OLD | NEW |
1 // Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file | 1 // Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file |
2 // for details. All rights reserved. Use of this source code is governed by a | 2 // for details. All rights reserved. Use of this source code is governed by a |
3 // BSD-style license that can be found in the LICENSE file. | 3 // BSD-style license that can be found in the LICENSE file. |
4 | 4 |
5 #include "vm/intermediate_language.h" | 5 #include "vm/intermediate_language.h" |
6 | 6 |
7 #include "vm/bigint_operations.h" | 7 #include "vm/bigint_operations.h" |
8 #include "vm/bit_vector.h" | 8 #include "vm/bit_vector.h" |
9 #include "vm/cpu.h" | 9 #include "vm/cpu.h" |
10 #include "vm/dart_entry.h" | 10 #include "vm/dart_entry.h" |
(...skipping 2431 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
2442 intptr_t use_index = instr->env()->Length(); // Start index after inner. | 2442 intptr_t use_index = instr->env()->Length(); // Start index after inner. |
2443 for (Environment::DeepIterator it(copy); !it.Done(); it.Advance()) { | 2443 for (Environment::DeepIterator it(copy); !it.Done(); it.Advance()) { |
2444 Value* value = it.CurrentValue(); | 2444 Value* value = it.CurrentValue(); |
2445 value->set_instruction(instr); | 2445 value->set_instruction(instr); |
2446 value->set_use_index(use_index++); | 2446 value->set_use_index(use_index++); |
2447 value->definition()->AddEnvUse(value); | 2447 value->definition()->AddEnvUse(value); |
2448 } | 2448 } |
2449 } | 2449 } |
2450 | 2450 |
2451 | 2451 |
2452 RangeBoundary RangeBoundary::FromDefinition(Definition* defn, intptr_t offs) { | 2452 RangeBoundary RangeBoundary::FromDefinition(Definition* defn, int64_t offs) { |
2453 if (defn->IsConstant() && defn->AsConstant()->value().IsSmi()) { | 2453 if (defn->IsConstant() && defn->AsConstant()->value().IsSmi()) { |
2454 return FromConstant(Smi::Cast(defn->AsConstant()->value()).Value() + offs); | 2454 return FromConstant(Smi::Cast(defn->AsConstant()->value()).Value() + offs); |
2455 } | 2455 } |
2456 return RangeBoundary(kSymbol, reinterpret_cast<intptr_t>(defn), offs); | 2456 return RangeBoundary(kSymbol, reinterpret_cast<intptr_t>(defn), offs); |
2457 } | 2457 } |
2458 | 2458 |
2459 | 2459 |
2460 RangeBoundary RangeBoundary::LowerBound() const { | 2460 RangeBoundary RangeBoundary::LowerBound() const { |
2461 if (IsNegativeInfinity()) return *this; | 2461 if (IsInfinity()) { |
| 2462 return NegativeInfinity(); |
| 2463 } |
2462 if (IsConstant()) return *this; | 2464 if (IsConstant()) return *this; |
2463 return Add(Range::ConstantMin(symbol()->range()), | 2465 return Add(Range::ConstantMin(symbol()->range()), |
2464 RangeBoundary::FromConstant(offset_), | 2466 RangeBoundary::FromConstant(offset_), |
2465 NegativeInfinity()); | 2467 NegativeInfinity()); |
2466 } | 2468 } |
2467 | 2469 |
2468 | 2470 |
2469 RangeBoundary RangeBoundary::UpperBound() const { | 2471 RangeBoundary RangeBoundary::UpperBound() const { |
2470 if (IsPositiveInfinity()) return *this; | 2472 if (IsInfinity()) { |
| 2473 return PositiveInfinity(); |
| 2474 } |
2471 if (IsConstant()) return *this; | 2475 if (IsConstant()) return *this; |
2472 return Add(Range::ConstantMax(symbol()->range()), | 2476 return Add(Range::ConstantMax(symbol()->range()), |
2473 RangeBoundary::FromConstant(offset_), | 2477 RangeBoundary::FromConstant(offset_), |
2474 PositiveInfinity()); | 2478 PositiveInfinity()); |
2475 } | 2479 } |
2476 | 2480 |
2477 | 2481 |
| 2482 RangeBoundary RangeBoundary::Add(const RangeBoundary& a, |
| 2483 const RangeBoundary& b, |
| 2484 const RangeBoundary& overflow) { |
| 2485 if (a.IsInfinity() || b.IsInfinity()) { |
| 2486 // In that case that a or b is +/- inf, return the overflow boundary. |
| 2487 return overflow; |
| 2488 } |
| 2489 ASSERT(a.IsConstant() && b.IsConstant()); |
| 2490 |
| 2491 int64_t result = a.ConstantValue() + b.ConstantValue(); |
| 2492 |
| 2493 if (Utils::DidAddOverflow(a.ConstantValue(), b.ConstantValue(), result)) { |
| 2494 return overflow; |
| 2495 } |
| 2496 |
| 2497 return RangeBoundary::FromConstant(result); |
| 2498 } |
| 2499 |
| 2500 |
| 2501 RangeBoundary RangeBoundary::Sub(const RangeBoundary& a, |
| 2502 const RangeBoundary& b, |
| 2503 const RangeBoundary& overflow) { |
| 2504 if (a.IsInfinity() || b.IsInfinity()) { |
| 2505 // In that case that a or b is +/- inf, return the overflow boundary. |
| 2506 return overflow; |
| 2507 } |
| 2508 ASSERT(a.IsConstant() && b.IsConstant()); |
| 2509 |
| 2510 int64_t result = a.ConstantValue() - b.ConstantValue(); |
| 2511 |
| 2512 if (Utils::DidSubOverflow(a.ConstantValue(), b.ConstantValue(), result)) { |
| 2513 return overflow; |
| 2514 } |
| 2515 return RangeBoundary::FromConstant(result); |
| 2516 } |
| 2517 |
| 2518 |
| 2519 bool RangeBoundary::SymbolicAdd(const RangeBoundary& a, |
| 2520 const RangeBoundary& b, |
| 2521 RangeBoundary* result) { |
| 2522 if (a.IsSymbol() && b.IsConstant()) { |
| 2523 const int64_t offset = a.offset() + b.ConstantValue(); |
| 2524 if (Utils::DidAddOverflow(a.offset(), b.ConstantValue(), offset)) { |
| 2525 return false; |
| 2526 } |
| 2527 |
| 2528 *result = RangeBoundary::FromDefinition(a.symbol(), offset); |
| 2529 return true; |
| 2530 } else if (b.IsSymbol() && a.IsConstant()) { |
| 2531 return SymbolicAdd(b, a, result); |
| 2532 } |
| 2533 return false; |
| 2534 } |
| 2535 |
| 2536 |
| 2537 bool RangeBoundary::SymbolicSub(const RangeBoundary& a, |
| 2538 const RangeBoundary& b, |
| 2539 RangeBoundary* result) { |
| 2540 if (a.IsSymbol() && b.IsConstant()) { |
| 2541 const int64_t offset = a.offset() - b.ConstantValue(); |
| 2542 if (Utils::DidSubOverflow(a.offset(), b.ConstantValue(), offset)) { |
| 2543 return false; |
| 2544 } |
| 2545 |
| 2546 *result = RangeBoundary::FromDefinition(a.symbol(), offset); |
| 2547 return true; |
| 2548 } |
| 2549 return false; |
| 2550 } |
| 2551 |
| 2552 |
2478 static Definition* UnwrapConstraint(Definition* defn) { | 2553 static Definition* UnwrapConstraint(Definition* defn) { |
2479 while (defn->IsConstraint()) { | 2554 while (defn->IsConstraint()) { |
2480 defn = defn->AsConstraint()->value()->definition(); | 2555 defn = defn->AsConstraint()->value()->definition(); |
2481 } | 2556 } |
2482 return defn; | 2557 return defn; |
2483 } | 2558 } |
2484 | 2559 |
2485 | 2560 |
2486 static bool AreEqualDefinitions(Definition* a, Definition* b) { | 2561 static bool AreEqualDefinitions(Definition* a, Definition* b) { |
2487 a = UnwrapConstraint(a); | 2562 a = UnwrapConstraint(a); |
2488 b = UnwrapConstraint(b); | 2563 b = UnwrapConstraint(b); |
2489 return (a == b) || | 2564 return (a == b) || |
2490 (a->AllowsCSE() && | 2565 (a->AllowsCSE() && |
2491 a->Dependencies().IsNone() && | 2566 a->Dependencies().IsNone() && |
2492 b->AllowsCSE() && | 2567 b->AllowsCSE() && |
2493 b->Dependencies().IsNone() && | 2568 b->Dependencies().IsNone() && |
2494 a->Equals(b)); | 2569 a->Equals(b)); |
2495 } | 2570 } |
2496 | 2571 |
2497 | 2572 |
2498 // Returns true if two range boundaries refer to the same symbol. | 2573 // Returns true if two range boundaries refer to the same symbol. |
2499 static bool DependOnSameSymbol(const RangeBoundary& a, const RangeBoundary& b) { | 2574 static bool DependOnSameSymbol(const RangeBoundary& a, const RangeBoundary& b) { |
2500 return a.IsSymbol() && b.IsSymbol() && | 2575 return a.IsSymbol() && b.IsSymbol() && |
2501 AreEqualDefinitions(a.symbol(), b.symbol()); | 2576 AreEqualDefinitions(a.symbol(), b.symbol()); |
2502 } | 2577 } |
2503 | 2578 |
2504 | 2579 |
2505 // Returns true if range has a least specific minimum value. | 2580 bool RangeBoundary::Equals(const RangeBoundary& other) const { |
2506 static bool IsMinSmi(Range* range) { | 2581 if (IsConstant() && other.IsConstant()) { |
2507 return (range == NULL) || | 2582 return ConstantValue() == other.ConstantValue(); |
2508 (range->min().IsConstant() && | 2583 } else if (IsInfinity() && other.IsInfinity()) { |
2509 (range->min().value() <= Smi::kMinValue)); | 2584 return kind() == other.kind(); |
| 2585 } else if (IsSymbol() && other.IsSymbol()) { |
| 2586 return (offset() == other.offset()) && DependOnSameSymbol(*this, other); |
| 2587 } |
| 2588 return false; |
2510 } | 2589 } |
2511 | 2590 |
2512 | 2591 |
2513 // Returns true if range has a least specific maximium value. | 2592 RangeBoundary RangeBoundary::Shl(const RangeBoundary& value_boundary, |
2514 static bool IsMaxSmi(Range* range) { | 2593 int64_t shift_count, |
2515 return (range == NULL) || | 2594 const RangeBoundary& overflow) { |
2516 (range->max().IsConstant() && | 2595 ASSERT(value_boundary.IsConstant()); |
2517 (range->max().value() >= Smi::kMaxValue)); | 2596 ASSERT(shift_count >= 0); |
2518 } | 2597 int64_t limit = 64 - shift_count; |
| 2598 int64_t value = static_cast<int64_t>(value_boundary.ConstantValue()); |
2519 | 2599 |
| 2600 if ((value == 0) || |
| 2601 (shift_count == 0) || |
| 2602 ((limit > 0) && (Utils::IsInt(limit, value)))) { |
| 2603 // Result stays in 64 bit range. |
| 2604 int64_t result = value << shift_count; |
| 2605 return Smi::IsValid64(result) ? RangeBoundary(result) : overflow; |
| 2606 } |
2520 | 2607 |
2521 // Returns true if two range boundaries can be proven to be equal. | 2608 return overflow; |
2522 static bool IsEqual(const RangeBoundary& a, const RangeBoundary& b) { | |
2523 if (a.IsConstant() && b.IsConstant()) { | |
2524 return a.value() == b.value(); | |
2525 } else if (a.IsSymbol() && b.IsSymbol()) { | |
2526 return (a.offset() == b.offset()) && DependOnSameSymbol(a, b); | |
2527 } else { | |
2528 return false; | |
2529 } | |
2530 } | 2609 } |
2531 | 2610 |
2532 | 2611 |
2533 static RangeBoundary CanonicalizeBoundary(const RangeBoundary& a, | 2612 static RangeBoundary CanonicalizeBoundary(const RangeBoundary& a, |
2534 const RangeBoundary& overflow) { | 2613 const RangeBoundary& overflow) { |
2535 if (a.IsConstant() || a.IsNegativeInfinity() || a.IsPositiveInfinity()) { | 2614 if (a.IsConstant() || a.IsInfinity()) { |
2536 return a; | 2615 return a; |
2537 } | 2616 } |
2538 | 2617 |
2539 intptr_t offset = a.offset(); | 2618 int64_t offset = a.offset(); |
2540 Definition* symbol = a.symbol(); | 2619 Definition* symbol = a.symbol(); |
2541 | 2620 |
2542 bool changed; | 2621 bool changed; |
2543 do { | 2622 do { |
2544 changed = false; | 2623 changed = false; |
2545 if (symbol->IsConstraint()) { | 2624 if (symbol->IsConstraint()) { |
2546 symbol = symbol->AsConstraint()->value()->definition(); | 2625 symbol = symbol->AsConstraint()->value()->definition(); |
2547 changed = true; | 2626 changed = true; |
2548 } else if (symbol->IsBinarySmiOp()) { | 2627 } else if (symbol->IsBinarySmiOp()) { |
2549 BinarySmiOpInstr* op = symbol->AsBinarySmiOp(); | 2628 BinarySmiOpInstr* op = symbol->AsBinarySmiOp(); |
2550 Definition* left = op->left()->definition(); | 2629 Definition* left = op->left()->definition(); |
2551 Definition* right = op->right()->definition(); | 2630 Definition* right = op->right()->definition(); |
2552 switch (op->op_kind()) { | 2631 switch (op->op_kind()) { |
2553 case Token::kADD: | 2632 case Token::kADD: |
2554 if (right->IsConstant()) { | 2633 if (right->IsConstant()) { |
2555 offset += Smi::Cast(right->AsConstant()->value()).Value(); | 2634 int64_t rhs = Smi::Cast(right->AsConstant()->value()).Value(); |
| 2635 int64_t old_offset = offset; |
| 2636 offset += rhs; |
| 2637 if (Utils::DidAddOverflow(old_offset, rhs, offset)) { |
| 2638 return overflow; |
| 2639 } |
2556 symbol = left; | 2640 symbol = left; |
2557 changed = true; | 2641 changed = true; |
2558 } else if (left->IsConstant()) { | 2642 } else if (left->IsConstant()) { |
2559 offset += Smi::Cast(left->AsConstant()->value()).Value(); | 2643 int64_t rhs = Smi::Cast(left->AsConstant()->value()).Value(); |
| 2644 int64_t old_offset = offset; |
| 2645 offset += rhs; |
| 2646 if (Utils::DidAddOverflow(old_offset, rhs, offset)) { |
| 2647 return overflow; |
| 2648 } |
2560 symbol = right; | 2649 symbol = right; |
2561 changed = true; | 2650 changed = true; |
2562 } | 2651 } |
2563 break; | 2652 break; |
2564 | 2653 |
2565 case Token::kSUB: | 2654 case Token::kSUB: |
2566 if (right->IsConstant()) { | 2655 if (right->IsConstant()) { |
2567 offset -= Smi::Cast(right->AsConstant()->value()).Value(); | 2656 int64_t rhs = Smi::Cast(right->AsConstant()->value()).Value(); |
| 2657 int64_t old_offset = offset; |
| 2658 offset -= rhs; |
| 2659 if (Utils::DidSubOverflow(old_offset, rhs, offset)) { |
| 2660 return overflow; |
| 2661 } |
2568 symbol = left; | 2662 symbol = left; |
2569 changed = true; | 2663 changed = true; |
2570 } | 2664 } |
2571 break; | 2665 break; |
2572 | 2666 |
2573 default: | 2667 default: |
2574 break; | 2668 break; |
2575 } | 2669 } |
2576 } | 2670 } |
2577 | |
2578 if (!Smi::IsValid(offset)) return overflow; | |
2579 } while (changed); | 2671 } while (changed); |
2580 | 2672 |
2581 return RangeBoundary::FromDefinition(symbol, offset); | 2673 return RangeBoundary::FromDefinition(symbol, offset); |
2582 } | 2674 } |
2583 | 2675 |
2584 | 2676 |
2585 static bool CanonicalizeMaxBoundary(RangeBoundary* a) { | 2677 static bool CanonicalizeMaxBoundary(RangeBoundary* a) { |
2586 if (!a->IsSymbol()) return false; | 2678 if (!a->IsSymbol()) return false; |
2587 | 2679 |
2588 Range* range = a->symbol()->range(); | 2680 Range* range = a->symbol()->range(); |
2589 if ((range == NULL) || !range->max().IsSymbol()) return false; | 2681 if ((range == NULL) || !range->max().IsSymbol()) return false; |
2590 | 2682 |
2591 const intptr_t offset = range->max().offset() + a->offset(); | 2683 const int64_t offset = range->max().offset() + a->offset(); |
2592 | 2684 |
2593 if (!Smi::IsValid(offset)) { | 2685 if (Utils::DidAddOverflow(range->max().offset(), a->offset(), offset)) { |
2594 *a = RangeBoundary::PositiveInfinity(); | 2686 *a = RangeBoundary::PositiveInfinity(); |
2595 return true; | 2687 return true; |
2596 } | 2688 } |
2597 | 2689 |
2598 *a = CanonicalizeBoundary( | 2690 *a = CanonicalizeBoundary( |
2599 RangeBoundary::FromDefinition(range->max().symbol(), offset), | 2691 RangeBoundary::FromDefinition(range->max().symbol(), offset), |
2600 RangeBoundary::PositiveInfinity()); | 2692 RangeBoundary::PositiveInfinity()); |
2601 | 2693 |
2602 return true; | 2694 return true; |
2603 } | 2695 } |
2604 | 2696 |
2605 | 2697 |
2606 static bool CanonicalizeMinBoundary(RangeBoundary* a) { | 2698 static bool CanonicalizeMinBoundary(RangeBoundary* a) { |
2607 if (!a->IsSymbol()) return false; | 2699 if (!a->IsSymbol()) return false; |
2608 | 2700 |
2609 Range* range = a->symbol()->range(); | 2701 Range* range = a->symbol()->range(); |
2610 if ((range == NULL) || !range->min().IsSymbol()) return false; | 2702 if ((range == NULL) || !range->min().IsSymbol()) return false; |
2611 | 2703 |
2612 const intptr_t offset = range->min().offset() + a->offset(); | 2704 const int64_t offset = range->min().offset() + a->offset(); |
2613 if (!Smi::IsValid(offset)) { | 2705 |
| 2706 if (Utils::DidAddOverflow(range->min().offset(), a->offset(), offset)) { |
2614 *a = RangeBoundary::NegativeInfinity(); | 2707 *a = RangeBoundary::NegativeInfinity(); |
2615 return true; | 2708 return true; |
2616 } | 2709 } |
2617 | 2710 |
2618 *a = CanonicalizeBoundary( | 2711 *a = CanonicalizeBoundary( |
2619 RangeBoundary::FromDefinition(range->min().symbol(), offset), | 2712 RangeBoundary::FromDefinition(range->min().symbol(), offset), |
2620 RangeBoundary::NegativeInfinity()); | 2713 RangeBoundary::NegativeInfinity()); |
2621 | 2714 |
2622 return true; | 2715 return true; |
2623 } | 2716 } |
2624 | 2717 |
2625 | 2718 |
2626 RangeBoundary RangeBoundary::Min(RangeBoundary a, RangeBoundary b) { | 2719 RangeBoundary RangeBoundary::Min(RangeBoundary a, RangeBoundary b, |
| 2720 RangeSize size) { |
| 2721 ASSERT(!(a.IsNegativeInfinity() || b.IsNegativeInfinity())); |
| 2722 ASSERT(!a.IsUnknown() || !b.IsUnknown()); |
| 2723 if (a.IsUnknown() && !b.IsUnknown()) { |
| 2724 return b; |
| 2725 } |
| 2726 if (!a.IsUnknown() && b.IsUnknown()) { |
| 2727 return a; |
| 2728 } |
| 2729 if (size == kRangeBoundarySmi) { |
| 2730 if (a.IsSmiMaximumOrAbove() && !b.IsSmiMaximumOrAbove()) { |
| 2731 return b; |
| 2732 } |
| 2733 if (!a.IsSmiMaximumOrAbove() && b.IsSmiMaximumOrAbove()) { |
| 2734 return a; |
| 2735 } |
| 2736 } else { |
| 2737 ASSERT(size == kRangeBoundaryInt64); |
| 2738 if (a.IsMaximumOrAbove() && !b.IsMaximumOrAbove()) { |
| 2739 return b; |
| 2740 } |
| 2741 if (!a.IsMaximumOrAbove() && b.IsMaximumOrAbove()) { |
| 2742 return a; |
| 2743 } |
| 2744 } |
| 2745 |
| 2746 if (a.Equals(b)) { |
| 2747 return b; |
| 2748 } |
| 2749 |
| 2750 { |
| 2751 RangeBoundary canonical_a = |
| 2752 CanonicalizeBoundary(a, RangeBoundary::PositiveInfinity()); |
| 2753 RangeBoundary canonical_b = |
| 2754 CanonicalizeBoundary(b, RangeBoundary::PositiveInfinity()); |
| 2755 do { |
| 2756 if (DependOnSameSymbol(canonical_a, canonical_b)) { |
| 2757 a = canonical_a; |
| 2758 b = canonical_b; |
| 2759 break; |
| 2760 } |
| 2761 } while (CanonicalizeMaxBoundary(&canonical_a) || |
| 2762 CanonicalizeMaxBoundary(&canonical_b)); |
| 2763 } |
| 2764 |
2627 if (DependOnSameSymbol(a, b)) { | 2765 if (DependOnSameSymbol(a, b)) { |
2628 return (a.offset() <= b.offset()) ? a : b; | 2766 return (a.offset() <= b.offset()) ? a : b; |
2629 } | 2767 } |
2630 | 2768 |
2631 const intptr_t min_a = a.LowerBound().Clamp().value(); | 2769 const int64_t min_a = a.UpperBound().Clamp(size).ConstantValue(); |
2632 const intptr_t min_b = b.LowerBound().Clamp().value(); | 2770 const int64_t min_b = b.UpperBound().Clamp(size).ConstantValue(); |
2633 | 2771 |
2634 return RangeBoundary::FromConstant(Utils::Minimum(min_a, min_b)); | 2772 return RangeBoundary::FromConstant(Utils::Minimum(min_a, min_b)); |
2635 } | 2773 } |
2636 | 2774 |
2637 | 2775 |
2638 RangeBoundary RangeBoundary::Max(RangeBoundary a, RangeBoundary b) { | 2776 RangeBoundary RangeBoundary::Max(RangeBoundary a, RangeBoundary b, |
2639 if (DependOnSameSymbol(a, b)) { | 2777 RangeSize size) { |
2640 return (a.offset() >= b.offset()) ? a : b; | 2778 ASSERT(!(a.IsPositiveInfinity() || b.IsPositiveInfinity())); |
| 2779 ASSERT(!a.IsUnknown() || !b.IsUnknown()); |
| 2780 if (a.IsUnknown() && !b.IsUnknown()) { |
| 2781 return b; |
| 2782 } |
| 2783 if (!a.IsUnknown() && b.IsUnknown()) { |
| 2784 return a; |
| 2785 } |
| 2786 if (size == kRangeBoundarySmi) { |
| 2787 if (a.IsSmiMinimumOrBelow() && !b.IsSmiMinimumOrBelow()) { |
| 2788 return b; |
| 2789 } |
| 2790 if (!a.IsSmiMinimumOrBelow() && b.IsSmiMinimumOrBelow()) { |
| 2791 return a; |
| 2792 } |
| 2793 } else { |
| 2794 ASSERT(size == kRangeBoundaryInt64); |
| 2795 if (a.IsMinimumOrBelow() && !b.IsMinimumOrBelow()) { |
| 2796 return b; |
| 2797 } |
| 2798 if (!a.IsMinimumOrBelow() && b.IsMinimumOrBelow()) { |
| 2799 return a; |
| 2800 } |
| 2801 } |
| 2802 if (a.Equals(b)) { |
| 2803 return b; |
2641 } | 2804 } |
2642 | 2805 |
2643 const intptr_t max_a = a.UpperBound().Clamp().value(); | 2806 { |
2644 const intptr_t max_b = b.UpperBound().Clamp().value(); | 2807 RangeBoundary canonical_a = |
| 2808 CanonicalizeBoundary(a, RangeBoundary::NegativeInfinity()); |
| 2809 RangeBoundary canonical_b = |
| 2810 CanonicalizeBoundary(b, RangeBoundary::NegativeInfinity()); |
| 2811 |
| 2812 do { |
| 2813 if (DependOnSameSymbol(canonical_a, canonical_b)) { |
| 2814 a = canonical_a; |
| 2815 b = canonical_b; |
| 2816 break; |
| 2817 } |
| 2818 } while (CanonicalizeMinBoundary(&canonical_a) || |
| 2819 CanonicalizeMinBoundary(&canonical_b)); |
| 2820 } |
| 2821 |
| 2822 if (DependOnSameSymbol(a, b)) { |
| 2823 return (a.offset() <= b.offset()) ? b : a; |
| 2824 } |
| 2825 |
| 2826 const int64_t max_a = a.LowerBound().Clamp(size).ConstantValue(); |
| 2827 const int64_t max_b = b.LowerBound().Clamp(size).ConstantValue(); |
2645 | 2828 |
2646 return RangeBoundary::FromConstant(Utils::Maximum(max_a, max_b)); | 2829 return RangeBoundary::FromConstant(Utils::Maximum(max_a, max_b)); |
2647 } | 2830 } |
2648 | 2831 |
2649 | 2832 |
| 2833 int64_t RangeBoundary::ConstantValue() const { |
| 2834 ASSERT(IsConstant()); |
| 2835 return value_; |
| 2836 } |
| 2837 |
| 2838 |
2650 void Definition::InferRange() { | 2839 void Definition::InferRange() { |
2651 ASSERT(Type()->ToCid() == kSmiCid); // Has meaning only for smis. | 2840 if (Type()->ToCid() == kSmiCid) { |
2652 if (range_ == NULL) { | 2841 if (range_ == NULL) { |
2653 range_ = Range::Unknown(); | 2842 range_ = Range::UnknownSmi(); |
| 2843 } |
| 2844 } else if (IsMintDefinition()) { |
| 2845 if (range_ == NULL) { |
| 2846 range_ = Range::Unknown(); |
| 2847 } |
| 2848 } else { |
| 2849 // Only Smi and Mint supported. |
| 2850 UNREACHABLE(); |
2654 } | 2851 } |
2655 } | 2852 } |
2656 | 2853 |
2657 | 2854 |
2658 void ConstantInstr::InferRange() { | 2855 void ConstantInstr::InferRange() { |
2659 ASSERT(value_.IsSmi()); | 2856 if (value_.IsSmi()) { |
2660 if (range_ == NULL) { | 2857 if (range_ == NULL) { |
2661 intptr_t value = Smi::Cast(value_).Value(); | 2858 int64_t value = Smi::Cast(value_).Value(); |
2662 range_ = new Range(RangeBoundary::FromConstant(value), | 2859 range_ = new Range(RangeBoundary::FromConstant(value), |
2663 RangeBoundary::FromConstant(value)); | 2860 RangeBoundary::FromConstant(value)); |
| 2861 } |
| 2862 } else if (value_.IsMint()) { |
| 2863 if (range_ == NULL) { |
| 2864 int64_t value = Mint::Cast(value_).value(); |
| 2865 range_ = new Range(RangeBoundary::FromConstant(value), |
| 2866 RangeBoundary::FromConstant(value)); |
| 2867 } |
| 2868 } else { |
| 2869 // Only Smi and Mint supported. |
| 2870 UNREACHABLE(); |
2664 } | 2871 } |
2665 } | 2872 } |
2666 | 2873 |
| 2874 |
| 2875 void UnboxIntegerInstr::InferRange() { |
| 2876 if (range_ == NULL) { |
| 2877 Definition* unboxed = value()->definition(); |
| 2878 if (unboxed == NULL) { |
| 2879 range_ = Range::Unknown(); |
| 2880 return; |
| 2881 } |
| 2882 Range* range = unboxed->range(); |
| 2883 if (range == NULL) { |
| 2884 range_ = Range::Unknown(); |
| 2885 return; |
| 2886 } |
| 2887 range_ = new Range(range->min(), range->max()); |
| 2888 } |
| 2889 } |
| 2890 |
2667 | 2891 |
2668 void ConstraintInstr::InferRange() { | 2892 void ConstraintInstr::InferRange() { |
2669 Range* value_range = value()->definition()->range(); | 2893 Range* value_range = value()->definition()->range(); |
2670 | 2894 |
2671 RangeBoundary min; | 2895 RangeBoundary min; |
2672 RangeBoundary max; | 2896 RangeBoundary max; |
2673 | 2897 |
2674 if (IsMinSmi(value_range) && !IsMinSmi(constraint())) { | 2898 { |
2675 min = constraint()->min(); | 2899 RangeBoundary value_min = (value_range == NULL) ? |
2676 } else if (IsMinSmi(constraint()) && !IsMinSmi(value_range)) { | 2900 RangeBoundary() : value_range->min(); |
2677 min = value_range->min(); | 2901 RangeBoundary constraint_min = constraint()->min(); |
2678 } else if ((value_range != NULL) && | 2902 min = RangeBoundary::Max(value_min, constraint_min, |
2679 IsEqual(constraint()->min(), value_range->min())) { | 2903 RangeBoundary::kRangeBoundarySmi); |
2680 min = constraint()->min(); | |
2681 } else { | |
2682 if (value_range != NULL) { | |
2683 RangeBoundary canonical_a = | |
2684 CanonicalizeBoundary(constraint()->min(), | |
2685 RangeBoundary::NegativeInfinity()); | |
2686 RangeBoundary canonical_b = | |
2687 CanonicalizeBoundary(value_range->min(), | |
2688 RangeBoundary::NegativeInfinity()); | |
2689 | |
2690 do { | |
2691 if (DependOnSameSymbol(canonical_a, canonical_b)) { | |
2692 min = (canonical_a.offset() <= canonical_b.offset()) ? canonical_b | |
2693 : canonical_a; | |
2694 } | |
2695 } while (CanonicalizeMinBoundary(&canonical_a) || | |
2696 CanonicalizeMinBoundary(&canonical_b)); | |
2697 } | |
2698 | |
2699 if (min.IsUnknown()) { | |
2700 min = RangeBoundary::Max(Range::ConstantMin(value_range), | |
2701 Range::ConstantMin(constraint())); | |
2702 } | |
2703 } | 2904 } |
2704 | 2905 |
2705 if (IsMaxSmi(value_range) && !IsMaxSmi(constraint())) { | 2906 ASSERT(!min.IsUnknown()); |
2706 max = constraint()->max(); | |
2707 } else if (IsMaxSmi(constraint()) && !IsMaxSmi(value_range)) { | |
2708 max = value_range->max(); | |
2709 } else if ((value_range != NULL) && | |
2710 IsEqual(constraint()->max(), value_range->max())) { | |
2711 max = constraint()->max(); | |
2712 } else { | |
2713 if (value_range != NULL) { | |
2714 RangeBoundary canonical_b = | |
2715 CanonicalizeBoundary(value_range->max(), | |
2716 RangeBoundary::PositiveInfinity()); | |
2717 RangeBoundary canonical_a = | |
2718 CanonicalizeBoundary(constraint()->max(), | |
2719 RangeBoundary::PositiveInfinity()); | |
2720 | 2907 |
2721 do { | 2908 { |
2722 if (DependOnSameSymbol(canonical_a, canonical_b)) { | 2909 RangeBoundary value_max = (value_range == NULL) ? |
2723 max = (canonical_a.offset() <= canonical_b.offset()) ? canonical_a | 2910 RangeBoundary() : value_range->max(); |
2724 : canonical_b; | 2911 RangeBoundary constraint_max = constraint()->max(); |
2725 break; | 2912 max = RangeBoundary::Min(value_max, constraint_max, |
2726 } | 2913 RangeBoundary::kRangeBoundarySmi); |
2727 } while (CanonicalizeMaxBoundary(&canonical_a) || | 2914 } |
2728 CanonicalizeMaxBoundary(&canonical_b)); | |
2729 } | |
2730 | 2915 |
2731 if (max.IsUnknown()) { | 2916 ASSERT(!max.IsUnknown()); |
2732 max = RangeBoundary::Min(Range::ConstantMax(value_range), | |
2733 Range::ConstantMax(constraint())); | |
2734 } | |
2735 } | |
2736 | 2917 |
2737 range_ = new Range(min, max); | 2918 range_ = new Range(min, max); |
2738 | 2919 |
2739 // Mark branches that generate unsatisfiable constraints as constant. | 2920 // Mark branches that generate unsatisfiable constraints as constant. |
2740 if (target() != NULL && range_->IsUnsatisfiable()) { | 2921 if (target() != NULL && range_->IsUnsatisfiable()) { |
2741 BranchInstr* branch = | 2922 BranchInstr* branch = |
2742 target()->PredecessorAt(0)->last_instruction()->AsBranch(); | 2923 target()->PredecessorAt(0)->last_instruction()->AsBranch(); |
2743 if (target() == branch->true_successor()) { | 2924 if (target() == branch->true_successor()) { |
2744 // True unreachable. | 2925 // True unreachable. |
2745 if (FLAG_trace_constant_propagation) { | 2926 if (FLAG_trace_constant_propagation) { |
(...skipping 52 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
2798 RangeBoundary::FromConstant(255)); | 2979 RangeBoundary::FromConstant(255)); |
2799 break; | 2980 break; |
2800 case kTypedDataInt16ArrayCid: | 2981 case kTypedDataInt16ArrayCid: |
2801 range_ = new Range(RangeBoundary::FromConstant(-32768), | 2982 range_ = new Range(RangeBoundary::FromConstant(-32768), |
2802 RangeBoundary::FromConstant(32767)); | 2983 RangeBoundary::FromConstant(32767)); |
2803 break; | 2984 break; |
2804 case kTypedDataUint16ArrayCid: | 2985 case kTypedDataUint16ArrayCid: |
2805 range_ = new Range(RangeBoundary::FromConstant(0), | 2986 range_ = new Range(RangeBoundary::FromConstant(0), |
2806 RangeBoundary::FromConstant(65535)); | 2987 RangeBoundary::FromConstant(65535)); |
2807 break; | 2988 break; |
| 2989 case kTypedDataInt32ArrayCid: |
| 2990 range_ = new Range(RangeBoundary::FromConstant(kMinInt32), |
| 2991 RangeBoundary::FromConstant(kMaxInt32)); |
| 2992 break; |
| 2993 case kTypedDataUint32ArrayCid: |
| 2994 range_ = new Range(RangeBoundary::FromConstant(0), |
| 2995 RangeBoundary::FromConstant(kMaxUint32)); |
| 2996 break; |
2808 case kOneByteStringCid: | 2997 case kOneByteStringCid: |
2809 range_ = new Range(RangeBoundary::FromConstant(0), | 2998 range_ = new Range(RangeBoundary::FromConstant(0), |
2810 RangeBoundary::FromConstant(0xFF)); | 2999 RangeBoundary::FromConstant(0xFF)); |
2811 break; | 3000 break; |
2812 case kTwoByteStringCid: | 3001 case kTwoByteStringCid: |
2813 range_ = new Range(RangeBoundary::FromConstant(0), | 3002 range_ = new Range(RangeBoundary::FromConstant(0), |
2814 RangeBoundary::FromConstant(0xFFFF)); | 3003 RangeBoundary::FromConstant(0xFFFF)); |
2815 break; | 3004 break; |
2816 default: | 3005 default: |
2817 Definition::InferRange(); | 3006 Definition::InferRange(); |
(...skipping 101 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
2919 } | 3108 } |
2920 | 3109 |
2921 | 3110 |
2922 void PhiInstr::InferRange() { | 3111 void PhiInstr::InferRange() { |
2923 RangeBoundary new_min; | 3112 RangeBoundary new_min; |
2924 RangeBoundary new_max; | 3113 RangeBoundary new_max; |
2925 | 3114 |
2926 for (intptr_t i = 0; i < InputCount(); i++) { | 3115 for (intptr_t i = 0; i < InputCount(); i++) { |
2927 Range* input_range = InputAt(i)->definition()->range(); | 3116 Range* input_range = InputAt(i)->definition()->range(); |
2928 if (input_range == NULL) { | 3117 if (input_range == NULL) { |
2929 range_ = Range::Unknown(); | 3118 range_ = Range::UnknownSmi(); |
2930 return; | 3119 return; |
2931 } | 3120 } |
2932 | 3121 |
2933 if (new_min.IsUnknown()) { | 3122 if (new_min.IsUnknown()) { |
2934 new_min = Range::ConstantMin(input_range); | 3123 new_min = Range::ConstantMin(input_range); |
2935 } else { | 3124 } else { |
2936 new_min = RangeBoundary::Min(new_min, Range::ConstantMin(input_range)); | 3125 new_min = RangeBoundary::Min(new_min, |
| 3126 Range::ConstantMinSmi(input_range), |
| 3127 RangeBoundary::kRangeBoundarySmi); |
2937 } | 3128 } |
2938 | 3129 |
2939 if (new_max.IsUnknown()) { | 3130 if (new_max.IsUnknown()) { |
2940 new_max = Range::ConstantMax(input_range); | 3131 new_max = Range::ConstantMax(input_range); |
2941 } else { | 3132 } else { |
2942 new_max = RangeBoundary::Max(new_max, Range::ConstantMax(input_range)); | 3133 new_max = RangeBoundary::Max(new_max, |
| 3134 Range::ConstantMaxSmi(input_range), |
| 3135 RangeBoundary::kRangeBoundarySmi); |
2943 } | 3136 } |
2944 } | 3137 } |
2945 | 3138 |
2946 ASSERT(new_min.IsUnknown() == new_max.IsUnknown()); | 3139 ASSERT(new_min.IsUnknown() == new_max.IsUnknown()); |
2947 if (new_min.IsUnknown()) { | 3140 if (new_min.IsUnknown()) { |
2948 range_ = Range::Unknown(); | 3141 range_ = Range::UnknownSmi(); |
2949 return; | 3142 return; |
2950 } | 3143 } |
2951 | 3144 |
2952 range_ = new Range(new_min, new_max); | 3145 range_ = new Range(new_min, new_max); |
2953 } | 3146 } |
2954 | 3147 |
2955 | 3148 |
2956 bool PhiInstr::IsRedundant() const { | 3149 bool PhiInstr::IsRedundant() const { |
2957 ASSERT(InputCount() > 1); | 3150 ASSERT(InputCount() > 1); |
2958 Definition* first = InputAt(0)->definition(); | 3151 Definition* first = InputAt(0)->definition(); |
2959 for (intptr_t i = 1; i < InputCount(); ++i) { | 3152 for (intptr_t i = 1; i < InputCount(); ++i) { |
2960 Definition* def = InputAt(i)->definition(); | 3153 Definition* def = InputAt(i)->definition(); |
2961 if (def != first) return false; | 3154 if (def != first) return false; |
2962 } | 3155 } |
2963 return true; | 3156 return true; |
2964 } | 3157 } |
2965 | 3158 |
2966 | 3159 |
2967 static bool SymbolicSub(const RangeBoundary& a, | |
2968 const RangeBoundary& b, | |
2969 RangeBoundary* result) { | |
2970 if (a.IsSymbol() && b.IsConstant() && !b.Overflowed()) { | |
2971 const intptr_t offset = a.offset() - b.value(); | |
2972 if (!Smi::IsValid(offset)) return false; | |
2973 | |
2974 *result = RangeBoundary::FromDefinition(a.symbol(), offset); | |
2975 return true; | |
2976 } | |
2977 return false; | |
2978 } | |
2979 | |
2980 | |
2981 static bool SymbolicAdd(const RangeBoundary& a, | |
2982 const RangeBoundary& b, | |
2983 RangeBoundary* result) { | |
2984 if (a.IsSymbol() && b.IsConstant() && !b.Overflowed()) { | |
2985 const intptr_t offset = a.offset() + b.value(); | |
2986 if (!Smi::IsValid(offset)) return false; | |
2987 | |
2988 *result = RangeBoundary::FromDefinition(a.symbol(), offset); | |
2989 return true; | |
2990 } else if (b.IsSymbol() && a.IsConstant() && !a.Overflowed()) { | |
2991 const intptr_t offset = b.offset() + a.value(); | |
2992 if (!Smi::IsValid(offset)) return false; | |
2993 | |
2994 *result = RangeBoundary::FromDefinition(b.symbol(), offset); | |
2995 return true; | |
2996 } | |
2997 return false; | |
2998 } | |
2999 | |
3000 | |
3001 static bool IsArrayLength(Definition* defn) { | 3160 static bool IsArrayLength(Definition* defn) { |
| 3161 if (defn == NULL) { |
| 3162 return false; |
| 3163 } |
3002 LoadFieldInstr* load = defn->AsLoadField(); | 3164 LoadFieldInstr* load = defn->AsLoadField(); |
3003 return (load != NULL) && load->IsImmutableLengthLoad(); | 3165 return (load != NULL) && load->IsImmutableLengthLoad(); |
3004 } | 3166 } |
3005 | 3167 |
3006 | 3168 |
3007 static int64_t ConstantAbsMax(const Range* range) { | |
3008 if (range == NULL) return Smi::kMaxValue; | |
3009 const int64_t abs_min = Utils::Abs(Range::ConstantMin(range).value()); | |
3010 const int64_t abs_max = Utils::Abs(Range::ConstantMax(range).value()); | |
3011 return abs_min > abs_max ? abs_min : abs_max; | |
3012 } | |
3013 | |
3014 | |
3015 static bool OnlyPositiveOrZero(const Range* a, const Range* b) { | |
3016 if ((a == NULL) || (b == NULL)) return false; | |
3017 if (Range::ConstantMin(a).value() < 0) return false; | |
3018 if (Range::ConstantMin(b).value() < 0) return false; | |
3019 return true; | |
3020 } | |
3021 | |
3022 | |
3023 static bool OnlyNegativeOrZero(const Range* a, const Range* b) { | |
3024 if ((a == NULL) || (b == NULL)) return false; | |
3025 if (Range::ConstantMax(a).value() > 0) return false; | |
3026 if (Range::ConstantMax(b).value() > 0) return false; | |
3027 return true; | |
3028 } | |
3029 | |
3030 | |
3031 void BinarySmiOpInstr::InferRange() { | 3169 void BinarySmiOpInstr::InferRange() { |
3032 // TODO(vegorov): canonicalize BinarySmiOp to always have constant on the | 3170 // TODO(vegorov): canonicalize BinarySmiOp to always have constant on the |
3033 // right and a non-constant on the left. | 3171 // right and a non-constant on the left. |
3034 Definition* left_defn = left()->definition(); | 3172 Definition* left_defn = left()->definition(); |
3035 | 3173 |
3036 Range* left_range = left_defn->range(); | 3174 Range* left_range = left_defn->range(); |
3037 Range* right_range = right()->definition()->range(); | 3175 Range* right_range = right()->definition()->range(); |
3038 | 3176 |
3039 if ((left_range == NULL) || (right_range == NULL)) { | 3177 if ((left_range == NULL) || (right_range == NULL)) { |
3040 range_ = new Range(RangeBoundary::MinSmi(), RangeBoundary::MaxSmi()); | 3178 range_ = Range::UnknownSmi(); |
3041 return; | 3179 return; |
3042 } | 3180 } |
3043 | 3181 |
3044 RangeBoundary left_min = | 3182 Range* possible_range = Range::BinaryOp(op_kind(), |
3045 IsArrayLength(left_defn) ? | 3183 left_range, |
3046 RangeBoundary::FromDefinition(left_defn) : left_range->min(); | 3184 right_range, |
| 3185 left_defn); |
3047 | 3186 |
3048 RangeBoundary left_max = | 3187 if ((range_ == NULL) && (possible_range == NULL)) { |
3049 IsArrayLength(left_defn) ? | 3188 // Initialize. |
3050 RangeBoundary::FromDefinition(left_defn) : left_range->max(); | 3189 range_ = Range::UnknownSmi(); |
3051 | 3190 return; |
3052 RangeBoundary min; | |
3053 RangeBoundary max; | |
3054 switch (op_kind()) { | |
3055 case Token::kADD: | |
3056 if (!SymbolicAdd(left_min, right_range->min(), &min)) { | |
3057 min = | |
3058 RangeBoundary::Add(Range::ConstantMin(left_range), | |
3059 Range::ConstantMin(right_range), | |
3060 RangeBoundary::NegativeInfinity()); | |
3061 } | |
3062 | |
3063 if (!SymbolicAdd(left_max, right_range->max(), &max)) { | |
3064 max = | |
3065 RangeBoundary::Add(Range::ConstantMax(right_range), | |
3066 Range::ConstantMax(left_range), | |
3067 RangeBoundary::PositiveInfinity()); | |
3068 } | |
3069 break; | |
3070 | |
3071 case Token::kSUB: | |
3072 if (!SymbolicSub(left_min, right_range->max(), &min)) { | |
3073 min = | |
3074 RangeBoundary::Sub(Range::ConstantMin(left_range), | |
3075 Range::ConstantMax(right_range), | |
3076 RangeBoundary::NegativeInfinity()); | |
3077 } | |
3078 | |
3079 if (!SymbolicSub(left_max, right_range->min(), &max)) { | |
3080 max = | |
3081 RangeBoundary::Sub(Range::ConstantMax(left_range), | |
3082 Range::ConstantMin(right_range), | |
3083 RangeBoundary::PositiveInfinity()); | |
3084 } | |
3085 break; | |
3086 | |
3087 case Token::kMUL: { | |
3088 const int64_t left_max = ConstantAbsMax(left_range); | |
3089 const int64_t right_max = ConstantAbsMax(right_range); | |
3090 ASSERT(left_max <= -kSmiMin); | |
3091 ASSERT(right_max <= -kSmiMin); | |
3092 if ((left_max == 0) || (right_max <= kMaxInt64 / left_max)) { | |
3093 // Product of left and right max values stays in 64 bit range. | |
3094 const int64_t result_max = left_max * right_max; | |
3095 if (Smi::IsValid64(result_max) && Smi::IsValid64(-result_max)) { | |
3096 const intptr_t r_min = | |
3097 OnlyPositiveOrZero(left_range, right_range) ? 0 : -result_max; | |
3098 min = RangeBoundary::FromConstant(r_min); | |
3099 const intptr_t r_max = | |
3100 OnlyNegativeOrZero(left_range, right_range) ? 0 : result_max; | |
3101 max = RangeBoundary::FromConstant(r_max); | |
3102 break; | |
3103 } | |
3104 } | |
3105 if (range_ == NULL) { | |
3106 range_ = Range::Unknown(); | |
3107 } | |
3108 return; | |
3109 } | |
3110 case Token::kSHL: { | |
3111 Range::Shl(left_range, right_range, &min, &max); | |
3112 break; | |
3113 } | |
3114 case Token::kBIT_AND: | |
3115 if (Range::ConstantMin(right_range).value() >= 0) { | |
3116 min = RangeBoundary::FromConstant(0); | |
3117 max = Range::ConstantMax(right_range); | |
3118 break; | |
3119 } | |
3120 if (Range::ConstantMin(left_range).value() >= 0) { | |
3121 min = RangeBoundary::FromConstant(0); | |
3122 max = Range::ConstantMax(left_range); | |
3123 break; | |
3124 } | |
3125 | |
3126 if (range_ == NULL) { | |
3127 range_ = Range::Unknown(); | |
3128 } | |
3129 return; | |
3130 | |
3131 default: | |
3132 if (range_ == NULL) { | |
3133 range_ = Range::Unknown(); | |
3134 } | |
3135 return; | |
3136 } | 3191 } |
3137 | 3192 |
3138 ASSERT(!min.IsUnknown() && !max.IsUnknown()); | 3193 if (possible_range == NULL) { |
3139 set_overflow(min.LowerBound().Overflowed() || max.UpperBound().Overflowed()); | 3194 // Nothing new. |
| 3195 return; |
| 3196 } |
3140 | 3197 |
3141 if (min.IsConstant()) min.Clamp(); | 3198 // TODO(johnmccutchan): Clamp this to smi range? |
3142 if (max.IsConstant()) max.Clamp(); | 3199 range_ = possible_range; |
3143 | 3200 |
3144 range_ = new Range(min, max); | 3201 ASSERT(!range_->min().IsUnknown() && !range_->max().IsUnknown()); |
| 3202 const bool overflowed = range_->min().LowerBound().OverflowedSmi() || |
| 3203 range_->max().UpperBound().OverflowedSmi(); |
| 3204 set_overflow(overflowed); |
3145 } | 3205 } |
3146 | 3206 |
3147 | 3207 |
| 3208 void BinaryMintOpInstr::InferRange() { |
| 3209 // TODO(vegorov): canonicalize BinaryMintOpInstr to always have constant on |
| 3210 // the right and a non-constant on the left. |
| 3211 Definition* left_defn = left()->definition(); |
| 3212 |
| 3213 Range* left_range = left_defn->range(); |
| 3214 Range* right_range = right()->definition()->range(); |
| 3215 |
| 3216 if ((left_range == NULL) || (right_range == NULL)) { |
| 3217 range_ = Range::Unknown(); |
| 3218 return; |
| 3219 } |
| 3220 |
| 3221 Range* possible_range = Range::BinaryOp(op_kind(), |
| 3222 left_range, |
| 3223 right_range, |
| 3224 left_defn); |
| 3225 |
| 3226 if ((range_ == NULL) && (possible_range == NULL)) { |
| 3227 // Initialize. |
| 3228 range_ = Range::Unknown(); |
| 3229 return; |
| 3230 } |
| 3231 |
| 3232 if (possible_range == NULL) { |
| 3233 // Nothing new. |
| 3234 return; |
| 3235 } |
| 3236 |
| 3237 // TODO(johnmccutchan): Clamp this to mint range? |
| 3238 range_ = possible_range; |
| 3239 |
| 3240 ASSERT(!range_->min().IsUnknown() && !range_->max().IsUnknown()); |
| 3241 } |
| 3242 |
| 3243 |
3148 bool Range::IsPositive() const { | 3244 bool Range::IsPositive() const { |
3149 if (min().IsNegativeInfinity()) { | 3245 if (min().IsNegativeInfinity()) { |
3150 return false; | 3246 return false; |
3151 } | 3247 } |
3152 if (min().LowerBound().value() < 0) { | 3248 if (min().LowerBound().ConstantValue() < 0) { |
3153 return false; | 3249 return false; |
3154 } | 3250 } |
3155 if (max().IsPositiveInfinity()) { | 3251 if (max().IsPositiveInfinity()) { |
3156 return true; | 3252 return true; |
3157 } | 3253 } |
3158 return max().UpperBound().value() >= 0; | 3254 return max().UpperBound().ConstantValue() >= 0; |
3159 } | 3255 } |
3160 | 3256 |
3161 | 3257 |
3162 bool Range::IsNegative() const { | 3258 bool Range::OnlyLessThanOrEqualTo(int64_t val) const { |
3163 if (max().IsPositiveInfinity()) { | |
3164 return false; | |
3165 } | |
3166 if (max().UpperBound().value() >= 0) { | |
3167 return false; | |
3168 } | |
3169 if (min().IsNegativeInfinity()) { | |
3170 return true; | |
3171 } | |
3172 return min().LowerBound().value() < 0; | |
3173 } | |
3174 | |
3175 | |
3176 bool Range::OnlyLessThanOrEqualTo(intptr_t val) const { | |
3177 if (max().IsPositiveInfinity()) { | 3259 if (max().IsPositiveInfinity()) { |
3178 // Cannot be true. | 3260 // Cannot be true. |
3179 return false; | 3261 return false; |
3180 } | 3262 } |
3181 if (max().UpperBound().value() > val) { | 3263 if (max().UpperBound().ConstantValue() > val) { |
3182 // Not true. | 3264 // Not true. |
3183 return false; | 3265 return false; |
3184 } | 3266 } |
3185 if (!min().IsNegativeInfinity()) { | 3267 return true; |
3186 if (min().LowerBound().value() > val) { | 3268 } |
3187 // Lower bound is > value. | 3269 |
3188 return false; | 3270 |
3189 } | 3271 bool Range::OnlyGreaterThanOrEqualTo(int64_t val) const { |
| 3272 if (min().IsNegativeInfinity()) { |
| 3273 return false; |
| 3274 } |
| 3275 if (min().LowerBound().ConstantValue() < val) { |
| 3276 return false; |
3190 } | 3277 } |
3191 return true; | 3278 return true; |
3192 } | 3279 } |
3193 | 3280 |
3194 | 3281 |
3195 // Inclusive. | 3282 // Inclusive. |
3196 bool Range::IsWithin(intptr_t min_int, intptr_t max_int) const { | 3283 bool Range::IsWithin(int64_t min_int, int64_t max_int) const { |
3197 RangeBoundary lower_min = min().LowerBound(); | 3284 RangeBoundary lower_min = min().LowerBound(); |
3198 if (lower_min.IsNegativeInfinity() || (lower_min.value() < min_int)) { | 3285 if (lower_min.IsNegativeInfinity() || (lower_min.ConstantValue() < min_int)) { |
3199 return false; | 3286 return false; |
3200 } | 3287 } |
3201 RangeBoundary upper_max = max().UpperBound(); | 3288 RangeBoundary upper_max = max().UpperBound(); |
3202 if (upper_max.IsPositiveInfinity() || (upper_max.value() > max_int)) { | 3289 if (upper_max.IsPositiveInfinity() || (upper_max.ConstantValue() > max_int)) { |
3203 return false; | 3290 return false; |
3204 } | 3291 } |
3205 return true; | 3292 return true; |
3206 } | 3293 } |
3207 | 3294 |
3208 | 3295 |
3209 bool Range::Overlaps(intptr_t min_int, intptr_t max_int) const { | 3296 bool Range::Overlaps(int64_t min_int, int64_t max_int) const { |
3210 const intptr_t this_min = min().IsNegativeInfinity() ? | 3297 RangeBoundary lower = min().LowerBound(); |
3211 kIntptrMin : min().LowerBound().value(); | 3298 RangeBoundary upper = max().UpperBound(); |
3212 const intptr_t this_max = max().IsPositiveInfinity() ? | 3299 const int64_t this_min = lower.IsNegativeInfinity() ? |
3213 kIntptrMax : max().UpperBound().value(); | 3300 RangeBoundary::kMin : lower.ConstantValue(); |
| 3301 const int64_t this_max = upper.IsPositiveInfinity() ? |
| 3302 RangeBoundary::kMax : upper.ConstantValue(); |
3214 if ((this_min <= min_int) && (min_int <= this_max)) return true; | 3303 if ((this_min <= min_int) && (min_int <= this_max)) return true; |
3215 if ((this_min <= max_int) && (max_int <= this_max)) return true; | 3304 if ((this_min <= max_int) && (max_int <= this_max)) return true; |
3216 if ((min_int < this_min) && (max_int > this_max)) return true; | 3305 if ((min_int < this_min) && (max_int > this_max)) return true; |
3217 return false; | 3306 return false; |
3218 } | 3307 } |
3219 | 3308 |
3220 | 3309 |
3221 bool Range::IsUnsatisfiable() const { | 3310 bool Range::IsUnsatisfiable() const { |
3222 // Infinity case: [+inf, ...] || [..., -inf] | 3311 // Infinity case: [+inf, ...] || [..., -inf] |
3223 if (min().IsPositiveInfinity() || max().IsNegativeInfinity()) { | 3312 if (min().IsPositiveInfinity() || max().IsNegativeInfinity()) { |
3224 return true; | 3313 return true; |
3225 } | 3314 } |
3226 // Constant case: For example [0, -1]. | 3315 // Constant case: For example [0, -1]. |
3227 if (Range::ConstantMin(this).value() > Range::ConstantMax(this).value()) { | 3316 if (Range::ConstantMin(this).ConstantValue() > |
| 3317 Range::ConstantMax(this).ConstantValue()) { |
3228 return true; | 3318 return true; |
3229 } | 3319 } |
3230 // Symbol case: For example [v+1, v]. | 3320 // Symbol case: For example [v+1, v]. |
3231 if (DependOnSameSymbol(min(), max()) && min().offset() > max().offset()) { | 3321 if (DependOnSameSymbol(min(), max()) && min().offset() > max().offset()) { |
3232 return true; | 3322 return true; |
3233 } | 3323 } |
3234 return false; | 3324 return false; |
3235 } | 3325 } |
3236 | 3326 |
3237 | 3327 |
3238 void Range::Shl(Range* left, | 3328 void Range::Shl(const Range* left, |
3239 Range* right, | 3329 const Range* right, |
3240 RangeBoundary* result_min, | 3330 RangeBoundary* result_min, |
3241 RangeBoundary* result_max) { | 3331 RangeBoundary* result_max) { |
| 3332 ASSERT(left != NULL); |
| 3333 ASSERT(right != NULL); |
| 3334 ASSERT(result_min != NULL); |
| 3335 ASSERT(result_max != NULL); |
3242 RangeBoundary left_max = Range::ConstantMax(left); | 3336 RangeBoundary left_max = Range::ConstantMax(left); |
3243 RangeBoundary left_min = Range::ConstantMin(left); | 3337 RangeBoundary left_min = Range::ConstantMin(left); |
3244 // A negative shift count always deoptimizes (and throws), so the minimum | 3338 // A negative shift count always deoptimizes (and throws), so the minimum |
3245 // shift count is zero. | 3339 // shift count is zero. |
3246 intptr_t right_max = Utils::Maximum(Range::ConstantMax(right).value(), | 3340 int64_t right_max = Utils::Maximum(Range::ConstantMax(right).ConstantValue(), |
3247 static_cast<intptr_t>(0)); | 3341 static_cast<int64_t>(0)); |
3248 intptr_t right_min = Utils::Maximum(Range::ConstantMin(right).value(), | 3342 int64_t right_min = Utils::Maximum(Range::ConstantMin(right).ConstantValue(), |
3249 static_cast<intptr_t>(0)); | 3343 static_cast<int64_t>(0)); |
3250 | 3344 |
3251 *result_min = RangeBoundary::Shl( | 3345 *result_min = RangeBoundary::Shl( |
3252 left_min, | 3346 left_min, |
3253 left_min.value() > 0 ? right_min : right_max, | 3347 left_min.ConstantValue() > 0 ? right_min : right_max, |
3254 left_min.value() > 0 | 3348 left_min.ConstantValue() > 0 |
3255 ? RangeBoundary::PositiveInfinity() | 3349 ? RangeBoundary::PositiveInfinity() |
3256 : RangeBoundary::NegativeInfinity()); | 3350 : RangeBoundary::NegativeInfinity()); |
3257 | 3351 |
3258 *result_max = RangeBoundary::Shl( | 3352 *result_max = RangeBoundary::Shl( |
3259 left_max, | 3353 left_max, |
3260 left_max.value() > 0 ? right_max : right_min, | 3354 left_max.ConstantValue() > 0 ? right_max : right_min, |
3261 left_max.value() > 0 | 3355 left_max.ConstantValue() > 0 |
3262 ? RangeBoundary::PositiveInfinity() | 3356 ? RangeBoundary::PositiveInfinity() |
3263 : RangeBoundary::NegativeInfinity()); | 3357 : RangeBoundary::NegativeInfinity()); |
3264 } | 3358 } |
3265 | 3359 |
3266 | 3360 |
| 3361 bool Range::And(const Range* left_range, |
| 3362 const Range* right_range, |
| 3363 RangeBoundary* min, |
| 3364 RangeBoundary* max) { |
| 3365 ASSERT(left_range != NULL); |
| 3366 ASSERT(right_range != NULL); |
| 3367 ASSERT(min != NULL); |
| 3368 ASSERT(max != NULL); |
| 3369 |
| 3370 if (Range::ConstantMin(right_range).ConstantValue() >= 0) { |
| 3371 *min = RangeBoundary::FromConstant(0); |
| 3372 *max = Range::ConstantMax(right_range); |
| 3373 return true; |
| 3374 } |
| 3375 |
| 3376 if (Range::ConstantMin(left_range).ConstantValue() >= 0) { |
| 3377 *min = RangeBoundary::FromConstant(0); |
| 3378 *max = Range::ConstantMax(left_range); |
| 3379 return true; |
| 3380 } |
| 3381 |
| 3382 return false; |
| 3383 } |
| 3384 |
| 3385 |
| 3386 void Range::Add(const Range* left_range, |
| 3387 const Range* right_range, |
| 3388 RangeBoundary* min, |
| 3389 RangeBoundary* max, |
| 3390 Definition* left_defn) { |
| 3391 ASSERT(left_range != NULL); |
| 3392 ASSERT(right_range != NULL); |
| 3393 ASSERT(min != NULL); |
| 3394 ASSERT(max != NULL); |
| 3395 |
| 3396 RangeBoundary left_min = |
| 3397 IsArrayLength(left_defn) ? |
| 3398 RangeBoundary::FromDefinition(left_defn) : left_range->min(); |
| 3399 |
| 3400 RangeBoundary left_max = |
| 3401 IsArrayLength(left_defn) ? |
| 3402 RangeBoundary::FromDefinition(left_defn) : left_range->max(); |
| 3403 |
| 3404 if (!RangeBoundary::SymbolicAdd(left_min, right_range->min(), min)) { |
| 3405 *min = RangeBoundary::Add(left_range->min().LowerBound(), |
| 3406 right_range->min().LowerBound(), |
| 3407 RangeBoundary::NegativeInfinity()); |
| 3408 } |
| 3409 if (!RangeBoundary::SymbolicAdd(left_max, right_range->max(), max)) { |
| 3410 *max = RangeBoundary::Add(right_range->max().UpperBound(), |
| 3411 left_range->max().UpperBound(), |
| 3412 RangeBoundary::PositiveInfinity()); |
| 3413 } |
| 3414 } |
| 3415 |
| 3416 |
| 3417 void Range::Sub(const Range* left_range, |
| 3418 const Range* right_range, |
| 3419 RangeBoundary* min, |
| 3420 RangeBoundary* max, |
| 3421 Definition* left_defn) { |
| 3422 ASSERT(left_range != NULL); |
| 3423 ASSERT(right_range != NULL); |
| 3424 ASSERT(min != NULL); |
| 3425 ASSERT(max != NULL); |
| 3426 |
| 3427 RangeBoundary left_min = |
| 3428 IsArrayLength(left_defn) ? |
| 3429 RangeBoundary::FromDefinition(left_defn) : left_range->min(); |
| 3430 |
| 3431 RangeBoundary left_max = |
| 3432 IsArrayLength(left_defn) ? |
| 3433 RangeBoundary::FromDefinition(left_defn) : left_range->max(); |
| 3434 |
| 3435 if (!RangeBoundary::SymbolicSub(left_min, right_range->max(), min)) { |
| 3436 *min = RangeBoundary::Sub(left_range->min().LowerBound(), |
| 3437 right_range->max().UpperBound(), |
| 3438 RangeBoundary::NegativeInfinity()); |
| 3439 } |
| 3440 if (!RangeBoundary::SymbolicSub(left_max, right_range->min(), max)) { |
| 3441 *max = RangeBoundary::Sub(left_range->max().UpperBound(), |
| 3442 right_range->min().LowerBound(), |
| 3443 RangeBoundary::PositiveInfinity()); |
| 3444 } |
| 3445 } |
| 3446 |
| 3447 |
| 3448 bool Range::Mul(const Range* left_range, |
| 3449 const Range* right_range, |
| 3450 RangeBoundary* min, |
| 3451 RangeBoundary* max) { |
| 3452 ASSERT(left_range != NULL); |
| 3453 ASSERT(right_range != NULL); |
| 3454 ASSERT(min != NULL); |
| 3455 ASSERT(max != NULL); |
| 3456 |
| 3457 const int64_t left_max = ConstantAbsMax(left_range); |
| 3458 const int64_t right_max = ConstantAbsMax(right_range); |
| 3459 if ((left_max <= -kSmiMin) && (right_max <= -kSmiMin) && |
| 3460 ((left_max == 0) || (right_max <= kMaxInt64 / left_max))) { |
| 3461 // Product of left and right max values stays in 64 bit range. |
| 3462 const int64_t result_max = left_max * right_max; |
| 3463 if (Smi::IsValid64(result_max) && Smi::IsValid64(-result_max)) { |
| 3464 const intptr_t r_min = |
| 3465 OnlyPositiveOrZero(*left_range, *right_range) ? 0 : -result_max; |
| 3466 *min = RangeBoundary::FromConstant(r_min); |
| 3467 const intptr_t r_max = |
| 3468 OnlyNegativeOrZero(*left_range, *right_range) ? 0 : result_max; |
| 3469 *max = RangeBoundary::FromConstant(r_max); |
| 3470 return true; |
| 3471 } |
| 3472 } |
| 3473 return false; |
| 3474 } |
| 3475 |
| 3476 |
| 3477 // Both the a and b ranges are >= 0. |
| 3478 bool Range::OnlyPositiveOrZero(const Range& a, const Range& b) { |
| 3479 return a.OnlyGreaterThanOrEqualTo(0) && b.OnlyGreaterThanOrEqualTo(0); |
| 3480 } |
| 3481 |
| 3482 |
| 3483 // Both the a and b ranges are <= 0. |
| 3484 bool Range::OnlyNegativeOrZero(const Range& a, const Range& b) { |
| 3485 return a.OnlyLessThanOrEqualTo(0) && b.OnlyLessThanOrEqualTo(0); |
| 3486 } |
| 3487 |
| 3488 |
| 3489 // Return the maximum absolute value included in range. |
| 3490 int64_t Range::ConstantAbsMax(const Range* range) { |
| 3491 if (range == NULL) { |
| 3492 return RangeBoundary::kMax; |
| 3493 } |
| 3494 const int64_t abs_min = Utils::Abs(Range::ConstantMin(range).ConstantValue()); |
| 3495 const int64_t abs_max = Utils::Abs(Range::ConstantMax(range).ConstantValue()); |
| 3496 return Utils::Maximum(abs_min, abs_max); |
| 3497 } |
| 3498 |
| 3499 |
| 3500 Range* Range::BinaryOp(const Token::Kind op, |
| 3501 const Range* left_range, |
| 3502 const Range* right_range, |
| 3503 Definition* left_defn) { |
| 3504 ASSERT(left_range != NULL); |
| 3505 ASSERT(right_range != NULL); |
| 3506 |
| 3507 RangeBoundary min; |
| 3508 RangeBoundary max; |
| 3509 ASSERT(min.IsUnknown() && max.IsUnknown()); |
| 3510 |
| 3511 switch (op) { |
| 3512 case Token::kADD: |
| 3513 Range::Add(left_range, right_range, &min, &max, left_defn); |
| 3514 break; |
| 3515 case Token::kSUB: |
| 3516 Range::Sub(left_range, right_range, &min, &max, left_defn); |
| 3517 break; |
| 3518 case Token::kMUL: { |
| 3519 if (!Range::Mul(left_range, right_range, &min, &max)) { |
| 3520 return NULL; |
| 3521 } |
| 3522 break; |
| 3523 } |
| 3524 case Token::kSHL: { |
| 3525 Range::Shl(left_range, right_range, &min, &max); |
| 3526 break; |
| 3527 } |
| 3528 case Token::kBIT_AND: |
| 3529 if (!Range::And(left_range, right_range, &min, &max)) { |
| 3530 return NULL; |
| 3531 } |
| 3532 break; |
| 3533 default: |
| 3534 return NULL; |
| 3535 break; |
| 3536 } |
| 3537 |
| 3538 ASSERT(!min.IsUnknown() && !max.IsUnknown()); |
| 3539 |
| 3540 return new Range(min, max); |
| 3541 } |
| 3542 |
| 3543 |
3267 bool CheckArrayBoundInstr::IsFixedLengthArrayType(intptr_t cid) { | 3544 bool CheckArrayBoundInstr::IsFixedLengthArrayType(intptr_t cid) { |
3268 return LoadFieldInstr::IsFixedLengthArrayCid(cid); | 3545 return LoadFieldInstr::IsFixedLengthArrayCid(cid); |
3269 } | 3546 } |
3270 | 3547 |
3271 | 3548 |
3272 bool CheckArrayBoundInstr::IsRedundant(RangeBoundary length) { | 3549 bool CheckArrayBoundInstr::IsRedundant(RangeBoundary length) { |
3273 Range* index_range = index()->definition()->range(); | 3550 Range* index_range = index()->definition()->range(); |
3274 | 3551 |
3275 // Range of the index is unknown can't decide if the check is redundant. | 3552 // Range of the index is unknown can't decide if the check is redundant. |
3276 if (index_range == NULL) { | 3553 if (index_range == NULL) { |
3277 return false; | 3554 return false; |
3278 } | 3555 } |
3279 | 3556 |
3280 // Range of the index is not positive. Check can't be redundant. | 3557 // Range of the index is not positive. Check can't be redundant. |
3281 if (Range::ConstantMin(index_range).value() < 0) { | 3558 if (Range::ConstantMinSmi(index_range).ConstantValue() < 0) { |
3282 return false; | 3559 return false; |
3283 } | 3560 } |
3284 | 3561 |
3285 RangeBoundary max = CanonicalizeBoundary(index_range->max(), | 3562 RangeBoundary max = CanonicalizeBoundary(index_range->max(), |
3286 RangeBoundary::PositiveInfinity()); | 3563 RangeBoundary::PositiveInfinity()); |
3287 | 3564 |
3288 if (max.Overflowed()) { | 3565 if (max.OverflowedSmi()) { |
3289 return false; | 3566 return false; |
3290 } | 3567 } |
3291 | 3568 |
3292 | 3569 |
3293 RangeBoundary max_upper = max.UpperBound(); | 3570 RangeBoundary max_upper = max.UpperBound(); |
3294 RangeBoundary length_lower = length.LowerBound(); | 3571 RangeBoundary length_lower = length.LowerBound(); |
3295 | 3572 |
3296 if (max_upper.Overflowed() || length_lower.Overflowed()) { | 3573 if (max_upper.OverflowedSmi() || length_lower.OverflowedSmi()) { |
3297 return false; | 3574 return false; |
3298 } | 3575 } |
3299 | 3576 |
3300 // Try to compare constant boundaries. | 3577 // Try to compare constant boundaries. |
3301 if (max_upper.value() < length_lower.value()) { | 3578 if (max_upper.ConstantValue() < length_lower.ConstantValue()) { |
3302 return true; | 3579 return true; |
3303 } | 3580 } |
3304 | 3581 |
3305 length = CanonicalizeBoundary(length, RangeBoundary::PositiveInfinity()); | 3582 length = CanonicalizeBoundary(length, RangeBoundary::PositiveInfinity()); |
3306 if (length.Overflowed()) { | 3583 if (length.OverflowedSmi()) { |
3307 return false; | 3584 return false; |
3308 } | 3585 } |
3309 | 3586 |
3310 // Try symbolic comparison. | 3587 // Try symbolic comparison. |
3311 do { | 3588 do { |
3312 if (DependOnSameSymbol(max, length)) return max.offset() < length.offset(); | 3589 if (DependOnSameSymbol(max, length)) return max.offset() < length.offset(); |
3313 } while (CanonicalizeMaxBoundary(&max) || CanonicalizeMinBoundary(&length)); | 3590 } while (CanonicalizeMaxBoundary(&max) || CanonicalizeMinBoundary(&length)); |
3314 | 3591 |
3315 // Failed to prove that maximum is bounded with array length. | 3592 // Failed to prove that maximum is bounded with array length. |
3316 return false; | 3593 return false; |
(...skipping 272 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
3589 case Token::kTRUNCDIV: return 0; | 3866 case Token::kTRUNCDIV: return 0; |
3590 case Token::kMOD: return 1; | 3867 case Token::kMOD: return 1; |
3591 default: UNIMPLEMENTED(); return -1; | 3868 default: UNIMPLEMENTED(); return -1; |
3592 } | 3869 } |
3593 } | 3870 } |
3594 | 3871 |
3595 | 3872 |
3596 #undef __ | 3873 #undef __ |
3597 | 3874 |
3598 } // namespace dart | 3875 } // namespace dart |
OLD | NEW |