CanonicalizeMinBoundary(RangeBoundary* a) { |
Range* range = a->symbol()->range(); |
if ((range == NULL) || !range->min().IsSymbol()) return false; |
- const intptr_t offset = range->min().offset() + a->offset(); |
- if (!Smi::IsValid(offset)) { |
+ const int64_t offset = range->min().offset() + a->offset(); |
+ |
+ if (Utils::DidAddOverflow(range->min().offset(), a->offset(), offset)) { |
*a = RangeBoundary::NegativeInfinity(); |
return true; |
} |
@@ -2623,44 +2716,175 @@ static bool CanonicalizeMinBoundary(RangeBoundary* a) { |
} |
-RangeBoundary RangeBoundary::Min(RangeBoundary a, RangeBoundary b) { |
+RangeBoundary RangeBoundary::Min(RangeBoundary a, RangeBoundary b, |
+ RangeSize size) { |
+ ASSERT(!(a.IsNegativeInfinity() || b.IsNegativeInfinity())); |
+ ASSERT(!a.IsUnknown() || !b.IsUnknown()); |
+ if (a.IsUnknown() && !b.IsUnknown()) { |
+ return b; |
+ } |
+ if (!a.IsUnknown() && b.IsUnknown()) { |
+ return a; |
+ } |
+ if (size == kRangeBoundarySmi) { |
+ if (a.IsSmiMaximumOrAbove() && !b.IsSmiMaximumOrAbove()) { |
+ return b; |
+ } |
+ if (!a.IsSmiMaximumOrAbove() && b.IsSmiMaximumOrAbove()) { |
+ return a; |
+ } |
+ } else { |
+ ASSERT(size == kRangeBoundaryInt64); |
+ if (a.IsMaximumOrAbove() && !b.IsMaximumOrAbove()) { |
+ return b; |
+ } |
+ if (!a.IsMaximumOrAbove() && b.IsMaximumOrAbove()) { |
+ return a; |
+ } |
+ } |
+ |
+ if (a.Equals(b)) { |
+ return b; |
+ } |
+ |
+ { |
+ RangeBoundary canonical_a = |
+ CanonicalizeBoundary(a, RangeBoundary::PositiveInfinity()); |
+ RangeBoundary canonical_b = |
+ CanonicalizeBoundary(b, RangeBoundary::PositiveInfinity()); |
+ do { |
+ if (DependOnSameSymbol(canonical_a, canonical_b)) { |
+ a = canonical_a; |
+ b = canonical_b; |
+ break; |
+ } |
+ } while (CanonicalizeMaxBoundary(&canonical_a) || |
+ CanonicalizeMaxBoundary(&canonical_b)); |
+ } |
+ |
if (DependOnSameSymbol(a, b)) { |
return (a.offset() <= b.offset()) ? a : b; |
} |
- const intptr_t min_a = a.LowerBound().Clamp().value(); |
- const intptr_t min_b = b.LowerBound().Clamp().value(); |
+ const int64_t min_a = a.UpperBound().Clamp(size).ConstantValue(); |
+ const int64_t min_b = b.UpperBound().Clamp(size).ConstantValue(); |
return RangeBoundary::FromConstant(Utils::Minimum(min_a, min_b)); |
} |
-RangeBoundary RangeBoundary::Max(RangeBoundary a, RangeBoundary b) { |
+RangeBoundary RangeBoundary::Max(RangeBoundary a, RangeBoundary b, |
+ RangeSize size) { |
+ ASSERT(!(a.IsPositiveInfinity() || b.IsPositiveInfinity())); |
+ ASSERT(!a.IsUnknown() || !b.IsUnknown()); |
+ if (a.IsUnknown() && !b.IsUnknown()) { |
+ return b; |
+ } |
+ if (!a.IsUnknown() && b.IsUnknown()) { |
+ return a; |
+ } |
+ if (size == kRangeBoundarySmi) { |
+ if (a.IsSmiMinimumOrBelow() && !b.IsSmiMinimumOrBelow()) { |
+ return b; |
+ } |
+ if (!a.IsSmiMinimumOrBelow() && b.IsSmiMinimumOrBelow()) { |
+ return a; |
+ } |
+ } else { |
+ ASSERT(size == kRangeBoundaryInt64); |
+ if (a.IsMinimumOrBelow() && !b.IsMinimumOrBelow()) { |
+ return b; |
+ } |
+ if (!a.IsMinimumOrBelow() && b.IsMinimumOrBelow()) { |
+ return a; |
+ } |
+ } |
+ if (a.Equals(b)) { |
+ return b; |
+ } |
+ |
+ { |
+ RangeBoundary canonical_a = |
+ CanonicalizeBoundary(a, RangeBoundary::NegativeInfinity()); |
+ RangeBoundary canonical_b = |
+ CanonicalizeBoundary(b, RangeBoundary::NegativeInfinity()); |
+ |
+ do { |
+ if (DependOnSameSymbol(canonical_a, canonical_b)) { |
+ a = canonical_a; |
+ b = canonical_b; |
+ break; |
+ } |
+ } while (CanonicalizeMinBoundary(&canonical_a) || |
+ CanonicalizeMinBoundary(&canonical_b)); |
+ } |
+ |
if (DependOnSameSymbol(a, b)) { |
- return (a.offset() >= b.offset()) ? a : b; |
+ return (a.offset() <= b.offset()) ? b : a; |
} |
- const intptr_t max_a = a.UpperBound().Clamp().value(); |
- const intptr_t max_b = b.UpperBound().Clamp().value(); |
+ const int64_t max_a = a.LowerBound().Clamp(size).ConstantValue(); |
+ const int64_t max_b = b.LowerBound().Clamp(size).ConstantValue(); |
return RangeBoundary::FromConstant(Utils::Maximum(max_a, max_b)); |
} |
+int64_t RangeBoundary::ConstantValue() const { |
+ ASSERT(IsConstant()); |
+ return value_; |
+} |
+ |
+ |
void Definition::InferRange() { |
- ASSERT(Type()->ToCid() == kSmiCid); // Has meaning only for smis. |
- if (range_ == NULL) { |
- range_ = Range::Unknown(); |
+ if (Type()->ToCid() == kSmiCid) { |
+ if (range_ == NULL) { |
+ range_ = Range::UnknownSmi(); |
+ } |
+ } else if (IsMintDefinition()) { |
+ if (range_ == NULL) { |
+ range_ = Range::Unknown(); |
+ } |
+ } else { |
+ // Only Smi and Mint supported. |
+ UNREACHABLE(); |
} |
} |
void ConstantInstr::InferRange() { |
- ASSERT(value_.IsSmi()); |
+ if (value_.IsSmi()) { |
+ if (range_ == NULL) { |
+ int64_t value = Smi::Cast(value_).Value(); |
+ range_ = new Range(RangeBoundary::FromConstant(value), |
+ RangeBoundary::FromConstant(value)); |
+ } |
+ } else if (value_.IsMint()) { |
+ if (range_ == NULL) { |
+ int64_t value = Mint::Cast(value_).value(); |
+ range_ = new Range(RangeBoundary::FromConstant(value), |
+ RangeBoundary::FromConstant(value)); |
+ } |
+ } else { |
+ // Only Smi and Mint supported. |
+ UNREACHABLE(); |
+ } |
+} |
+ |
+ |
+void UnboxIntegerInstr::InferRange() { |
if (range_ == NULL) { |
- intptr_t value = Smi::Cast(value_).Value(); |
- range_ = new Range(RangeBoundary::FromConstant(value), |
- RangeBoundary::FromConstant(value)); |
+ Definition* unboxed = value()->definition(); |
+ if (unboxed == NULL) { |
+ range_ = Range::Unknown(); |
+ return; |
+ } |
+ Range* range = unboxed->range(); |
+ if (range == NULL) { |
+ range_ = Range::Unknown(); |
+ return; |
+ } |
+ range_ = new Range(range->min(), range->max()); |
} |
} |
@@ -2671,69 +2895,26 @@ void ConstraintInstr::InferRange() { |
RangeBoundary min; |
RangeBoundary max; |
- if (IsMinSmi(value_range) && !IsMinSmi(constraint())) { |
- min = constraint()->min(); |
- } else if (IsMinSmi(constraint()) && !IsMinSmi(value_range)) { |
- min = value_range->min(); |
- } else if ((value_range != NULL) && |
- IsEqual(constraint()->min(), value_range->min())) { |
- min = constraint()->min(); |
- } else { |
- if (value_range != NULL) { |
- RangeBoundary canonical_a = |
- CanonicalizeBoundary(constraint()->min(), |
- RangeBoundary::NegativeInfinity()); |
- RangeBoundary canonical_b = |
- CanonicalizeBoundary(value_range->min(), |
- RangeBoundary::NegativeInfinity()); |
- |
- do { |
- if (DependOnSameSymbol(canonical_a, canonical_b)) { |
- min = (canonical_a.offset() <= canonical_b.offset()) ? canonical_b |
- : canonical_a; |
- } |
- } while (CanonicalizeMinBoundary(&canonical_a) || |
- CanonicalizeMinBoundary(&canonical_b)); |
- } |
- |
- if (min.IsUnknown()) { |
- min = RangeBoundary::Max(Range::ConstantMin(value_range), |
- Range::ConstantMin(constraint())); |
- } |
+ { |
+ RangeBoundary value_min = (value_range == NULL) ? |
+ RangeBoundary() : value_range->min(); |
+ RangeBoundary constraint_min = constraint()->min(); |
+ min = RangeBoundary::Max(value_min, constraint_min, |
+ RangeBoundary::kRangeBoundarySmi); |
} |
- if (IsMaxSmi(value_range) && !IsMaxSmi(constraint())) { |
- max = constraint()->max(); |
- } else if (IsMaxSmi(constraint()) && !IsMaxSmi(value_range)) { |
- max = value_range->max(); |
- } else if ((value_range != NULL) && |
- IsEqual(constraint()->max(), value_range->max())) { |
- max = constraint()->max(); |
- } else { |
- if (value_range != NULL) { |
- RangeBoundary canonical_b = |
- CanonicalizeBoundary(value_range->max(), |
- RangeBoundary::PositiveInfinity()); |
- RangeBoundary canonical_a = |
- CanonicalizeBoundary(constraint()->max(), |
- RangeBoundary::PositiveInfinity()); |
- |
- do { |
- if (DependOnSameSymbol(canonical_a, canonical_b)) { |
- max = (canonical_a.offset() <= canonical_b.offset()) ? canonical_a |
- : canonical_b; |
- break; |
- } |
- } while (CanonicalizeMaxBoundary(&canonical_a) || |
- CanonicalizeMaxBoundary(&canonical_b)); |
- } |
+ ASSERT(!min.IsUnknown()); |
- if (max.IsUnknown()) { |
- max = RangeBoundary::Min(Range::ConstantMax(value_range), |
- Range::ConstantMax(constraint())); |
- } |
+ { |
+ RangeBoundary value_max = (value_range == NULL) ? |
+ RangeBoundary() : value_range->max(); |
+ RangeBoundary constraint_max = constraint()->max(); |
+ max = RangeBoundary::Min(value_max, constraint_max, |
+ RangeBoundary::kRangeBoundarySmi); |
} |
+ ASSERT(!max.IsUnknown()); |
+ |
range_ = new Range(min, max); |
// Mark branches that generate unsatisfiable constraints as constant. |
@@ -2805,6 +2986,14 @@ void LoadIndexedInstr::InferRange() { |
range_ = new Range(RangeBoundary::FromConstant(0), |
RangeBoundary::FromConstant(65535)); |
break; |
+ case kTypedDataInt32ArrayCid: |
+ range_ = new Range(RangeBoundary::FromConstant(kMinInt32), |
+ RangeBoundary::FromConstant(kMaxInt32)); |
+ break; |
+ case kTypedDataUint32ArrayCid: |
+ range_ = new Range(RangeBoundary::FromConstant(0), |
+ RangeBoundary::FromConstant(kMaxUint32)); |
+ break; |
case kOneByteStringCid: |
range_ = new Range(RangeBoundary::FromConstant(0), |
RangeBoundary::FromConstant(0xFF)); |
@@ -2926,26 +3115,30 @@ void PhiInstr::InferRange() { |
for (intptr_t i = 0; i < InputCount(); i++) { |
Range* input_range = InputAt(i)->definition()->range(); |
if (input_range == NULL) { |
- range_ = Range::Unknown(); |
+ range_ = Range::UnknownSmi(); |
return; |
} |
if (new_min.IsUnknown()) { |
new_min = Range::ConstantMin(input_range); |
} else { |
- new_min = RangeBoundary::Min(new_min, Range::ConstantMin(input_range)); |
+ new_min = RangeBoundary::Min(new_min, |
+ Range::ConstantMinSmi(input_range), |
+ RangeBoundary::kRangeBoundarySmi); |
} |
if (new_max.IsUnknown()) { |
new_max = Range::ConstantMax(input_range); |
} else { |
- new_max = RangeBoundary::Max(new_max, Range::ConstantMax(input_range)); |
+ new_max = RangeBoundary::Max(new_max, |
+ Range::ConstantMaxSmi(input_range), |
+ RangeBoundary::kRangeBoundarySmi); |
} |
} |
ASSERT(new_min.IsUnknown() == new_max.IsUnknown()); |
if (new_min.IsUnknown()) { |
- range_ = Range::Unknown(); |
+ range_ = Range::UnknownSmi(); |
return; |
} |
@@ -2964,70 +3157,15 @@ bool PhiInstr::IsRedundant() const { |
} |
-static bool SymbolicSub(const RangeBoundary& a, |
- const RangeBoundary& b, |
- RangeBoundary* result) { |
- if (a.IsSymbol() && b.IsConstant() && !b.Overflowed()) { |
- const intptr_t offset = a.offset() - b.value(); |
- if (!Smi::IsValid(offset)) return false; |
- |
- *result = RangeBoundary::FromDefinition(a.symbol(), offset); |
- return true; |
- } |
- return false; |
-} |
- |
- |
-static bool SymbolicAdd(const RangeBoundary& a, |
- const RangeBoundary& b, |
- RangeBoundary* result) { |
- if (a.IsSymbol() && b.IsConstant() && !b.Overflowed()) { |
- const intptr_t offset = a.offset() + b.value(); |
- if (!Smi::IsValid(offset)) return false; |
- |
- *result = RangeBoundary::FromDefinition(a.symbol(), offset); |
- return true; |
- } else if (b.IsSymbol() && a.IsConstant() && !a.Overflowed()) { |
- const intptr_t offset = b.offset() + a.value(); |
- if (!Smi::IsValid(offset)) return false; |
- |
- *result = RangeBoundary::FromDefinition(b.symbol(), offset); |
- return true; |
- } |
- return false; |
-} |
- |
- |
static bool IsArrayLength(Definition* defn) { |
+ if (defn == NULL) { |
+ return false; |
+ } |
LoadFieldInstr* load = defn->AsLoadField(); |
return (load != NULL) && load->IsImmutableLengthLoad(); |
} |
-static int64_t ConstantAbsMax(const Range* range) { |
- if (range == NULL) return Smi::kMaxValue; |
- const int64_t abs_min = Utils::Abs(Range::ConstantMin(range).value()); |
- const int64_t abs_max = Utils::Abs(Range::ConstantMax(range).value()); |
- return abs_min > abs_max ? abs_min : abs_max; |
-} |
- |
- |
-static bool OnlyPositiveOrZero(const Range* a, const Range* b) { |
- if ((a == NULL) || (b == NULL)) return false; |
- if (Range::ConstantMin(a).value() < 0) return false; |
- if (Range::ConstantMin(b).value() < 0) return false; |
- return true; |
-} |
- |
- |
-static bool OnlyNegativeOrZero(const Range* a, const Range* b) { |
- if ((a == NULL) || (b == NULL)) return false; |
- if (Range::ConstantMax(a).value() > 0) return false; |
- if (Range::ConstantMax(b).value() > 0) return false; |
- return true; |
-} |
- |
- |
void BinarySmiOpInstr::InferRange() { |
// TODO(vegorov): canonicalize BinarySmiOp to always have constant on the |
// right and a non-constant on the left. |
@@ -3037,111 +3175,69 @@ void BinarySmiOpInstr::InferRange() { |
Range* right_range = right()->definition()->range(); |
if ((left_range == NULL) || (right_range == NULL)) { |
- range_ = new Range(RangeBoundary::MinSmi(), RangeBoundary::MaxSmi()); |
+ range_ = Range::UnknownSmi(); |
return; |
} |
- RangeBoundary left_min = |
- IsArrayLength(left_defn) ? |
- RangeBoundary::FromDefinition(left_defn) : left_range->min(); |
+ Range* possible_range = Range::BinaryOp(op_kind(), |
+ left_range, |
+ right_range, |
+ left_defn); |
- RangeBoundary left_max = |
- IsArrayLength(left_defn) ? |
- RangeBoundary::FromDefinition(left_defn) : left_range->max(); |
+ if ((range_ == NULL) && (possible_range == NULL)) { |
+ // Initialize. |
+ range_ = Range::UnknownSmi(); |
+ return; |
+ } |
- RangeBoundary min; |
- RangeBoundary max; |
- switch (op_kind()) { |
- case Token::kADD: |
- if (!SymbolicAdd(left_min, right_range->min(), &min)) { |
- min = |
- RangeBoundary::Add(Range::ConstantMin(left_range), |
- Range::ConstantMin(right_range), |
- RangeBoundary::NegativeInfinity()); |
- } |
+ if (possible_range == NULL) { |
+ // Nothing new. |
+ return; |
+ } |
- if (!SymbolicAdd(left_max, right_range->max(), &max)) { |
- max = |
- RangeBoundary::Add(Range::ConstantMax(right_range), |
- Range::ConstantMax(left_range), |
- RangeBoundary::PositiveInfinity()); |
- } |
- break; |
+ // TODO(johnmccutchan): Clamp this to smi range? |
+ range_ = possible_range; |
- case Token::kSUB: |
- if (!SymbolicSub(left_min, right_range->max(), &min)) { |
- min = |
- RangeBoundary::Sub(Range::ConstantMin(left_range), |
- Range::ConstantMax(right_range), |
- RangeBoundary::NegativeInfinity()); |
- } |
+ ASSERT(!range_->min().IsUnknown() && !range_->max().IsUnknown()); |
+ const bool overflowed = range_->min().LowerBound().OverflowedSmi() || |
+ range_->max().UpperBound().OverflowedSmi(); |
+ set_overflow(overflowed); |
+} |
- if (!SymbolicSub(left_max, right_range->min(), &max)) { |
- max = |
- RangeBoundary::Sub(Range::ConstantMax(left_range), |
- Range::ConstantMin(right_range), |
- RangeBoundary::PositiveInfinity()); |
- } |
- break; |
- case Token::kMUL: { |
- const int64_t left_max = ConstantAbsMax(left_range); |
- const int64_t right_max = ConstantAbsMax(right_range); |
- ASSERT(left_max <= -kSmiMin); |
- ASSERT(right_max <= -kSmiMin); |
- if ((left_max == 0) || (right_max <= kMaxInt64 / left_max)) { |
- // Product of left and right max values stays in 64 bit range. |
- const int64_t result_max = left_max * right_max; |
- if (Smi::IsValid64(result_max) && Smi::IsValid64(-result_max)) { |
- const intptr_t r_min = |
- OnlyPositiveOrZero(left_range, right_range) ? 0 : -result_max; |
- min = RangeBoundary::FromConstant(r_min); |
- const intptr_t r_max = |
- OnlyNegativeOrZero(left_range, right_range) ? 0 : result_max; |
- max = RangeBoundary::FromConstant(r_max); |
- break; |
- } |
- } |
- if (range_ == NULL) { |
- range_ = Range::Unknown(); |
- } |
- return; |
- } |
- case Token::kSHL: { |
- Range::Shl(left_range, right_range, &min, &max); |
- break; |
- } |
- case Token::kBIT_AND: |
- if (Range::ConstantMin(right_range).value() >= 0) { |
- min = RangeBoundary::FromConstant(0); |
- max = Range::ConstantMax(right_range); |
- break; |
- } |
- if (Range::ConstantMin(left_range).value() >= 0) { |
- min = RangeBoundary::FromConstant(0); |
- max = Range::ConstantMax(left_range); |
- break; |
- } |
+void BinaryMintOpInstr::InferRange() { |
+ // TODO(vegorov): canonicalize BinaryMintOpInstr to always have constant on |
+ // the right and a non-constant on the left. |
+ Definition* left_defn = left()->definition(); |
- if (range_ == NULL) { |
- range_ = Range::Unknown(); |
- } |
- return; |
+ Range* left_range = left_defn->range(); |
+ Range* right_range = right()->definition()->range(); |
- default: |
- if (range_ == NULL) { |
- range_ = Range::Unknown(); |
- } |
- return; |
+ if ((left_range == NULL) || (right_range == NULL)) { |
+ range_ = Range::Unknown(); |
+ return; |
} |
- ASSERT(!min.IsUnknown() && !max.IsUnknown()); |
- set_overflow(min.LowerBound().Overflowed() || max.UpperBound().Overflowed()); |
+ Range* possible_range = Range::BinaryOp(op_kind(), |
+ left_range, |
+ right_range, |
+ left_defn); |
- if (min.IsConstant()) min.Clamp(); |
- if (max.IsConstant()) max.Clamp(); |
+ if ((range_ == NULL) && (possible_range == NULL)) { |
+ // Initialize. |
+ range_ = Range::Unknown(); |
+ return; |
+ } |
- range_ = new Range(min, max); |
+ if (possible_range == NULL) { |
+ // Nothing new. |
+ return; |
+ } |
+ |
+ // TODO(johnmccutchan): Clamp this to mint range? |
+ range_ = possible_range; |
+ |
+ ASSERT(!range_->min().IsUnknown() && !range_->max().IsUnknown()); |
} |
@@ -3149,68 +3245,61 @@ bool Range::IsPositive() const { |
if (min().IsNegativeInfinity()) { |
return false; |
} |
- if (min().LowerBound().value() < 0) { |
+ if (min().LowerBound().ConstantValue() < 0) { |
return false; |
} |
if (max().IsPositiveInfinity()) { |
return true; |
} |
- return max().UpperBound().value() >= 0; |
+ return max().UpperBound().ConstantValue() >= 0; |
} |
-bool Range::IsNegative() const { |
+bool Range::OnlyLessThanOrEqualTo(int64_t val) const { |
if (max().IsPositiveInfinity()) { |
+ // Cannot be true. |
return false; |
} |
- if (max().UpperBound().value() >= 0) { |
+ if (max().UpperBound().ConstantValue() > val) { |
+ // Not true. |
return false; |
} |
- if (min().IsNegativeInfinity()) { |
- return true; |
- } |
- return min().LowerBound().value() < 0; |
+ return true; |
} |
-bool Range::OnlyLessThanOrEqualTo(intptr_t val) const { |
- if (max().IsPositiveInfinity()) { |
- // Cannot be true. |
+bool Range::OnlyGreaterThanOrEqualTo(int64_t val) const { |
+ if (min().IsNegativeInfinity()) { |
return false; |
} |
- if (max().UpperBound().value() > val) { |
- // Not true. |
+ if (min().LowerBound().ConstantValue() < val) { |
return false; |
} |
- if (!min().IsNegativeInfinity()) { |
- if (min().LowerBound().value() > val) { |
- // Lower bound is > value. |
- return false; |
- } |
- } |
return true; |
} |
// Inclusive. |
-bool Range::IsWithin(intptr_t min_int, intptr_t max_int) const { |
+bool Range::IsWithin(int64_t min_int, int64_t max_int) const { |
RangeBoundary lower_min = min().LowerBound(); |
- if (lower_min.IsNegativeInfinity() || (lower_min.value() < min_int)) { |
+ if (lower_min.IsNegativeInfinity() || (lower_min.ConstantValue() < min_int)) { |
return false; |
} |
RangeBoundary upper_max = max().UpperBound(); |
- if (upper_max.IsPositiveInfinity() || (upper_max.value() > max_int)) { |
+ if (upper_max.IsPositiveInfinity() || (upper_max.ConstantValue() > max_int)) { |
return false; |
} |
return true; |
} |
-bool Range::Overlaps(intptr_t min_int, intptr_t max_int) const { |
- const intptr_t this_min = min().IsNegativeInfinity() ? |
- kIntptrMin : min().LowerBound().value(); |
- const intptr_t this_max = max().IsPositiveInfinity() ? |
- kIntptrMax : max().UpperBound().value(); |
+bool Range::Overlaps(int64_t min_int, int64_t max_int) const { |
+ RangeBoundary lower = min().LowerBound(); |
+ RangeBoundary upper = max().UpperBound(); |
+ const int64_t this_min = lower.IsNegativeInfinity() ? |
+ RangeBoundary::kMin : lower.ConstantValue(); |
+ const int64_t this_max = upper.IsPositiveInfinity() ? |
+ RangeBoundary::kMax : upper.ConstantValue(); |
if ((this_min <= min_int) && (min_int <= this_max)) return true; |
if ((this_min <= max_int) && (max_int <= this_max)) return true; |
if ((min_int < this_min) && (max_int > this_max)) return true; |
@@ -3224,7 +3313,8 @@ bool Range::IsUnsatisfiable() const { |
return true; |
} |
// Constant case: For example [0, -1]. |
- if (Range::ConstantMin(this).value() > Range::ConstantMax(this).value()) { |
+ if (Range::ConstantMin(this).ConstantValue() > |
+ Range::ConstantMax(this).ConstantValue()) { |
return true; |
} |
// Symbol case: For example [v+1, v]. |
@@ -3235,35 +3325,222 @@ bool Range::IsUnsatisfiable() const { |
} |
-void Range::Shl(Range* left, |
- Range* right, |
+void Range::Shl(const Range* left, |
+ const Range* right, |
RangeBoundary* result_min, |
RangeBoundary* result_max) { |
+ ASSERT(left != NULL); |
+ ASSERT(right != NULL); |
+ ASSERT(result_min != NULL); |
+ ASSERT(result_max != NULL); |
RangeBoundary left_max = Range::ConstantMax(left); |
RangeBoundary left_min = Range::ConstantMin(left); |
// A negative shift count always deoptimizes (and throws), so the minimum |
// shift count is zero. |
- intptr_t right_max = Utils::Maximum(Range::ConstantMax(right).value(), |
- static_cast<intptr_t>(0)); |
- intptr_t right_min = Utils::Maximum(Range::ConstantMin(right).value(), |
- static_cast<intptr_t>(0)); |
+ int64_t right_max = Utils::Maximum(Range::ConstantMax(right).ConstantValue(), |
+ static_cast<int64_t>(0)); |
+ int64_t right_min = Utils::Maximum(Range::ConstantMin(right).ConstantValue(), |
+ static_cast<int64_t>(0)); |
*result_min = RangeBoundary::Shl( |
left_min, |
- left_min.value() > 0 ? right_min : right_max, |
- left_min.value() > 0 |
+ left_min.ConstantValue() > 0 ? right_min : right_max, |
+ left_min.ConstantValue() > 0 |
? RangeBoundary::PositiveInfinity() |
: RangeBoundary::NegativeInfinity()); |
*result_max = RangeBoundary::Shl( |
left_max, |
- left_max.value() > 0 ? right_max : right_min, |
- left_max.value() > 0 |
+ left_max.ConstantValue() > 0 ? right_max : right_min, |
+ left_max.ConstantValue() > 0 |
? RangeBoundary::PositiveInfinity() |
: RangeBoundary::NegativeInfinity()); |
} |
+bool Range::And(const Range* left_range, |
+ const Range* right_range, |
+ RangeBoundary* min, |
+ RangeBoundary* max) { |
+ ASSERT(left_range != NULL); |
+ ASSERT(right_range != NULL); |
+ ASSERT(min != NULL); |
+ ASSERT(max != NULL); |
+ |
+ if (Range::ConstantMin(right_range).ConstantValue() >= 0) { |
+ *min = RangeBoundary::FromConstant(0); |
+ *max = Range::ConstantMax(right_range); |
+ return true; |
+ } |
+ |
+ if (Range::ConstantMin(left_range).ConstantValue() >= 0) { |
+ *min = RangeBoundary::FromConstant(0); |
+ *max = Range::ConstantMax(left_range); |
+ return true; |
+ } |
+ |
+ return false; |
+} |
+ |
+ |
+void Range::Add(const Range* left_range, |
+ const Range* right_range, |
+ RangeBoundary* min, |
+ RangeBoundary* max, |
+ Definition* left_defn) { |
+ ASSERT(left_range != NULL); |
+ ASSERT(right_range != NULL); |
+ ASSERT(min != NULL); |
+ ASSERT(max != NULL); |
+ |
+ RangeBoundary left_min = |
+ IsArrayLength(left_defn) ? |
+ RangeBoundary::FromDefinition(left_defn) : left_range->min(); |
+ |
+ RangeBoundary left_max = |
+ IsArrayLength(left_defn) ? |
+ RangeBoundary::FromDefinition(left_defn) : left_range->max(); |
+ |
+ if (!RangeBoundary::SymbolicAdd(left_min, right_range->min(), min)) { |
+ *min = RangeBoundary::Add(left_range->min().LowerBound(), |
+ right_range->min().LowerBound(), |
+ RangeBoundary::NegativeInfinity()); |
+ } |
+ if (!RangeBoundary::SymbolicAdd(left_max, right_range->max(), max)) { |
+ *max = RangeBoundary::Add(right_range->max().UpperBound(), |
+ left_range->max().UpperBound(), |
+ RangeBoundary::PositiveInfinity()); |
+ } |
+} |
+ |
+ |
+void Range::Sub(const Range* left_range, |
+ const Range* right_range, |
+ RangeBoundary* min, |
+ RangeBoundary* max, |
+ Definition* left_defn) { |
+ ASSERT(left_range != NULL); |
+ ASSERT(right_range != NULL); |
+ ASSERT(min != NULL); |
+ ASSERT(max != NULL); |
+ |
+ RangeBoundary left_min = |
+ IsArrayLength(left_defn) ? |
+ RangeBoundary::FromDefinition(left_defn) : left_range->min(); |
+ |
+ RangeBoundary left_max = |
+ IsArrayLength(left_defn) ? |
+ RangeBoundary::FromDefinition(left_defn) : left_range->max(); |
+ |
+ if (!RangeBoundary::SymbolicSub(left_min, right_range->max(), min)) { |
+ *min = RangeBoundary::Sub(left_range->min().LowerBound(), |
+ right_range->max().UpperBound(), |
+ RangeBoundary::NegativeInfinity()); |
+ } |
+ if (!RangeBoundary::SymbolicSub(left_max, right_range->min(), max)) { |
+ *max = RangeBoundary::Sub(left_range->max().UpperBound(), |
+ right_range->min().LowerBound(), |
+ RangeBoundary::PositiveInfinity()); |
+ } |
+} |
+ |
+ |
+bool Range::Mul(const Range* left_range, |
+ const Range* right_range, |
+ RangeBoundary* min, |
+ RangeBoundary* max) { |
+ ASSERT(left_range != NULL); |
+ ASSERT(right_range != NULL); |
+ ASSERT(min != NULL); |
+ ASSERT(max != NULL); |
+ |
+ const int64_t left_max = ConstantAbsMax(left_range); |
+ const int64_t right_max = ConstantAbsMax(right_range); |
+ if ((left_max <= -kSmiMin) && (right_max <= -kSmiMin) && |
+ ((left_max == 0) || (right_max <= kMaxInt64 / left_max))) { |
+ // Product of left and right max values stays in 64 bit range. |
+ const int64_t result_max = left_max * right_max; |
+ if (Smi::IsValid64(result_max) && Smi::IsValid64(-result_max)) { |
+ const intptr_t r_min = |
+ OnlyPositiveOrZero(*left_range, *right_range) ? 0 : -result_max; |
+ *min = RangeBoundary::FromConstant(r_min); |
+ const intptr_t r_max = |
+ OnlyNegativeOrZero(*left_range, *right_range) ? 0 : result_max; |
+ *max = RangeBoundary::FromConstant(r_max); |
+ return true; |
+ } |
+ } |
+ return false; |
+} |
+ |
+ |
+// Both the a and b ranges are >= 0. |
+bool Range::OnlyPositiveOrZero(const Range& a, const Range& b) { |
+ return a.OnlyGreaterThanOrEqualTo(0) && b.OnlyGreaterThanOrEqualTo(0); |
+} |
+ |
+ |
+// Both the a and b ranges are <= 0. |
+bool Range::OnlyNegativeOrZero(const Range& a, const Range& b) { |
+ return a.OnlyLessThanOrEqualTo(0) && b.OnlyLessThanOrEqualTo(0); |
+} |
+ |
+ |
+// Return the maximum absolute value included in range. |
+int64_t Range::ConstantAbsMax(const Range* range) { |
+ if (range == NULL) { |
+ return RangeBoundary::kMax; |
+ } |
+ const int64_t abs_min = Utils::Abs(Range::ConstantMin(range).ConstantValue()); |
+ const int64_t abs_max = Utils::Abs(Range::ConstantMax(range).ConstantValue()); |
+ return Utils::Maximum(abs_min, abs_max); |
+} |
+ |
+ |
+Range* Range::BinaryOp(const Token::Kind op, |
+ const Range* left_range, |
+ const Range* right_range, |
+ Definition* left_defn) { |
+ ASSERT(left_range != NULL); |
+ ASSERT(right_range != NULL); |
+ |
+ RangeBoundary min; |
+ RangeBoundary max; |
+ ASSERT(min.IsUnknown() && max.IsUnknown()); |
+ |
+ switch (op) { |
+ case Token::kADD: |
+ Range::Add(left_range, right_range, &min, &max, left_defn); |
+ break; |
+ case Token::kSUB: |
+ Range::Sub(left_range, right_range, &min, &max, left_defn); |
+ break; |
+ case Token::kMUL: { |
+ if (!Range::Mul(left_range, right_range, &min, &max)) { |
+ return NULL; |
+ } |
+ break; |
+ } |
+ case Token::kSHL: { |
+ Range::Shl(left_range, right_range, &min, &max); |
+ break; |
+ } |
+ case Token::kBIT_AND: |
+ if (!Range::And(left_range, right_range, &min, &max)) { |
+ return NULL; |
+ } |
+ break; |
+ default: |
+ return NULL; |
+ break; |
+ } |
+ |
+ ASSERT(!min.IsUnknown() && !max.IsUnknown()); |
+ |
+ return new Range(min, max); |
+} |
+ |
+ |
bool CheckArrayBoundInstr::IsFixedLengthArrayType(intptr_t cid) { |
return LoadFieldInstr::IsFixedLengthArrayCid(cid); |
} |
@@ -3278,14 +3555,14 @@ bool CheckArrayBoundInstr::IsRedundant(RangeBoundary length) { |
} |
// Range of the index is not positive. Check can't be redundant. |
- if (Range::ConstantMin(index_range).value() < 0) { |
+ if (Range::ConstantMinSmi(index_range).ConstantValue() < 0) { |
return false; |
} |
RangeBoundary max = CanonicalizeBoundary(index_range->max(), |
RangeBoundary::PositiveInfinity()); |
- if (max.Overflowed()) { |
+ if (max.OverflowedSmi()) { |
return false; |
} |
@@ -3293,17 +3570,17 @@ bool CheckArrayBoundInstr::IsRedundant(RangeBoundary length) { |
RangeBoundary max_upper = max.UpperBound(); |
RangeBoundary length_lower = length.LowerBound(); |
- if (max_upper.Overflowed() || length_lower.Overflowed()) { |
+ if (max_upper.OverflowedSmi() || length_lower.OverflowedSmi()) { |
return false; |
} |
// Try to compare constant boundaries. |
- if (max_upper.value() < length_lower.value()) { |
+ if (max_upper.ConstantValue() < length_lower.ConstantValue()) { |
return true; |
} |
length = CanonicalizeBoundary(length, RangeBoundary::PositiveInfinity()); |
- if (length.Overflowed()) { |
+ if (length.OverflowedSmi()) { |
return false; |
} |