OLD | NEW |
---|---|
1 // Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file | 1 // Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file |
2 // for details. All rights reserved. Use of this source code is governed by a | 2 // for details. All rights reserved. Use of this source code is governed by a |
3 // BSD-style license that can be found in the LICENSE file. | 3 // BSD-style license that can be found in the LICENSE file. |
4 | 4 |
5 #include "vm/intermediate_language.h" | 5 #include "vm/intermediate_language.h" |
6 | 6 |
7 #include "vm/bigint_operations.h" | 7 #include "vm/bigint_operations.h" |
8 #include "vm/bit_vector.h" | 8 #include "vm/bit_vector.h" |
9 #include "vm/cpu.h" | 9 #include "vm/cpu.h" |
10 #include "vm/dart_entry.h" | 10 #include "vm/dart_entry.h" |
(...skipping 2431 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
2442 intptr_t use_index = instr->env()->Length(); // Start index after inner. | 2442 intptr_t use_index = instr->env()->Length(); // Start index after inner. |
2443 for (Environment::DeepIterator it(copy); !it.Done(); it.Advance()) { | 2443 for (Environment::DeepIterator it(copy); !it.Done(); it.Advance()) { |
2444 Value* value = it.CurrentValue(); | 2444 Value* value = it.CurrentValue(); |
2445 value->set_instruction(instr); | 2445 value->set_instruction(instr); |
2446 value->set_use_index(use_index++); | 2446 value->set_use_index(use_index++); |
2447 value->definition()->AddEnvUse(value); | 2447 value->definition()->AddEnvUse(value); |
2448 } | 2448 } |
2449 } | 2449 } |
2450 | 2450 |
2451 | 2451 |
2452 RangeBoundary RangeBoundary::FromDefinition(Definition* defn, intptr_t offs) { | 2452 RangeBoundary RangeBoundary::FromDefinition(Definition* defn, int64_t offs) { |
2453 if (defn->IsConstant() && defn->AsConstant()->value().IsSmi()) { | 2453 if (defn->IsConstant() && defn->AsConstant()->value().IsSmi()) { |
2454 return FromConstant(Smi::Cast(defn->AsConstant()->value()).Value() + offs); | 2454 return FromConstant(Smi::Cast(defn->AsConstant()->value()).Value() + offs); |
2455 } | 2455 } |
2456 return RangeBoundary(kSymbol, reinterpret_cast<intptr_t>(defn), offs); | 2456 return RangeBoundary(kSymbol, reinterpret_cast<intptr_t>(defn), offs); |
2457 } | 2457 } |
2458 | 2458 |
2459 | 2459 |
2460 RangeBoundary RangeBoundary::LowerBound() const { | 2460 RangeBoundary RangeBoundary::LowerBound() const { |
2461 if (IsNegativeInfinity()) return *this; | 2461 if (IsInfinity()) { |
2462 return NegativeInfinity(); | |
2463 } | |
2462 if (IsConstant()) return *this; | 2464 if (IsConstant()) return *this; |
2463 return Add(Range::ConstantMin(symbol()->range()), | 2465 return Add(Range::ConstantMin(symbol()->range()), |
2464 RangeBoundary::FromConstant(offset_), | 2466 RangeBoundary::FromConstant(offset_), |
2465 NegativeInfinity()); | 2467 NegativeInfinity()); |
2466 } | 2468 } |
2467 | 2469 |
2468 | 2470 |
2469 RangeBoundary RangeBoundary::UpperBound() const { | 2471 RangeBoundary RangeBoundary::UpperBound() const { |
2470 if (IsPositiveInfinity()) return *this; | 2472 if (IsInfinity()) { |
2473 return PositiveInfinity(); | |
2474 } | |
2471 if (IsConstant()) return *this; | 2475 if (IsConstant()) return *this; |
2472 return Add(Range::ConstantMax(symbol()->range()), | 2476 return Add(Range::ConstantMax(symbol()->range()), |
2473 RangeBoundary::FromConstant(offset_), | 2477 RangeBoundary::FromConstant(offset_), |
2474 PositiveInfinity()); | 2478 PositiveInfinity()); |
2475 } | 2479 } |
2476 | 2480 |
2477 | 2481 |
2482 RangeBoundary RangeBoundary::Add(const RangeBoundary& a, | |
2483 const RangeBoundary& b, | |
2484 const RangeBoundary& overflow) { | |
2485 if (a.IsInfinity() || b.IsInfinity()) { | |
2486 // In that case that a or b is +/- inf, return the overflow boundary. | |
2487 return overflow; | |
Florian Schneider
2014/06/18 10:14:10
Can this case ever occur?
Cutch
2014/06/18 22:16:52
Not now that I clamp.
| |
2488 } | |
2489 ASSERT(a.IsConstant() && b.IsConstant()); | |
2490 | |
2491 int64_t result = a.ConstantValue() + b.ConstantValue(); | |
2492 | |
2493 if (Utils::DidAddOverflow(a.ConstantValue(), b.ConstantValue(), result)) { | |
2494 return overflow; | |
2495 } | |
2496 | |
2497 return RangeBoundary::FromConstant(result); | |
2498 } | |
2499 | |
2500 | |
2501 RangeBoundary RangeBoundary::Sub(const RangeBoundary& a, | |
2502 const RangeBoundary& b, | |
2503 const RangeBoundary& overflow) { | |
2504 if (a.IsInfinity() || b.IsInfinity()) { | |
2505 // In that case that a or b is +/- inf, return the overflow boundary. | |
2506 return overflow; | |
Florian Schneider
2014/06/18 10:14:10
Is this case ever hit?
Cutch
2014/06/18 22:16:52
Not now that I clamp.
| |
2507 } | |
2508 ASSERT(a.IsConstant() && b.IsConstant()); | |
2509 | |
2510 int64_t result = a.ConstantValue() - b.ConstantValue(); | |
2511 | |
2512 if (Utils::DidSubOverflow(a.ConstantValue(), b.ConstantValue(), result)) { | |
2513 return overflow; | |
2514 } | |
2515 return RangeBoundary::FromConstant(result); | |
2516 } | |
2517 | |
2518 | |
2519 bool RangeBoundary::SymbolicAdd(const RangeBoundary& a, | |
2520 const RangeBoundary& b, | |
2521 RangeBoundary* result) { | |
2522 if (a.IsSymbol() && b.IsConstant()) { | |
2523 const int64_t offset = a.offset() + b.ConstantValue(); | |
2524 if (Utils::DidAddOverflow(a.offset(), b.ConstantValue(), offset)) { | |
2525 return false; | |
2526 } | |
2527 | |
2528 *result = RangeBoundary::FromDefinition(a.symbol(), offset); | |
2529 return true; | |
2530 } else if (b.IsSymbol() && a.IsConstant()) { | |
2531 return SymbolicAdd(b, a, result); | |
2532 } | |
2533 return false; | |
2534 } | |
2535 | |
2536 | |
2537 bool RangeBoundary::SymbolicSub(const RangeBoundary& a, | |
2538 const RangeBoundary& b, | |
2539 RangeBoundary* result) { | |
2540 if (a.IsSymbol() && b.IsConstant()) { | |
2541 const int64_t offset = a.offset() - b.ConstantValue(); | |
2542 if (Utils::DidSubOverflow(a.offset(), b.ConstantValue(), offset)) { | |
2543 return false; | |
2544 } | |
2545 | |
2546 *result = RangeBoundary::FromDefinition(a.symbol(), offset); | |
2547 return true; | |
2548 } | |
2549 return false; | |
2550 } | |
2551 | |
2552 | |
2478 static Definition* UnwrapConstraint(Definition* defn) { | 2553 static Definition* UnwrapConstraint(Definition* defn) { |
2479 while (defn->IsConstraint()) { | 2554 while (defn->IsConstraint()) { |
2480 defn = defn->AsConstraint()->value()->definition(); | 2555 defn = defn->AsConstraint()->value()->definition(); |
2481 } | 2556 } |
2482 return defn; | 2557 return defn; |
2483 } | 2558 } |
2484 | 2559 |
2485 | 2560 |
2486 static bool AreEqualDefinitions(Definition* a, Definition* b) { | 2561 static bool AreEqualDefinitions(Definition* a, Definition* b) { |
2487 a = UnwrapConstraint(a); | 2562 a = UnwrapConstraint(a); |
2488 b = UnwrapConstraint(b); | 2563 b = UnwrapConstraint(b); |
2489 return (a == b) || | 2564 return (a == b) || |
2490 (a->AllowsCSE() && | 2565 (a->AllowsCSE() && |
2491 a->Dependencies().IsNone() && | 2566 a->Dependencies().IsNone() && |
2492 b->AllowsCSE() && | 2567 b->AllowsCSE() && |
2493 b->Dependencies().IsNone() && | 2568 b->Dependencies().IsNone() && |
2494 a->Equals(b)); | 2569 a->Equals(b)); |
2495 } | 2570 } |
2496 | 2571 |
2497 | 2572 |
2498 // Returns true if two range boundaries refer to the same symbol. | 2573 // Returns true if two range boundaries refer to the same symbol. |
2499 static bool DependOnSameSymbol(const RangeBoundary& a, const RangeBoundary& b) { | 2574 static bool DependOnSameSymbol(const RangeBoundary& a, const RangeBoundary& b) { |
2500 return a.IsSymbol() && b.IsSymbol() && | 2575 return a.IsSymbol() && b.IsSymbol() && |
2501 AreEqualDefinitions(a.symbol(), b.symbol()); | 2576 AreEqualDefinitions(a.symbol(), b.symbol()); |
2502 } | 2577 } |
2503 | 2578 |
2504 | 2579 |
2505 // Returns true if range has a least specific minimum value. | 2580 bool RangeBoundary::Equals(const RangeBoundary& other) const { |
2506 static bool IsMinSmi(Range* range) { | 2581 if (IsConstant() && other.IsConstant()) { |
2507 return (range == NULL) || | 2582 return ConstantValue() == other.ConstantValue(); |
2508 (range->min().IsConstant() && | 2583 } else if (IsInfinity() && other.IsInfinity()) { |
2509 (range->min().value() <= Smi::kMinValue)); | 2584 return kind() == other.kind(); |
2585 } else if (IsSymbol() && other.IsSymbol()) { | |
2586 return (offset() == other.offset()) && DependOnSameSymbol(*this, other); | |
2587 } else if (IsUnknown() && other.IsUnknown()) { | |
2588 return true; | |
2589 } | |
2590 return false; | |
2510 } | 2591 } |
2511 | 2592 |
2512 | 2593 |
2513 // Returns true if range has a least specific maximium value. | 2594 RangeBoundary RangeBoundary::Shl(const RangeBoundary& value_boundary, |
2514 static bool IsMaxSmi(Range* range) { | 2595 int64_t shift_count, |
2515 return (range == NULL) || | 2596 const RangeBoundary& overflow) { |
2516 (range->max().IsConstant() && | 2597 ASSERT(value_boundary.IsConstant()); |
2517 (range->max().value() >= Smi::kMaxValue)); | 2598 ASSERT(shift_count >= 0); |
2518 } | 2599 int64_t limit = 64 - shift_count; |
2600 int64_t value = static_cast<int64_t>(value_boundary.ConstantValue()); | |
2519 | 2601 |
2602 if ((value == 0) || | |
2603 (shift_count == 0) || | |
2604 ((limit > 0) && (Utils::IsInt(limit, value)))) { | |
2605 // Result stays in 64 bit range. | |
2606 int64_t result = value << shift_count; | |
2607 return Smi::IsValid64(result) ? RangeBoundary(result) : overflow; | |
2608 } | |
2520 | 2609 |
2521 // Returns true if two range boundaries can be proven to be equal. | 2610 return overflow; |
2522 static bool IsEqual(const RangeBoundary& a, const RangeBoundary& b) { | |
2523 if (a.IsConstant() && b.IsConstant()) { | |
2524 return a.value() == b.value(); | |
2525 } else if (a.IsSymbol() && b.IsSymbol()) { | |
2526 return (a.offset() == b.offset()) && DependOnSameSymbol(a, b); | |
2527 } else { | |
2528 return false; | |
2529 } | |
2530 } | 2611 } |
2531 | 2612 |
2532 | 2613 |
2533 static RangeBoundary CanonicalizeBoundary(const RangeBoundary& a, | 2614 static RangeBoundary CanonicalizeBoundary(const RangeBoundary& a, |
2534 const RangeBoundary& overflow) { | 2615 const RangeBoundary& overflow) { |
2535 if (a.IsConstant() || a.IsNegativeInfinity() || a.IsPositiveInfinity()) { | 2616 if (a.IsConstant() || a.IsInfinity()) { |
2536 return a; | 2617 return a; |
2537 } | 2618 } |
2538 | 2619 |
2539 intptr_t offset = a.offset(); | 2620 int64_t offset = a.offset(); |
2540 Definition* symbol = a.symbol(); | 2621 Definition* symbol = a.symbol(); |
2541 | 2622 |
2542 bool changed; | 2623 bool changed; |
2543 do { | 2624 do { |
2544 changed = false; | 2625 changed = false; |
2545 if (symbol->IsConstraint()) { | 2626 if (symbol->IsConstraint()) { |
2546 symbol = symbol->AsConstraint()->value()->definition(); | 2627 symbol = symbol->AsConstraint()->value()->definition(); |
2547 changed = true; | 2628 changed = true; |
2548 } else if (symbol->IsBinarySmiOp()) { | 2629 } else if (symbol->IsBinarySmiOp()) { |
2549 BinarySmiOpInstr* op = symbol->AsBinarySmiOp(); | 2630 BinarySmiOpInstr* op = symbol->AsBinarySmiOp(); |
2550 Definition* left = op->left()->definition(); | 2631 Definition* left = op->left()->definition(); |
2551 Definition* right = op->right()->definition(); | 2632 Definition* right = op->right()->definition(); |
2552 switch (op->op_kind()) { | 2633 switch (op->op_kind()) { |
2553 case Token::kADD: | 2634 case Token::kADD: |
2554 if (right->IsConstant()) { | 2635 if (right->IsConstant()) { |
2555 offset += Smi::Cast(right->AsConstant()->value()).Value(); | 2636 int64_t rhs = Smi::Cast(right->AsConstant()->value()).Value(); |
2637 int64_t old_offset = offset; | |
2638 offset += rhs; | |
2639 if (Utils::DidAddOverflow(old_offset, rhs, offset)) { | |
2640 return overflow; | |
2641 } | |
2556 symbol = left; | 2642 symbol = left; |
2557 changed = true; | 2643 changed = true; |
2558 } else if (left->IsConstant()) { | 2644 } else if (left->IsConstant()) { |
2559 offset += Smi::Cast(left->AsConstant()->value()).Value(); | 2645 int64_t rhs = Smi::Cast(left->AsConstant()->value()).Value(); |
2646 int64_t old_offset = offset; | |
2647 offset += rhs; | |
2648 if (Utils::DidAddOverflow(old_offset, rhs, offset)) { | |
2649 return overflow; | |
2650 } | |
2560 symbol = right; | 2651 symbol = right; |
2561 changed = true; | 2652 changed = true; |
2562 } | 2653 } |
2563 break; | 2654 break; |
2564 | 2655 |
2565 case Token::kSUB: | 2656 case Token::kSUB: |
2566 if (right->IsConstant()) { | 2657 if (right->IsConstant()) { |
2567 offset -= Smi::Cast(right->AsConstant()->value()).Value(); | 2658 int64_t rhs = Smi::Cast(right->AsConstant()->value()).Value(); |
2659 int64_t old_offset = offset; | |
2660 offset -= rhs; | |
2661 if (Utils::DidSubOverflow(old_offset, rhs, offset)) { | |
2662 return overflow; | |
2663 } | |
2568 symbol = left; | 2664 symbol = left; |
2569 changed = true; | 2665 changed = true; |
2570 } | 2666 } |
2571 break; | 2667 break; |
2572 | 2668 |
2573 default: | 2669 default: |
2574 break; | 2670 break; |
2575 } | 2671 } |
2576 } | 2672 } |
2577 | |
2578 if (!Smi::IsValid(offset)) return overflow; | |
2579 } while (changed); | 2673 } while (changed); |
2580 | 2674 |
2581 return RangeBoundary::FromDefinition(symbol, offset); | 2675 return RangeBoundary::FromDefinition(symbol, offset); |
2582 } | 2676 } |
2583 | 2677 |
2584 | 2678 |
2585 static bool CanonicalizeMaxBoundary(RangeBoundary* a) { | 2679 static bool CanonicalizeMaxBoundary(RangeBoundary* a) { |
2586 if (!a->IsSymbol()) return false; | 2680 if (!a->IsSymbol()) return false; |
2587 | 2681 |
2588 Range* range = a->symbol()->range(); | 2682 Range* range = a->symbol()->range(); |
2589 if ((range == NULL) || !range->max().IsSymbol()) return false; | 2683 if ((range == NULL) || !range->max().IsSymbol()) return false; |
2590 | 2684 |
2591 const intptr_t offset = range->max().offset() + a->offset(); | 2685 const int64_t offset = range->max().offset() + a->offset(); |
2592 | 2686 |
2593 if (!Smi::IsValid(offset)) { | 2687 if (Utils::DidAddOverflow(range->max().offset(), a->offset(), offset)) { |
2594 *a = RangeBoundary::PositiveInfinity(); | 2688 *a = RangeBoundary::PositiveInfinity(); |
2595 return true; | 2689 return true; |
2596 } | 2690 } |
2597 | 2691 |
2598 *a = CanonicalizeBoundary( | 2692 *a = CanonicalizeBoundary( |
2599 RangeBoundary::FromDefinition(range->max().symbol(), offset), | 2693 RangeBoundary::FromDefinition(range->max().symbol(), offset), |
2600 RangeBoundary::PositiveInfinity()); | 2694 RangeBoundary::PositiveInfinity()); |
2601 | 2695 |
2602 return true; | 2696 return true; |
2603 } | 2697 } |
2604 | 2698 |
2605 | 2699 |
2606 static bool CanonicalizeMinBoundary(RangeBoundary* a) { | 2700 static bool CanonicalizeMinBoundary(RangeBoundary* a) { |
2607 if (!a->IsSymbol()) return false; | 2701 if (!a->IsSymbol()) return false; |
2608 | 2702 |
2609 Range* range = a->symbol()->range(); | 2703 Range* range = a->symbol()->range(); |
2610 if ((range == NULL) || !range->min().IsSymbol()) return false; | 2704 if ((range == NULL) || !range->min().IsSymbol()) return false; |
2611 | 2705 |
2612 const intptr_t offset = range->min().offset() + a->offset(); | 2706 const int64_t offset = range->min().offset() + a->offset(); |
2613 if (!Smi::IsValid(offset)) { | 2707 |
2708 if (Utils::DidAddOverflow(range->min().offset(), a->offset(), offset)) { | |
2614 *a = RangeBoundary::NegativeInfinity(); | 2709 *a = RangeBoundary::NegativeInfinity(); |
2615 return true; | 2710 return true; |
2616 } | 2711 } |
2617 | 2712 |
2618 *a = CanonicalizeBoundary( | 2713 *a = CanonicalizeBoundary( |
2619 RangeBoundary::FromDefinition(range->min().symbol(), offset), | 2714 RangeBoundary::FromDefinition(range->min().symbol(), offset), |
2620 RangeBoundary::NegativeInfinity()); | 2715 RangeBoundary::NegativeInfinity()); |
2621 | 2716 |
2622 return true; | 2717 return true; |
2623 } | 2718 } |
2624 | 2719 |
2625 | 2720 |
2626 RangeBoundary RangeBoundary::Min(RangeBoundary a, RangeBoundary b) { | 2721 RangeBoundary RangeBoundary::Min(RangeBoundary a, RangeBoundary b, |
2722 RangeSize size) { | |
2723 ASSERT(!(a.IsNegativeInfinity() || b.IsNegativeInfinity())); | |
2724 ASSERT(!a.IsUnknown() || !b.IsUnknown()); | |
2725 if (a.IsUnknown() && !b.IsUnknown()) { | |
2726 return b; | |
2727 } | |
2728 if (!a.IsUnknown() && b.IsUnknown()) { | |
2729 return a; | |
2730 } | |
2731 if (size == kRangeBoundarySmi) { | |
2732 if (a.IsSmiMaximumOrAbove() && !b.IsSmiMaximumOrAbove()) { | |
2733 return b; | |
2734 } | |
2735 if (!a.IsSmiMaximumOrAbove() && b.IsSmiMaximumOrAbove()) { | |
2736 return a; | |
2737 } | |
2738 } else { | |
2739 ASSERT(size == kRangeBoundaryInt64); | |
2740 if (a.IsMaximumOrAbove() && !b.IsMaximumOrAbove()) { | |
2741 return b; | |
2742 } | |
2743 if (!a.IsMaximumOrAbove() && b.IsMaximumOrAbove()) { | |
2744 return a; | |
2745 } | |
2746 } | |
2747 | |
2748 if (a.Equals(b)) { | |
2749 return b; | |
2750 } | |
2751 | |
2752 { | |
2753 RangeBoundary canonical_a = | |
2754 CanonicalizeBoundary(a, RangeBoundary::PositiveInfinity()); | |
2755 RangeBoundary canonical_b = | |
2756 CanonicalizeBoundary(b, RangeBoundary::PositiveInfinity()); | |
2757 do { | |
2758 if (DependOnSameSymbol(canonical_a, canonical_b)) { | |
2759 a = canonical_a; | |
2760 b = canonical_b; | |
2761 break; | |
2762 } | |
2763 } while (CanonicalizeMaxBoundary(&canonical_a) || | |
2764 CanonicalizeMaxBoundary(&canonical_b)); | |
2765 } | |
2766 | |
2627 if (DependOnSameSymbol(a, b)) { | 2767 if (DependOnSameSymbol(a, b)) { |
2628 return (a.offset() <= b.offset()) ? a : b; | 2768 return (a.offset() <= b.offset()) ? a : b; |
2629 } | 2769 } |
2630 | 2770 |
2631 const intptr_t min_a = a.LowerBound().Clamp().value(); | 2771 const int64_t min_a = a.UpperBound().Clamp(size).ConstantValue(); |
2632 const intptr_t min_b = b.LowerBound().Clamp().value(); | 2772 const int64_t min_b = b.UpperBound().Clamp(size).ConstantValue(); |
2633 | 2773 |
2634 return RangeBoundary::FromConstant(Utils::Minimum(min_a, min_b)); | 2774 return RangeBoundary::FromConstant(Utils::Minimum(min_a, min_b)); |
2635 } | 2775 } |
2636 | 2776 |
2637 | 2777 |
2638 RangeBoundary RangeBoundary::Max(RangeBoundary a, RangeBoundary b) { | 2778 RangeBoundary RangeBoundary::Max(RangeBoundary a, RangeBoundary b, |
2639 if (DependOnSameSymbol(a, b)) { | 2779 RangeSize size) { |
2640 return (a.offset() >= b.offset()) ? a : b; | 2780 ASSERT(!(a.IsPositiveInfinity() || b.IsPositiveInfinity())); |
2781 ASSERT(!a.IsUnknown() || !b.IsUnknown()); | |
2782 if (a.IsUnknown() && !b.IsUnknown()) { | |
2783 return b; | |
2784 } | |
2785 if (!a.IsUnknown() && b.IsUnknown()) { | |
2786 return a; | |
2787 } | |
2788 if (size == kRangeBoundarySmi) { | |
2789 if (a.IsSmiMinimumOrBelow() && !b.IsSmiMinimumOrBelow()) { | |
2790 return b; | |
2791 } | |
2792 if (!a.IsSmiMinimumOrBelow() && b.IsSmiMinimumOrBelow()) { | |
2793 return a; | |
2794 } | |
2795 } else { | |
2796 ASSERT(size == kRangeBoundaryInt64); | |
2797 if (a.IsMinimumOrBelow() && !b.IsMinimumOrBelow()) { | |
2798 return b; | |
2799 } | |
2800 if (!a.IsMinimumOrBelow() && b.IsMinimumOrBelow()) { | |
2801 return a; | |
2802 } | |
2803 } | |
2804 if (a.Equals(b)) { | |
2805 return b; | |
2641 } | 2806 } |
2642 | 2807 |
2643 const intptr_t max_a = a.UpperBound().Clamp().value(); | 2808 { |
2644 const intptr_t max_b = b.UpperBound().Clamp().value(); | 2809 RangeBoundary canonical_a = |
2810 CanonicalizeBoundary(a, RangeBoundary::NegativeInfinity()); | |
2811 RangeBoundary canonical_b = | |
2812 CanonicalizeBoundary(b, RangeBoundary::NegativeInfinity()); | |
2813 | |
2814 do { | |
2815 if (DependOnSameSymbol(canonical_a, canonical_b)) { | |
2816 a = canonical_a; | |
2817 b = canonical_b; | |
2818 break; | |
2819 } | |
2820 } while (CanonicalizeMinBoundary(&canonical_a) || | |
2821 CanonicalizeMinBoundary(&canonical_b)); | |
2822 } | |
2823 | |
2824 if (DependOnSameSymbol(a, b)) { | |
2825 return (a.offset() <= b.offset()) ? b : a; | |
2826 } | |
2827 | |
2828 const int64_t max_a = a.LowerBound().Clamp(size).ConstantValue(); | |
2829 const int64_t max_b = b.LowerBound().Clamp(size).ConstantValue(); | |
2645 | 2830 |
2646 return RangeBoundary::FromConstant(Utils::Maximum(max_a, max_b)); | 2831 return RangeBoundary::FromConstant(Utils::Maximum(max_a, max_b)); |
2647 } | 2832 } |
2648 | 2833 |
2649 | 2834 |
2835 int64_t RangeBoundary::ConstantValue() const { | |
2836 ASSERT(IsConstant()); | |
2837 return value_; | |
2838 } | |
2839 | |
2840 | |
2650 void Definition::InferRange() { | 2841 void Definition::InferRange() { |
2651 ASSERT(Type()->ToCid() == kSmiCid); // Has meaning only for smis. | 2842 if (Type()->ToCid() == kSmiCid) { |
2652 if (range_ == NULL) { | 2843 if (range_ == NULL) { |
2653 range_ = Range::Unknown(); | 2844 range_ = Range::UnknownSmi(); |
2845 } | |
2846 } else if (IsMintDefinition()) { | |
2847 if (range_ == NULL) { | |
2848 range_ = Range::Unknown(); | |
2849 } | |
2850 } else { | |
2851 // Only Smi and Mint supported. | |
2852 UNREACHABLE(); | |
2654 } | 2853 } |
2655 } | 2854 } |
2656 | 2855 |
2657 | 2856 |
2658 void ConstantInstr::InferRange() { | 2857 void ConstantInstr::InferRange() { |
2659 ASSERT(value_.IsSmi()); | 2858 if (value_.IsSmi()) { |
2660 if (range_ == NULL) { | 2859 if (range_ == NULL) { |
2661 intptr_t value = Smi::Cast(value_).Value(); | 2860 int64_t value = Smi::Cast(value_).Value(); |
2662 range_ = new Range(RangeBoundary::FromConstant(value), | 2861 range_ = new Range(RangeBoundary::FromConstant(value), |
2663 RangeBoundary::FromConstant(value)); | 2862 RangeBoundary::FromConstant(value)); |
2863 } | |
2864 } else if (value_.IsMint()) { | |
2865 if (range_ == NULL) { | |
2866 int64_t value = Mint::Cast(value_).value(); | |
2867 range_ = new Range(RangeBoundary::FromConstant(value), | |
2868 RangeBoundary::FromConstant(value)); | |
2869 } | |
2870 } else { | |
2871 // Only Smi and Mint supported. | |
2872 UNREACHABLE(); | |
2664 } | 2873 } |
2665 } | 2874 } |
2666 | 2875 |
2876 | |
2877 void UnboxIntegerInstr::InferRange() { | |
2878 if (range_ == NULL) { | |
2879 Definition* unboxed = value()->definition(); | |
2880 if (unboxed == NULL) { | |
2881 range_ = Range::Unknown(); | |
2882 return; | |
2883 } | |
2884 Range* range = unboxed->range(); | |
2885 if (range == NULL) { | |
2886 range_ = Range::Unknown(); | |
2887 return; | |
2888 } | |
2889 range_ = new Range(range->min(), range->max()); | |
2890 } | |
2891 } | |
2892 | |
2667 | 2893 |
2668 void ConstraintInstr::InferRange() { | 2894 void ConstraintInstr::InferRange() { |
2669 Range* value_range = value()->definition()->range(); | 2895 Range* value_range = value()->definition()->range(); |
2670 | 2896 |
2671 RangeBoundary min; | 2897 RangeBoundary min; |
2672 RangeBoundary max; | 2898 RangeBoundary max; |
2673 | 2899 |
2674 if (IsMinSmi(value_range) && !IsMinSmi(constraint())) { | 2900 { |
2675 min = constraint()->min(); | 2901 RangeBoundary value_min = (value_range == NULL) ? |
2676 } else if (IsMinSmi(constraint()) && !IsMinSmi(value_range)) { | 2902 RangeBoundary() : value_range->min(); |
2677 min = value_range->min(); | 2903 RangeBoundary constraint_min = constraint()->min(); |
2678 } else if ((value_range != NULL) && | 2904 min = RangeBoundary::Max(value_min, constraint_min, |
2679 IsEqual(constraint()->min(), value_range->min())) { | 2905 RangeBoundary::kRangeBoundarySmi); |
2680 min = constraint()->min(); | |
2681 } else { | |
2682 if (value_range != NULL) { | |
2683 RangeBoundary canonical_a = | |
2684 CanonicalizeBoundary(constraint()->min(), | |
2685 RangeBoundary::NegativeInfinity()); | |
2686 RangeBoundary canonical_b = | |
2687 CanonicalizeBoundary(value_range->min(), | |
2688 RangeBoundary::NegativeInfinity()); | |
2689 | |
2690 do { | |
2691 if (DependOnSameSymbol(canonical_a, canonical_b)) { | |
2692 min = (canonical_a.offset() <= canonical_b.offset()) ? canonical_b | |
2693 : canonical_a; | |
2694 } | |
2695 } while (CanonicalizeMinBoundary(&canonical_a) || | |
2696 CanonicalizeMinBoundary(&canonical_b)); | |
2697 } | |
2698 | |
2699 if (min.IsUnknown()) { | |
2700 min = RangeBoundary::Max(Range::ConstantMin(value_range), | |
2701 Range::ConstantMin(constraint())); | |
2702 } | |
2703 } | 2906 } |
2704 | 2907 |
2705 if (IsMaxSmi(value_range) && !IsMaxSmi(constraint())) { | 2908 ASSERT(!min.IsUnknown()); |
2706 max = constraint()->max(); | |
2707 } else if (IsMaxSmi(constraint()) && !IsMaxSmi(value_range)) { | |
2708 max = value_range->max(); | |
2709 } else if ((value_range != NULL) && | |
2710 IsEqual(constraint()->max(), value_range->max())) { | |
2711 max = constraint()->max(); | |
2712 } else { | |
2713 if (value_range != NULL) { | |
2714 RangeBoundary canonical_b = | |
2715 CanonicalizeBoundary(value_range->max(), | |
2716 RangeBoundary::PositiveInfinity()); | |
2717 RangeBoundary canonical_a = | |
2718 CanonicalizeBoundary(constraint()->max(), | |
2719 RangeBoundary::PositiveInfinity()); | |
2720 | 2909 |
2721 do { | 2910 { |
2722 if (DependOnSameSymbol(canonical_a, canonical_b)) { | 2911 RangeBoundary value_max = (value_range == NULL) ? |
2723 max = (canonical_a.offset() <= canonical_b.offset()) ? canonical_a | 2912 RangeBoundary() : value_range->max(); |
2724 : canonical_b; | 2913 RangeBoundary constraint_max = constraint()->max(); |
2725 break; | 2914 max = RangeBoundary::Min(value_max, constraint_max, |
2726 } | 2915 RangeBoundary::kRangeBoundarySmi); |
2727 } while (CanonicalizeMaxBoundary(&canonical_a) || | 2916 } |
2728 CanonicalizeMaxBoundary(&canonical_b)); | |
2729 } | |
2730 | 2917 |
2731 if (max.IsUnknown()) { | 2918 ASSERT(!max.IsUnknown()); |
2732 max = RangeBoundary::Min(Range::ConstantMax(value_range), | |
2733 Range::ConstantMax(constraint())); | |
2734 } | |
2735 } | |
2736 | 2919 |
2737 range_ = new Range(min, max); | 2920 range_ = new Range(min, max); |
2738 | 2921 |
2739 // Mark branches that generate unsatisfiable constraints as constant. | 2922 // Mark branches that generate unsatisfiable constraints as constant. |
2740 if (target() != NULL && range_->IsUnsatisfiable()) { | 2923 if (target() != NULL && range_->IsUnsatisfiable()) { |
2741 BranchInstr* branch = | 2924 BranchInstr* branch = |
2742 target()->PredecessorAt(0)->last_instruction()->AsBranch(); | 2925 target()->PredecessorAt(0)->last_instruction()->AsBranch(); |
2743 if (target() == branch->true_successor()) { | 2926 if (target() == branch->true_successor()) { |
2744 // True unreachable. | 2927 // True unreachable. |
2745 if (FLAG_trace_constant_propagation) { | 2928 if (FLAG_trace_constant_propagation) { |
(...skipping 52 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
2798 RangeBoundary::FromConstant(255)); | 2981 RangeBoundary::FromConstant(255)); |
2799 break; | 2982 break; |
2800 case kTypedDataInt16ArrayCid: | 2983 case kTypedDataInt16ArrayCid: |
2801 range_ = new Range(RangeBoundary::FromConstant(-32768), | 2984 range_ = new Range(RangeBoundary::FromConstant(-32768), |
2802 RangeBoundary::FromConstant(32767)); | 2985 RangeBoundary::FromConstant(32767)); |
2803 break; | 2986 break; |
2804 case kTypedDataUint16ArrayCid: | 2987 case kTypedDataUint16ArrayCid: |
2805 range_ = new Range(RangeBoundary::FromConstant(0), | 2988 range_ = new Range(RangeBoundary::FromConstant(0), |
2806 RangeBoundary::FromConstant(65535)); | 2989 RangeBoundary::FromConstant(65535)); |
2807 break; | 2990 break; |
2991 case kTypedDataInt32ArrayCid: | |
2992 range_ = new Range(RangeBoundary::FromConstant(kMinInt32), | |
2993 RangeBoundary::FromConstant(kMaxInt32)); | |
2994 break; | |
2995 case kTypedDataUint32ArrayCid: | |
2996 range_ = new Range(RangeBoundary::FromConstant(0), | |
2997 RangeBoundary::FromConstant(kMaxUint32)); | |
2998 break; | |
2808 case kOneByteStringCid: | 2999 case kOneByteStringCid: |
2809 range_ = new Range(RangeBoundary::FromConstant(0), | 3000 range_ = new Range(RangeBoundary::FromConstant(0), |
2810 RangeBoundary::FromConstant(0xFF)); | 3001 RangeBoundary::FromConstant(0xFF)); |
2811 break; | 3002 break; |
2812 case kTwoByteStringCid: | 3003 case kTwoByteStringCid: |
2813 range_ = new Range(RangeBoundary::FromConstant(0), | 3004 range_ = new Range(RangeBoundary::FromConstant(0), |
2814 RangeBoundary::FromConstant(0xFFFF)); | 3005 RangeBoundary::FromConstant(0xFFFF)); |
2815 break; | 3006 break; |
2816 default: | 3007 default: |
2817 Definition::InferRange(); | 3008 Definition::InferRange(); |
(...skipping 101 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
2919 } | 3110 } |
2920 | 3111 |
2921 | 3112 |
2922 void PhiInstr::InferRange() { | 3113 void PhiInstr::InferRange() { |
2923 RangeBoundary new_min; | 3114 RangeBoundary new_min; |
2924 RangeBoundary new_max; | 3115 RangeBoundary new_max; |
2925 | 3116 |
2926 for (intptr_t i = 0; i < InputCount(); i++) { | 3117 for (intptr_t i = 0; i < InputCount(); i++) { |
2927 Range* input_range = InputAt(i)->definition()->range(); | 3118 Range* input_range = InputAt(i)->definition()->range(); |
2928 if (input_range == NULL) { | 3119 if (input_range == NULL) { |
2929 range_ = Range::Unknown(); | 3120 range_ = Range::UnknownSmi(); |
2930 return; | 3121 return; |
2931 } | 3122 } |
2932 | 3123 |
2933 if (new_min.IsUnknown()) { | 3124 if (new_min.IsUnknown()) { |
2934 new_min = Range::ConstantMin(input_range); | 3125 new_min = Range::ConstantMin(input_range); |
2935 } else { | 3126 } else { |
2936 new_min = RangeBoundary::Min(new_min, Range::ConstantMin(input_range)); | 3127 new_min = RangeBoundary::Min(new_min, |
3128 Range::ConstantMinSmi(input_range), | |
3129 RangeBoundary::kRangeBoundarySmi); | |
2937 } | 3130 } |
2938 | 3131 |
2939 if (new_max.IsUnknown()) { | 3132 if (new_max.IsUnknown()) { |
2940 new_max = Range::ConstantMax(input_range); | 3133 new_max = Range::ConstantMax(input_range); |
2941 } else { | 3134 } else { |
2942 new_max = RangeBoundary::Max(new_max, Range::ConstantMax(input_range)); | 3135 new_max = RangeBoundary::Max(new_max, |
3136 Range::ConstantMaxSmi(input_range), | |
3137 RangeBoundary::kRangeBoundarySmi); | |
2943 } | 3138 } |
2944 } | 3139 } |
2945 | 3140 |
2946 ASSERT(new_min.IsUnknown() == new_max.IsUnknown()); | 3141 ASSERT(new_min.IsUnknown() == new_max.IsUnknown()); |
2947 if (new_min.IsUnknown()) { | 3142 if (new_min.IsUnknown()) { |
2948 range_ = Range::Unknown(); | 3143 range_ = Range::UnknownSmi(); |
2949 return; | 3144 return; |
2950 } | 3145 } |
2951 | 3146 |
2952 range_ = new Range(new_min, new_max); | 3147 range_ = new Range(new_min, new_max); |
2953 } | 3148 } |
2954 | 3149 |
2955 | 3150 |
2956 bool PhiInstr::IsRedundant() const { | 3151 bool PhiInstr::IsRedundant() const { |
2957 ASSERT(InputCount() > 1); | 3152 ASSERT(InputCount() > 1); |
2958 Definition* first = InputAt(0)->definition(); | 3153 Definition* first = InputAt(0)->definition(); |
2959 for (intptr_t i = 1; i < InputCount(); ++i) { | 3154 for (intptr_t i = 1; i < InputCount(); ++i) { |
2960 Definition* def = InputAt(i)->definition(); | 3155 Definition* def = InputAt(i)->definition(); |
2961 if (def != first) return false; | 3156 if (def != first) return false; |
2962 } | 3157 } |
2963 return true; | 3158 return true; |
2964 } | 3159 } |
2965 | 3160 |
2966 | 3161 |
2967 static bool SymbolicSub(const RangeBoundary& a, | |
2968 const RangeBoundary& b, | |
2969 RangeBoundary* result) { | |
2970 if (a.IsSymbol() && b.IsConstant() && !b.Overflowed()) { | |
2971 const intptr_t offset = a.offset() - b.value(); | |
2972 if (!Smi::IsValid(offset)) return false; | |
2973 | |
2974 *result = RangeBoundary::FromDefinition(a.symbol(), offset); | |
2975 return true; | |
2976 } | |
2977 return false; | |
2978 } | |
2979 | |
2980 | |
2981 static bool SymbolicAdd(const RangeBoundary& a, | |
2982 const RangeBoundary& b, | |
2983 RangeBoundary* result) { | |
2984 if (a.IsSymbol() && b.IsConstant() && !b.Overflowed()) { | |
2985 const intptr_t offset = a.offset() + b.value(); | |
2986 if (!Smi::IsValid(offset)) return false; | |
2987 | |
2988 *result = RangeBoundary::FromDefinition(a.symbol(), offset); | |
2989 return true; | |
2990 } else if (b.IsSymbol() && a.IsConstant() && !a.Overflowed()) { | |
2991 const intptr_t offset = b.offset() + a.value(); | |
2992 if (!Smi::IsValid(offset)) return false; | |
2993 | |
2994 *result = RangeBoundary::FromDefinition(b.symbol(), offset); | |
2995 return true; | |
2996 } | |
2997 return false; | |
2998 } | |
2999 | |
3000 | |
3001 static bool IsArrayLength(Definition* defn) { | 3162 static bool IsArrayLength(Definition* defn) { |
3163 if (defn == NULL) { | |
3164 return false; | |
3165 } | |
3002 LoadFieldInstr* load = defn->AsLoadField(); | 3166 LoadFieldInstr* load = defn->AsLoadField(); |
3003 return (load != NULL) && load->IsImmutableLengthLoad(); | 3167 return (load != NULL) && load->IsImmutableLengthLoad(); |
3004 } | 3168 } |
3005 | 3169 |
3006 | 3170 |
3007 static int64_t ConstantAbsMax(const Range* range) { | |
3008 if (range == NULL) return Smi::kMaxValue; | |
3009 const int64_t abs_min = Utils::Abs(Range::ConstantMin(range).value()); | |
3010 const int64_t abs_max = Utils::Abs(Range::ConstantMax(range).value()); | |
3011 return abs_min > abs_max ? abs_min : abs_max; | |
3012 } | |
3013 | |
3014 | |
3015 static bool OnlyPositiveOrZero(const Range* a, const Range* b) { | |
3016 if ((a == NULL) || (b == NULL)) return false; | |
3017 if (Range::ConstantMin(a).value() < 0) return false; | |
3018 if (Range::ConstantMin(b).value() < 0) return false; | |
3019 return true; | |
3020 } | |
3021 | |
3022 | |
3023 static bool OnlyNegativeOrZero(const Range* a, const Range* b) { | |
3024 if ((a == NULL) || (b == NULL)) return false; | |
3025 if (Range::ConstantMax(a).value() > 0) return false; | |
3026 if (Range::ConstantMax(b).value() > 0) return false; | |
3027 return true; | |
3028 } | |
3029 | |
3030 | |
3031 void BinarySmiOpInstr::InferRange() { | 3171 void BinarySmiOpInstr::InferRange() { |
3032 // TODO(vegorov): canonicalize BinarySmiOp to always have constant on the | 3172 // TODO(vegorov): canonicalize BinarySmiOp to always have constant on the |
3033 // right and a non-constant on the left. | 3173 // right and a non-constant on the left. |
3034 Definition* left_defn = left()->definition(); | 3174 Definition* left_defn = left()->definition(); |
3035 | 3175 |
3036 Range* left_range = left_defn->range(); | 3176 Range* left_range = left_defn->range(); |
3037 Range* right_range = right()->definition()->range(); | 3177 Range* right_range = right()->definition()->range(); |
3038 | 3178 |
3039 if ((left_range == NULL) || (right_range == NULL)) { | 3179 if ((left_range == NULL) || (right_range == NULL)) { |
3040 range_ = new Range(RangeBoundary::MinSmi(), RangeBoundary::MaxSmi()); | 3180 range_ = Range::UnknownSmi(); |
3041 return; | 3181 return; |
3042 } | 3182 } |
3043 | 3183 |
3044 RangeBoundary left_min = | 3184 Range* possible_range = Range::BinaryOp(op_kind(), |
3045 IsArrayLength(left_defn) ? | 3185 left_range, |
3046 RangeBoundary::FromDefinition(left_defn) : left_range->min(); | 3186 right_range, |
3187 left_defn); | |
3047 | 3188 |
3048 RangeBoundary left_max = | 3189 if ((range_ == NULL) && (possible_range == NULL)) { |
3049 IsArrayLength(left_defn) ? | 3190 // Initialize. |
3050 RangeBoundary::FromDefinition(left_defn) : left_range->max(); | 3191 range_ = Range::UnknownSmi(); |
3051 | 3192 return; |
3052 RangeBoundary min; | |
3053 RangeBoundary max; | |
3054 switch (op_kind()) { | |
3055 case Token::kADD: | |
3056 if (!SymbolicAdd(left_min, right_range->min(), &min)) { | |
3057 min = | |
3058 RangeBoundary::Add(Range::ConstantMin(left_range), | |
3059 Range::ConstantMin(right_range), | |
3060 RangeBoundary::NegativeInfinity()); | |
3061 } | |
3062 | |
3063 if (!SymbolicAdd(left_max, right_range->max(), &max)) { | |
3064 max = | |
3065 RangeBoundary::Add(Range::ConstantMax(right_range), | |
3066 Range::ConstantMax(left_range), | |
3067 RangeBoundary::PositiveInfinity()); | |
3068 } | |
3069 break; | |
3070 | |
3071 case Token::kSUB: | |
3072 if (!SymbolicSub(left_min, right_range->max(), &min)) { | |
3073 min = | |
3074 RangeBoundary::Sub(Range::ConstantMin(left_range), | |
3075 Range::ConstantMax(right_range), | |
3076 RangeBoundary::NegativeInfinity()); | |
3077 } | |
3078 | |
3079 if (!SymbolicSub(left_max, right_range->min(), &max)) { | |
3080 max = | |
3081 RangeBoundary::Sub(Range::ConstantMax(left_range), | |
3082 Range::ConstantMin(right_range), | |
3083 RangeBoundary::PositiveInfinity()); | |
3084 } | |
3085 break; | |
3086 | |
3087 case Token::kMUL: { | |
3088 const int64_t left_max = ConstantAbsMax(left_range); | |
3089 const int64_t right_max = ConstantAbsMax(right_range); | |
3090 ASSERT(left_max <= -kSmiMin); | |
3091 ASSERT(right_max <= -kSmiMin); | |
3092 if ((left_max == 0) || (right_max <= kMaxInt64 / left_max)) { | |
3093 // Product of left and right max values stays in 64 bit range. | |
3094 const int64_t result_max = left_max * right_max; | |
3095 if (Smi::IsValid64(result_max) && Smi::IsValid64(-result_max)) { | |
3096 const intptr_t r_min = | |
3097 OnlyPositiveOrZero(left_range, right_range) ? 0 : -result_max; | |
3098 min = RangeBoundary::FromConstant(r_min); | |
3099 const intptr_t r_max = | |
3100 OnlyNegativeOrZero(left_range, right_range) ? 0 : result_max; | |
3101 max = RangeBoundary::FromConstant(r_max); | |
3102 break; | |
3103 } | |
3104 } | |
3105 if (range_ == NULL) { | |
3106 range_ = Range::Unknown(); | |
3107 } | |
3108 return; | |
3109 } | |
3110 case Token::kSHL: { | |
3111 Range::Shl(left_range, right_range, &min, &max); | |
3112 break; | |
3113 } | |
3114 case Token::kBIT_AND: | |
3115 if (Range::ConstantMin(right_range).value() >= 0) { | |
3116 min = RangeBoundary::FromConstant(0); | |
3117 max = Range::ConstantMax(right_range); | |
3118 break; | |
3119 } | |
3120 if (Range::ConstantMin(left_range).value() >= 0) { | |
3121 min = RangeBoundary::FromConstant(0); | |
3122 max = Range::ConstantMax(left_range); | |
3123 break; | |
3124 } | |
3125 | |
3126 if (range_ == NULL) { | |
3127 range_ = Range::Unknown(); | |
3128 } | |
3129 return; | |
3130 | |
3131 default: | |
3132 if (range_ == NULL) { | |
3133 range_ = Range::Unknown(); | |
3134 } | |
3135 return; | |
3136 } | 3193 } |
3137 | 3194 |
3138 ASSERT(!min.IsUnknown() && !max.IsUnknown()); | 3195 if (possible_range == NULL) { |
3139 set_overflow(min.LowerBound().Overflowed() || max.UpperBound().Overflowed()); | 3196 // Nothing new. |
3197 return; | |
3198 } | |
3140 | 3199 |
3141 if (min.IsConstant()) min.Clamp(); | 3200 range_ = possible_range; |
3142 if (max.IsConstant()) max.Clamp(); | |
3143 | 3201 |
3144 range_ = new Range(min, max); | 3202 ASSERT(!range_->min().IsUnknown() && !range_->max().IsUnknown()); |
3203 // Calculate overflowed status before clamping. | |
3204 const bool overflowed = range_->min().LowerBound().OverflowedSmi() || | |
3205 range_->max().UpperBound().OverflowedSmi(); | |
3206 | |
3207 // Clamp value to be within smi range. | |
3208 range_->Clamp(RangeBoundary::kRangeBoundarySmi); | |
3209 | |
3210 set_overflow(overflowed); | |
3145 } | 3211 } |
3146 | 3212 |
3147 | 3213 |
3214 void BinaryMintOpInstr::InferRange() { | |
3215 // TODO(vegorov): canonicalize BinaryMintOpInstr to always have constant on | |
3216 // the right and a non-constant on the left. | |
3217 Definition* left_defn = left()->definition(); | |
3218 | |
3219 Range* left_range = left_defn->range(); | |
3220 Range* right_range = right()->definition()->range(); | |
3221 | |
3222 if ((left_range == NULL) || (right_range == NULL)) { | |
3223 range_ = Range::Unknown(); | |
3224 return; | |
3225 } | |
3226 | |
3227 Range* possible_range = Range::BinaryOp(op_kind(), | |
3228 left_range, | |
3229 right_range, | |
3230 left_defn); | |
3231 | |
3232 if ((range_ == NULL) && (possible_range == NULL)) { | |
3233 // Initialize. | |
3234 range_ = Range::Unknown(); | |
3235 return; | |
3236 } | |
3237 | |
3238 if (possible_range == NULL) { | |
3239 // Nothing new. | |
3240 return; | |
3241 } | |
3242 | |
3243 range_ = possible_range; | |
3244 | |
3245 ASSERT(!range_->min().IsUnknown() && !range_->max().IsUnknown()); | |
3246 | |
3247 // Clamp value to be within mint range. | |
3248 range_->Clamp(RangeBoundary::kRangeBoundaryInt64); | |
3249 } | |
3250 | |
3251 | |
3148 bool Range::IsPositive() const { | 3252 bool Range::IsPositive() const { |
3149 if (min().IsNegativeInfinity()) { | 3253 if (min().IsNegativeInfinity()) { |
3150 return false; | 3254 return false; |
3151 } | 3255 } |
3152 if (min().LowerBound().value() < 0) { | 3256 if (min().LowerBound().ConstantValue() < 0) { |
3153 return false; | 3257 return false; |
3154 } | 3258 } |
3155 if (max().IsPositiveInfinity()) { | 3259 if (max().IsPositiveInfinity()) { |
3156 return true; | 3260 return true; |
3157 } | 3261 } |
3158 return max().UpperBound().value() >= 0; | 3262 return max().UpperBound().ConstantValue() >= 0; |
3159 } | 3263 } |
3160 | 3264 |
3161 | 3265 |
3162 bool Range::IsNegative() const { | 3266 bool Range::OnlyLessThanOrEqualTo(int64_t val) const { |
3163 if (max().IsPositiveInfinity()) { | |
3164 return false; | |
3165 } | |
3166 if (max().UpperBound().value() >= 0) { | |
3167 return false; | |
3168 } | |
3169 if (min().IsNegativeInfinity()) { | |
3170 return true; | |
3171 } | |
3172 return min().LowerBound().value() < 0; | |
3173 } | |
3174 | |
3175 | |
3176 bool Range::OnlyLessThanOrEqualTo(intptr_t val) const { | |
3177 if (max().IsPositiveInfinity()) { | 3267 if (max().IsPositiveInfinity()) { |
3178 // Cannot be true. | 3268 // Cannot be true. |
3179 return false; | 3269 return false; |
3180 } | 3270 } |
3181 if (max().UpperBound().value() > val) { | 3271 if (max().UpperBound().ConstantValue() > val) { |
3182 // Not true. | 3272 // Not true. |
3183 return false; | 3273 return false; |
3184 } | 3274 } |
3185 if (!min().IsNegativeInfinity()) { | 3275 return true; |
3186 if (min().LowerBound().value() > val) { | 3276 } |
3187 // Lower bound is > value. | 3277 |
3188 return false; | 3278 |
3189 } | 3279 bool Range::OnlyGreaterThanOrEqualTo(int64_t val) const { |
3280 if (min().IsNegativeInfinity()) { | |
3281 return false; | |
3282 } | |
3283 if (min().LowerBound().ConstantValue() < val) { | |
3284 return false; | |
3190 } | 3285 } |
3191 return true; | 3286 return true; |
3192 } | 3287 } |
3193 | 3288 |
3194 | 3289 |
3195 // Inclusive. | 3290 // Inclusive. |
3196 bool Range::IsWithin(intptr_t min_int, intptr_t max_int) const { | 3291 bool Range::IsWithin(int64_t min_int, int64_t max_int) const { |
3197 RangeBoundary lower_min = min().LowerBound(); | 3292 RangeBoundary lower_min = min().LowerBound(); |
3198 if (lower_min.IsNegativeInfinity() || (lower_min.value() < min_int)) { | 3293 if (lower_min.IsNegativeInfinity() || (lower_min.ConstantValue() < min_int)) { |
3199 return false; | 3294 return false; |
3200 } | 3295 } |
3201 RangeBoundary upper_max = max().UpperBound(); | 3296 RangeBoundary upper_max = max().UpperBound(); |
3202 if (upper_max.IsPositiveInfinity() || (upper_max.value() > max_int)) { | 3297 if (upper_max.IsPositiveInfinity() || (upper_max.ConstantValue() > max_int)) { |
3203 return false; | 3298 return false; |
3204 } | 3299 } |
3205 return true; | 3300 return true; |
3206 } | 3301 } |
3207 | 3302 |
3208 | 3303 |
3209 bool Range::Overlaps(intptr_t min_int, intptr_t max_int) const { | 3304 bool Range::Overlaps(int64_t min_int, int64_t max_int) const { |
3210 const intptr_t this_min = min().IsNegativeInfinity() ? | 3305 RangeBoundary lower = min().LowerBound(); |
3211 kIntptrMin : min().LowerBound().value(); | 3306 RangeBoundary upper = max().UpperBound(); |
3212 const intptr_t this_max = max().IsPositiveInfinity() ? | 3307 const int64_t this_min = lower.IsNegativeInfinity() ? |
3213 kIntptrMax : max().UpperBound().value(); | 3308 RangeBoundary::kMin : lower.ConstantValue(); |
3309 const int64_t this_max = upper.IsPositiveInfinity() ? | |
3310 RangeBoundary::kMax : upper.ConstantValue(); | |
3214 if ((this_min <= min_int) && (min_int <= this_max)) return true; | 3311 if ((this_min <= min_int) && (min_int <= this_max)) return true; |
3215 if ((this_min <= max_int) && (max_int <= this_max)) return true; | 3312 if ((this_min <= max_int) && (max_int <= this_max)) return true; |
3216 if ((min_int < this_min) && (max_int > this_max)) return true; | 3313 if ((min_int < this_min) && (max_int > this_max)) return true; |
3217 return false; | 3314 return false; |
3218 } | 3315 } |
3219 | 3316 |
3220 | 3317 |
3221 bool Range::IsUnsatisfiable() const { | 3318 bool Range::IsUnsatisfiable() const { |
3222 // Infinity case: [+inf, ...] || [..., -inf] | 3319 // Infinity case: [+inf, ...] || [..., -inf] |
3223 if (min().IsPositiveInfinity() || max().IsNegativeInfinity()) { | 3320 if (min().IsPositiveInfinity() || max().IsNegativeInfinity()) { |
3224 return true; | 3321 return true; |
3225 } | 3322 } |
3226 // Constant case: For example [0, -1]. | 3323 // Constant case: For example [0, -1]. |
3227 if (Range::ConstantMin(this).value() > Range::ConstantMax(this).value()) { | 3324 if (Range::ConstantMin(this).ConstantValue() > |
3325 Range::ConstantMax(this).ConstantValue()) { | |
3228 return true; | 3326 return true; |
3229 } | 3327 } |
3230 // Symbol case: For example [v+1, v]. | 3328 // Symbol case: For example [v+1, v]. |
3231 if (DependOnSameSymbol(min(), max()) && min().offset() > max().offset()) { | 3329 if (DependOnSameSymbol(min(), max()) && min().offset() > max().offset()) { |
3232 return true; | 3330 return true; |
3233 } | 3331 } |
3234 return false; | 3332 return false; |
3235 } | 3333 } |
3236 | 3334 |
3237 | 3335 |
3238 void Range::Shl(Range* left, | 3336 void Range::Clamp(RangeBoundary::RangeSize size) { |
3239 Range* right, | 3337 min_ = min_.Clamp(size); |
3338 max_ = max_.Clamp(size); | |
3339 } | |
3340 | |
3341 | |
3342 void Range::Shl(const Range* left, | |
3343 const Range* right, | |
3240 RangeBoundary* result_min, | 3344 RangeBoundary* result_min, |
3241 RangeBoundary* result_max) { | 3345 RangeBoundary* result_max) { |
3346 ASSERT(left != NULL); | |
3347 ASSERT(right != NULL); | |
3348 ASSERT(result_min != NULL); | |
3349 ASSERT(result_max != NULL); | |
3242 RangeBoundary left_max = Range::ConstantMax(left); | 3350 RangeBoundary left_max = Range::ConstantMax(left); |
3243 RangeBoundary left_min = Range::ConstantMin(left); | 3351 RangeBoundary left_min = Range::ConstantMin(left); |
3244 // A negative shift count always deoptimizes (and throws), so the minimum | 3352 // A negative shift count always deoptimizes (and throws), so the minimum |
3245 // shift count is zero. | 3353 // shift count is zero. |
3246 intptr_t right_max = Utils::Maximum(Range::ConstantMax(right).value(), | 3354 int64_t right_max = Utils::Maximum(Range::ConstantMax(right).ConstantValue(), |
3247 static_cast<intptr_t>(0)); | 3355 static_cast<int64_t>(0)); |
3248 intptr_t right_min = Utils::Maximum(Range::ConstantMin(right).value(), | 3356 int64_t right_min = Utils::Maximum(Range::ConstantMin(right).ConstantValue(), |
3249 static_cast<intptr_t>(0)); | 3357 static_cast<int64_t>(0)); |
3250 | 3358 |
3251 *result_min = RangeBoundary::Shl( | 3359 *result_min = RangeBoundary::Shl( |
3252 left_min, | 3360 left_min, |
3253 left_min.value() > 0 ? right_min : right_max, | 3361 left_min.ConstantValue() > 0 ? right_min : right_max, |
3254 left_min.value() > 0 | 3362 left_min.ConstantValue() > 0 |
3255 ? RangeBoundary::PositiveInfinity() | 3363 ? RangeBoundary::PositiveInfinity() |
3256 : RangeBoundary::NegativeInfinity()); | 3364 : RangeBoundary::NegativeInfinity()); |
3257 | 3365 |
3258 *result_max = RangeBoundary::Shl( | 3366 *result_max = RangeBoundary::Shl( |
3259 left_max, | 3367 left_max, |
3260 left_max.value() > 0 ? right_max : right_min, | 3368 left_max.ConstantValue() > 0 ? right_max : right_min, |
3261 left_max.value() > 0 | 3369 left_max.ConstantValue() > 0 |
3262 ? RangeBoundary::PositiveInfinity() | 3370 ? RangeBoundary::PositiveInfinity() |
3263 : RangeBoundary::NegativeInfinity()); | 3371 : RangeBoundary::NegativeInfinity()); |
3264 } | 3372 } |
3265 | 3373 |
3266 | 3374 |
3375 bool Range::And(const Range* left_range, | |
3376 const Range* right_range, | |
3377 RangeBoundary* min, | |
3378 RangeBoundary* max) { | |
3379 ASSERT(left_range != NULL); | |
3380 ASSERT(right_range != NULL); | |
3381 ASSERT(min != NULL); | |
3382 ASSERT(max != NULL); | |
3383 | |
3384 if (Range::ConstantMin(right_range).ConstantValue() >= 0) { | |
3385 *min = RangeBoundary::FromConstant(0); | |
3386 *max = Range::ConstantMax(right_range); | |
3387 return true; | |
3388 } | |
3389 | |
3390 if (Range::ConstantMin(left_range).ConstantValue() >= 0) { | |
3391 *min = RangeBoundary::FromConstant(0); | |
3392 *max = Range::ConstantMax(left_range); | |
3393 return true; | |
3394 } | |
3395 | |
3396 return false; | |
3397 } | |
3398 | |
3399 | |
3400 void Range::Add(const Range* left_range, | |
3401 const Range* right_range, | |
3402 RangeBoundary* min, | |
3403 RangeBoundary* max, | |
3404 Definition* left_defn) { | |
3405 ASSERT(left_range != NULL); | |
3406 ASSERT(right_range != NULL); | |
3407 ASSERT(min != NULL); | |
3408 ASSERT(max != NULL); | |
3409 | |
3410 RangeBoundary left_min = | |
3411 IsArrayLength(left_defn) ? | |
3412 RangeBoundary::FromDefinition(left_defn) : left_range->min(); | |
3413 | |
3414 RangeBoundary left_max = | |
3415 IsArrayLength(left_defn) ? | |
3416 RangeBoundary::FromDefinition(left_defn) : left_range->max(); | |
3417 | |
3418 if (!RangeBoundary::SymbolicAdd(left_min, right_range->min(), min)) { | |
3419 *min = RangeBoundary::Add(left_range->min().LowerBound(), | |
3420 right_range->min().LowerBound(), | |
3421 RangeBoundary::NegativeInfinity()); | |
3422 } | |
3423 if (!RangeBoundary::SymbolicAdd(left_max, right_range->max(), max)) { | |
3424 *max = RangeBoundary::Add(right_range->max().UpperBound(), | |
3425 left_range->max().UpperBound(), | |
3426 RangeBoundary::PositiveInfinity()); | |
3427 } | |
3428 } | |
3429 | |
3430 | |
3431 void Range::Sub(const Range* left_range, | |
3432 const Range* right_range, | |
3433 RangeBoundary* min, | |
3434 RangeBoundary* max, | |
3435 Definition* left_defn) { | |
3436 ASSERT(left_range != NULL); | |
3437 ASSERT(right_range != NULL); | |
3438 ASSERT(min != NULL); | |
3439 ASSERT(max != NULL); | |
3440 | |
3441 RangeBoundary left_min = | |
3442 IsArrayLength(left_defn) ? | |
3443 RangeBoundary::FromDefinition(left_defn) : left_range->min(); | |
3444 | |
3445 RangeBoundary left_max = | |
3446 IsArrayLength(left_defn) ? | |
3447 RangeBoundary::FromDefinition(left_defn) : left_range->max(); | |
3448 | |
3449 if (!RangeBoundary::SymbolicSub(left_min, right_range->max(), min)) { | |
3450 *min = RangeBoundary::Sub(left_range->min().LowerBound(), | |
3451 right_range->max().UpperBound(), | |
3452 RangeBoundary::NegativeInfinity()); | |
3453 } | |
3454 if (!RangeBoundary::SymbolicSub(left_max, right_range->min(), max)) { | |
3455 *max = RangeBoundary::Sub(left_range->max().UpperBound(), | |
3456 right_range->min().LowerBound(), | |
3457 RangeBoundary::PositiveInfinity()); | |
3458 } | |
3459 } | |
3460 | |
3461 | |
3462 bool Range::Mul(const Range* left_range, | |
3463 const Range* right_range, | |
3464 RangeBoundary* min, | |
3465 RangeBoundary* max) { | |
3466 ASSERT(left_range != NULL); | |
3467 ASSERT(right_range != NULL); | |
3468 ASSERT(min != NULL); | |
3469 ASSERT(max != NULL); | |
3470 | |
3471 const int64_t left_max = ConstantAbsMax(left_range); | |
3472 const int64_t right_max = ConstantAbsMax(right_range); | |
3473 if ((left_max <= -kSmiMin) && (right_max <= -kSmiMin) && | |
3474 ((left_max == 0) || (right_max <= kMaxInt64 / left_max))) { | |
3475 // Product of left and right max values stays in 64 bit range. | |
3476 const int64_t result_max = left_max * right_max; | |
3477 if (Smi::IsValid64(result_max) && Smi::IsValid64(-result_max)) { | |
3478 const intptr_t r_min = | |
3479 OnlyPositiveOrZero(*left_range, *right_range) ? 0 : -result_max; | |
3480 *min = RangeBoundary::FromConstant(r_min); | |
3481 const intptr_t r_max = | |
3482 OnlyNegativeOrZero(*left_range, *right_range) ? 0 : result_max; | |
3483 *max = RangeBoundary::FromConstant(r_max); | |
3484 return true; | |
3485 } | |
3486 } | |
3487 return false; | |
3488 } | |
3489 | |
3490 | |
3491 // Both the a and b ranges are >= 0. | |
3492 bool Range::OnlyPositiveOrZero(const Range& a, const Range& b) { | |
3493 return a.OnlyGreaterThanOrEqualTo(0) && b.OnlyGreaterThanOrEqualTo(0); | |
3494 } | |
3495 | |
3496 | |
3497 // Both the a and b ranges are <= 0. | |
3498 bool Range::OnlyNegativeOrZero(const Range& a, const Range& b) { | |
3499 return a.OnlyLessThanOrEqualTo(0) && b.OnlyLessThanOrEqualTo(0); | |
3500 } | |
3501 | |
3502 | |
3503 // Return the maximum absolute value included in range. | |
3504 int64_t Range::ConstantAbsMax(const Range* range) { | |
3505 if (range == NULL) { | |
3506 return RangeBoundary::kMax; | |
3507 } | |
3508 const int64_t abs_min = Utils::Abs(Range::ConstantMin(range).ConstantValue()); | |
3509 const int64_t abs_max = Utils::Abs(Range::ConstantMax(range).ConstantValue()); | |
3510 return Utils::Maximum(abs_min, abs_max); | |
3511 } | |
3512 | |
3513 | |
3514 Range* Range::BinaryOp(const Token::Kind op, | |
3515 const Range* left_range, | |
3516 const Range* right_range, | |
3517 Definition* left_defn) { | |
3518 ASSERT(left_range != NULL); | |
3519 ASSERT(right_range != NULL); | |
3520 | |
3521 // Both left and right ranges are finite. | |
3522 ASSERT(left_range->IsFinite()); | |
3523 ASSERT(right_range->IsFinite()); | |
3524 | |
3525 RangeBoundary min; | |
3526 RangeBoundary max; | |
3527 ASSERT(min.IsUnknown() && max.IsUnknown()); | |
3528 | |
3529 switch (op) { | |
3530 case Token::kADD: | |
3531 Range::Add(left_range, right_range, &min, &max, left_defn); | |
3532 break; | |
3533 case Token::kSUB: | |
3534 Range::Sub(left_range, right_range, &min, &max, left_defn); | |
3535 break; | |
3536 case Token::kMUL: { | |
3537 if (!Range::Mul(left_range, right_range, &min, &max)) { | |
3538 return NULL; | |
3539 } | |
3540 break; | |
3541 } | |
3542 case Token::kSHL: { | |
3543 Range::Shl(left_range, right_range, &min, &max); | |
3544 break; | |
3545 } | |
3546 case Token::kBIT_AND: | |
3547 if (!Range::And(left_range, right_range, &min, &max)) { | |
3548 return NULL; | |
3549 } | |
3550 break; | |
3551 default: | |
3552 return NULL; | |
3553 break; | |
3554 } | |
3555 | |
3556 ASSERT(!min.IsUnknown() && !max.IsUnknown()); | |
3557 | |
3558 return new Range(min, max); | |
3559 } | |
3560 | |
3561 | |
3267 bool CheckArrayBoundInstr::IsFixedLengthArrayType(intptr_t cid) { | 3562 bool CheckArrayBoundInstr::IsFixedLengthArrayType(intptr_t cid) { |
3268 return LoadFieldInstr::IsFixedLengthArrayCid(cid); | 3563 return LoadFieldInstr::IsFixedLengthArrayCid(cid); |
3269 } | 3564 } |
3270 | 3565 |
3271 | 3566 |
3272 bool CheckArrayBoundInstr::IsRedundant(RangeBoundary length) { | 3567 bool CheckArrayBoundInstr::IsRedundant(RangeBoundary length) { |
3273 Range* index_range = index()->definition()->range(); | 3568 Range* index_range = index()->definition()->range(); |
3274 | 3569 |
3275 // Range of the index is unknown can't decide if the check is redundant. | 3570 // Range of the index is unknown can't decide if the check is redundant. |
3276 if (index_range == NULL) { | 3571 if (index_range == NULL) { |
3277 return false; | 3572 return false; |
3278 } | 3573 } |
3279 | 3574 |
3280 // Range of the index is not positive. Check can't be redundant. | 3575 // Range of the index is not positive. Check can't be redundant. |
3281 if (Range::ConstantMin(index_range).value() < 0) { | 3576 if (Range::ConstantMinSmi(index_range).ConstantValue() < 0) { |
3282 return false; | 3577 return false; |
3283 } | 3578 } |
3284 | 3579 |
3285 RangeBoundary max = CanonicalizeBoundary(index_range->max(), | 3580 RangeBoundary max = CanonicalizeBoundary(index_range->max(), |
3286 RangeBoundary::PositiveInfinity()); | 3581 RangeBoundary::PositiveInfinity()); |
3287 | 3582 |
3288 if (max.Overflowed()) { | 3583 if (max.OverflowedSmi()) { |
3289 return false; | 3584 return false; |
3290 } | 3585 } |
3291 | 3586 |
3292 | 3587 |
3293 RangeBoundary max_upper = max.UpperBound(); | 3588 RangeBoundary max_upper = max.UpperBound(); |
3294 RangeBoundary length_lower = length.LowerBound(); | 3589 RangeBoundary length_lower = length.LowerBound(); |
3295 | 3590 |
3296 if (max_upper.Overflowed() || length_lower.Overflowed()) { | 3591 if (max_upper.OverflowedSmi() || length_lower.OverflowedSmi()) { |
3297 return false; | 3592 return false; |
3298 } | 3593 } |
3299 | 3594 |
3300 // Try to compare constant boundaries. | 3595 // Try to compare constant boundaries. |
3301 if (max_upper.value() < length_lower.value()) { | 3596 if (max_upper.ConstantValue() < length_lower.ConstantValue()) { |
3302 return true; | 3597 return true; |
3303 } | 3598 } |
3304 | 3599 |
3305 length = CanonicalizeBoundary(length, RangeBoundary::PositiveInfinity()); | 3600 length = CanonicalizeBoundary(length, RangeBoundary::PositiveInfinity()); |
3306 if (length.Overflowed()) { | 3601 if (length.OverflowedSmi()) { |
3307 return false; | 3602 return false; |
3308 } | 3603 } |
3309 | 3604 |
3310 // Try symbolic comparison. | 3605 // Try symbolic comparison. |
3311 do { | 3606 do { |
3312 if (DependOnSameSymbol(max, length)) return max.offset() < length.offset(); | 3607 if (DependOnSameSymbol(max, length)) return max.offset() < length.offset(); |
3313 } while (CanonicalizeMaxBoundary(&max) || CanonicalizeMinBoundary(&length)); | 3608 } while (CanonicalizeMaxBoundary(&max) || CanonicalizeMinBoundary(&length)); |
3314 | 3609 |
3315 // Failed to prove that maximum is bounded with array length. | 3610 // Failed to prove that maximum is bounded with array length. |
3316 return false; | 3611 return false; |
(...skipping 272 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
3589 case Token::kTRUNCDIV: return 0; | 3884 case Token::kTRUNCDIV: return 0; |
3590 case Token::kMOD: return 1; | 3885 case Token::kMOD: return 1; |
3591 default: UNIMPLEMENTED(); return -1; | 3886 default: UNIMPLEMENTED(); return -1; |
3592 } | 3887 } |
3593 } | 3888 } |
3594 | 3889 |
3595 | 3890 |
3596 #undef __ | 3891 #undef __ |
3597 | 3892 |
3598 } // namespace dart | 3893 } // namespace dart |
OLD | NEW |