Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(295)

Side by Side Diff: sandbox/linux/seccomp/sandbox.cc

Issue 3225010: Pull seccomp-sandbox in via DEPS rather than using an in-tree copy... (Closed) Base URL: svn://svn.chromium.org/chrome/trunk/src/
Patch Set: '' Created 10 years, 3 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « sandbox/linux/seccomp/sandbox.h ('k') | sandbox/linux/seccomp/sandbox_impl.h » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 // Copyright (c) 2010 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "library.h"
6 #include "sandbox_impl.h"
7 #include "syscall_table.h"
8
9 namespace playground {
10
11 // Global variables
12 int Sandbox::proc_self_maps_ = -1;
13 enum Sandbox::SandboxStatus Sandbox::status_ = STATUS_UNKNOWN;
14 int Sandbox::pid_;
15 int Sandbox::processFdPub_;
16 int Sandbox::cloneFdPub_;
17 Sandbox::SysCalls::kernel_sigaction Sandbox::sa_segv_;
18 Sandbox::ProtectedMap Sandbox::protectedMap_;
19 std::vector<SecureMem::Args*> Sandbox::secureMemPool_;
20
21 bool Sandbox::sendFd(int transport, int fd0, int fd1, const void* buf,
22 size_t len) {
23 int fds[2], count = 0;
24 if (fd0 >= 0) { fds[count++] = fd0; }
25 if (fd1 >= 0) { fds[count++] = fd1; }
26 if (!count) {
27 return false;
28 }
29 char cmsg_buf[CMSG_SPACE(count*sizeof(int))];
30 memset(cmsg_buf, 0, sizeof(cmsg_buf));
31 struct SysCalls::kernel_iovec iov[2] = { { 0 } };
32 struct SysCalls::kernel_msghdr msg = { 0 };
33 int dummy = 0;
34 iov[0].iov_base = &dummy;
35 iov[0].iov_len = sizeof(dummy);
36 if (buf && len > 0) {
37 iov[1].iov_base = const_cast<void *>(buf);
38 iov[1].iov_len = len;
39 }
40 msg.msg_iov = iov;
41 msg.msg_iovlen = (buf && len > 0) ? 2 : 1;
42 msg.msg_control = cmsg_buf;
43 msg.msg_controllen = CMSG_LEN(count*sizeof(int));
44 struct cmsghdr *cmsg = CMSG_FIRSTHDR(&msg);
45 cmsg->cmsg_level = SOL_SOCKET;
46 cmsg->cmsg_type = SCM_RIGHTS;
47 cmsg->cmsg_len = CMSG_LEN(count*sizeof(int));
48 memcpy(CMSG_DATA(cmsg), fds, count*sizeof(int));
49 SysCalls sys;
50 return NOINTR_SYS(sys.sendmsg(transport, &msg, 0)) ==
51 (ssize_t)(sizeof(dummy) + ((buf && len > 0) ? len : 0));
52 }
53
54 bool Sandbox::getFd(int transport, int* fd0, int* fd1, void* buf, size_t*len) {
55 int count = 0;
56 int *err = NULL;
57 if (fd0) {
58 count++;
59 err = fd0;
60 *fd0 = -1;
61 }
62 if (fd1) {
63 if (!count++) {
64 err = fd1;
65 }
66 *fd1 = -1;
67 }
68 if (!count) {
69 return false;
70 }
71 char cmsg_buf[CMSG_SPACE(count*sizeof(int))];
72 memset(cmsg_buf, 0, sizeof(cmsg_buf));
73 struct SysCalls::kernel_iovec iov[2] = { { 0 } };
74 struct SysCalls::kernel_msghdr msg = { 0 };
75 iov[0].iov_base = err;
76 iov[0].iov_len = sizeof(int);
77 if (buf && len && *len > 0) {
78 iov[1].iov_base = buf;
79 iov[1].iov_len = *len;
80 }
81 msg.msg_iov = iov;
82 msg.msg_iovlen = (buf && len && *len > 0) ? 2 : 1;
83 msg.msg_control = cmsg_buf;
84 msg.msg_controllen = CMSG_LEN(count*sizeof(int));
85 SysCalls sys;
86 ssize_t bytes = NOINTR_SYS(sys.recvmsg(transport, &msg, 0));
87 if (len) {
88 *len = bytes > (int)sizeof(int) ?
89 bytes - sizeof(int) : 0;
90 }
91 if (bytes != (ssize_t)(sizeof(int) + ((buf && len && *len > 0) ? *len : 0))){
92 *err = bytes >= 0 ? 0 : -EBADF;
93 return false;
94 }
95 if (*err) {
96 // "err" is the first four bytes of the payload. If these are non-zero,
97 // the sender on the other side of the socketpair sent us an errno value.
98 // We don't expect to get any file handles in this case.
99 return false;
100 }
101 struct cmsghdr *cmsg = CMSG_FIRSTHDR(&msg);
102 if ((msg.msg_flags & (MSG_TRUNC|MSG_CTRUNC)) ||
103 !cmsg ||
104 cmsg->cmsg_level != SOL_SOCKET ||
105 cmsg->cmsg_type != SCM_RIGHTS ||
106 cmsg->cmsg_len != CMSG_LEN(count*sizeof(int))) {
107 *err = -EBADF;
108 return false;
109 }
110 if (fd1) { *fd1 = ((int *)CMSG_DATA(cmsg))[--count]; }
111 if (fd0) { *fd0 = ((int *)CMSG_DATA(cmsg))[--count]; }
112 return true;
113 }
114
115 void Sandbox::setupSignalHandlers() {
116 // Set SIGCHLD to SIG_DFL so that waitpid() can work
117 SysCalls sys;
118 struct SysCalls::kernel_sigaction sa;
119 memset(&sa, 0, sizeof(sa));
120 sa.sa_handler_ = SIG_DFL;
121 sys.sigaction(SIGCHLD, &sa, NULL);
122
123 // Set up SEGV handler for dealing with RDTSC instructions, system calls
124 // that have been rewritten to use INT0, for sigprocmask() emulation, for
125 // the creation of threads, and for user-provided SEGV handlers.
126 sa.sa_sigaction_ = segv();
127 sa.sa_flags = SA_SIGINFO | SA_NODEFER;
128 sys.sigaction(SIGSEGV, &sa, &sa_segv_);
129
130 // Unblock SIGSEGV and SIGCHLD
131 SysCalls::kernel_sigset_t mask;
132 memset(&mask, 0x00, sizeof(mask));
133 mask.sig[0] |= (1 << (SIGSEGV - 1)) | (1 << (SIGCHLD - 1));
134 sys.sigprocmask(SIG_UNBLOCK, &mask, 0);
135 }
136
137 void (*Sandbox::segv())(int signo, SysCalls::siginfo *context, void *unused) {
138 void (*fnc)(int signo, SysCalls::siginfo *context, void *unused);
139 asm volatile(
140 "call 999f\n"
141 #if defined(__x86_64__)
142 // Inspect instruction at the point where the segmentation fault
143 // happened. If it is RDTSC, forward the request to the trusted
144 // thread.
145 "mov $-3, %%r14\n" // request for RDTSC
146 "mov 0xB0(%%rsp), %%r15\n" // %rip at time of segmentation fault
147 "cmpw $0x310F, (%%r15)\n" // RDTSC
148 "jz 0f\n"
149 "cmpw $0x010F, (%%r15)\n" // RDTSCP
150 "jnz 8f\n"
151 "cmpb $0xF9, 2(%%r15)\n"
152 "jnz 8f\n"
153 "mov $-4, %%r14\n" // request for RDTSCP
154 "0:"
155 #ifndef NDEBUG
156 "lea 100f(%%rip), %%rdi\n"
157 "call playground$debugMessage\n"
158 #endif
159 "sub $4, %%rsp\n"
160 "push %%r14\n"
161 "mov %%gs:16, %%edi\n" // fd = threadFdPub
162 "mov %%rsp, %%rsi\n" // buf = %rsp
163 "mov $4, %%edx\n" // len = sizeof(int)
164 "1:mov $1, %%eax\n" // NR_write
165 "syscall\n"
166 "cmp %%rax, %%rdx\n"
167 "jz 5f\n"
168 "cmp $-4, %%eax\n" // EINTR
169 "jz 1b\n"
170 "2:add $12, %%rsp\n"
171 "movq $0, 0x98(%%rsp)\n" // %rax at time of segmentation fault
172 "movq $0, 0x90(%%rsp)\n" // %rdx at time of segmentation fault
173 "cmpw $0x310F, (%%r15)\n" // RDTSC
174 "jz 3f\n"
175 "movq $0, 0xA0(%%rsp)\n" // %rcx at time of segmentation fault
176 "3:addq $2, 0xB0(%%rsp)\n" // %rip at time of segmentation fault
177 "cmpw $0x010F, (%%r15)\n" // RDTSC
178 "jnz 4f\n"
179 "addq $1, 0xB0(%%rsp)\n" // %rip at time of segmentation fault
180 "4:ret\n"
181 "5:mov $12, %%edx\n" // len = 3*sizeof(int)
182 "6:mov $0, %%eax\n" // NR_read
183 "syscall\n"
184 "cmp $-4, %%eax\n" // EINTR
185 "jz 6b\n"
186 "cmp %%rax, %%rdx\n"
187 "jnz 2b\n"
188 "mov 0(%%rsp), %%eax\n"
189 "mov 4(%%rsp), %%edx\n"
190 "mov 8(%%rsp), %%ecx\n"
191 "add $12, %%rsp\n"
192 "mov %%rdx, 0x90(%%rsp)\n" // %rdx at time of segmentation fault
193 "cmpw $0x310F, (%%r15)\n" // RDTSC
194 "jz 7f\n"
195 "mov %%rcx, 0xA0(%%rsp)\n" // %rcx at time of segmentation fault
196 "7:mov %%rax, 0x98(%%rsp)\n" // %rax at time of segmentation fault
197 "jmp 3b\n"
198
199 // If the instruction is INT 0, then this was probably the result
200 // of playground::Library being unable to find a way to safely
201 // rewrite the system call instruction. Retrieve the CPU register
202 // at the time of the segmentation fault and invoke syscallWrapper().
203 "8:cmpw $0x00CD, (%%r15)\n" // INT $0x0
204 "jnz 16f\n"
205 #ifndef NDEBUG
206 "lea 200f(%%rip), %%rdi\n"
207 "call playground$debugMessage\n"
208 #endif
209 "mov 0x98(%%rsp), %%rax\n" // %rax at time of segmentation fault
210 "mov 0x70(%%rsp), %%rdi\n" // %rdi at time of segmentation fault
211 "mov 0x78(%%rsp), %%rsi\n" // %rsi at time of segmentation fault
212 "mov 0x90(%%rsp), %%rdx\n" // %rdx at time of segmentation fault
213 "mov 0x40(%%rsp), %%r10\n" // %r10 at time of segmentation fault
214 "mov 0x30(%%rsp), %%r8\n" // %r8 at time of segmentation fault
215 "mov 0x38(%%rsp), %%r9\n" // %r9 at time of segmentation fault
216
217 // Handle rt_sigprocmask()
218 "cmp $14, %%rax\n" // NR_rt_sigprocmask
219 "jnz 12f\n"
220 "mov $-22, %%rax\n" // -EINVAL
221 "cmp $8, %%r10\n" // %r10 = sigsetsize (8 bytes = 64 signals)
222 "jl 7b\n"
223 "mov 0x130(%%rsp), %%r10\n" // signal mask at time of segmentation fault
224 "test %%rsi, %%rsi\n" // only set mask, if set is non-NULL
225 "jz 11f\n"
226 "mov 0(%%rsi), %%rsi\n"
227 "cmp $0, %%rdi\n" // %rdi = how (SIG_BLOCK)
228 "jnz 9f\n"
229 "or %%rsi, 0x130(%%rsp)\n" // signal mask at time of segmentation fault
230 "jmp 11f\n"
231 "9:cmp $1, %%rdi\n" // %rdi = how (SIG_UNBLOCK)
232 "jnz 10f\n"
233 "xor $-1, %%rsi\n"
234 "and %%rsi, 0x130(%%rsp)\n" // signal mask at time of segmentation fault
235 "jmp 11f\n"
236 "10:cmp $2, %%rdi\n" // %rdi = how (SIG_SETMASK)
237 "jnz 7b\n"
238 "mov %%rsi, 0x130(%%rsp)\n" // signal mask at time of segmentation fault
239 "11:xor %%rax, %%rax\n"
240 "test %%rdx, %%rdx\n" // only return old mask, if set is non-NULL
241 "jz 7b\n"
242 "mov %%r10, 0(%%rdx)\n" // old_set
243 "jmp 7b\n"
244
245 // Handle rt_sigreturn()
246 "12:cmp $15, %%rax\n" // NR_rt_sigreturn
247 "jnz 14f\n"
248 "mov 0xA8(%%rsp), %%rsp\n" // %rsp at time of segmentation fault
249 "13:syscall\n" // rt_sigreturn() is unrestricted
250 "mov $66, %%edi\n" // rt_sigreturn() should never return
251 "mov $231, %%eax\n" // NR_exit_group
252 "jmp 13b\n"
253
254 // Copy signal frame onto new stack. See clone.cc for details
255 "14:cmp $56+0xF000, %%rax\n" // NR_clone + 0xF000
256 "jnz 15f\n"
257 "lea 8(%%rsp), %%rax\n" // retain stack frame upon returning
258 "mov %%rax, 0xA8(%%rsp)\n" // %rsp at time of segmentation fault
259 "jmp 7b\n"
260
261 // Forward system call to syscallWrapper()
262 "15:lea 7b(%%rip), %%rcx\n"
263 "push %%rcx\n"
264 "push 0xB8(%%rsp)\n" // %rip at time of segmentation fault
265 "lea playground$syscallWrapper(%%rip), %%rcx\n"
266 "jmp *%%rcx\n"
267
268 // In order to implement SA_NODEFER, we have to keep track of recursive
269 // calls to SIGSEGV handlers. This means we have to increment a counter
270 // before calling the user's signal handler, and decrement it on
271 // leaving the user's signal handler.
272 // Some signal handlers look at the return address of the signal
273 // stack, and more importantly "gdb" uses the call to rt_sigreturn()
274 // as a magic signature when doing stacktraces. So, we have to use
275 // a little more unusual code to regain control after the user's
276 // signal handler is done. We adjust the return address to point to
277 // non-executable memory. And when we trigger another SEGV we pop the
278 // extraneous signal frame and then call rt_sigreturn().
279 // N.B. We currently do not correctly adjust the SEGV counter, if the
280 // user's signal handler exits in way other than by returning (e.g. by
281 // directly calling rt_sigreturn(), or by calling siglongjmp()).
282 "16:lea 22f(%%rip), %%r14\n"
283 "cmp %%r14, %%r15\n"
284 "jnz 17f\n" // check if returning from user's handler
285 "decl %%gs:0x105C-0xE0\n" // decrement SEGV recursion counter
286 "mov 0xA8(%%rsp), %%rsp\n" // %rsp at time of segmentation fault
287 "mov $0xF, %%eax\n" // NR_rt_sigreturn
288 "syscall\n"
289
290 // This was a genuine segmentation fault. Check Sandbox::sa_segv_ for
291 // what we are supposed to do.
292 "17:mov playground$sa_segv@GOTPCREL(%%rip), %%rax\n"
293 "cmp $0, 0(%%rax)\n" // SIG_DFL
294 "jz 18f\n"
295 "cmp $1, 0(%%rax)\n" // SIG_IGN
296 "jnz 19f\n" // can't really ignore synchronous signals
297
298 // Trigger the kernel's default signal disposition. The only way we can
299 // do this from seccomp mode is by blocking the signal and retriggering
300 // it.
301 "18:orb $4, 0x131(%%rsp)\n" // signal mask at time of segmentation fault
302 "ret\n"
303
304 // Check sa_flags:
305 // - We can ignore SA_NOCLDSTOP, SA_NOCLDWAIT, and SA_RESTART as they
306 // do not have any effect for SIGSEGV.
307 // - On x86-64, we can also ignore SA_SIGINFO, as the calling
308 // conventions for sa_handler() are a subset of the conventions for
309 // sa_sigaction().
310 // - We have to always register our signal handler with SA_NODEFER so
311 // that the user's signal handler can make system calls which might
312 // require additional help from our SEGV handler.
313 // - If the user's signal handler wasn't supposed to be SA_NODEFER, then
314 // we emulate this behavior by keeping track of a recursion counter.
315 //
316 // TODO(markus): If/when we add support for sigaltstack(), we have to
317 // handle SA_ONSTACK.
318 "19:cmpl $0, %%gs:0x105C-0xE0\n"// check if we failed inside of SEGV handler
319 "jnz 18b\n" // if so, then terminate program
320 "mov 0(%%rax), %%rbx\n" // sa_segv_.sa_sigaction
321 "mov 8(%%rax), %%rcx\n" // sa_segv_.sa_flags
322 "btl $31, %%ecx\n" // SA_RESETHAND
323 "jnc 20f\n"
324 "movq $0, 0(%%rax)\n" // set handler to SIG_DFL
325 "20:btl $30, %%ecx\n" // SA_NODEFER
326 "jc 21f\n"
327 "mov %%r14, 0(%%rsp)\n" // trigger a SEGV on return, so that we can
328 "incl %%gs:0x105C-0xE0\n" // clean up state; incr. recursion counter
329 "21:jmp *%%rbx\n" // call user's signal handler
330
331
332 // Non-executable version of the restorer function. We use this to
333 // trigger a SEGV upon returning from the user's signal handler, giving
334 // us an ability to clean up prior to returning from the SEGV handler.
335 ".pushsection .data\n" // move code into non-executable section
336 "22:mov $0xF, %%rax\n" // gdb looks for this signature when doing
337 "syscall\n" // backtraces
338 ".popsection\n"
339 #elif defined(__i386__)
340 // Inspect instruction at the point where the segmentation fault
341 // happened. If it is RDTSC, forward the request to the trusted
342 // thread.
343 "mov $-3, %%ebx\n" // request for RDTSC
344 "mov 0xDC(%%esp), %%ebp\n" // %eip at time of segmentation fault
345 "cmpw $0x310F, (%%ebp)\n" // RDTSC
346 "jz 0f\n"
347 "cmpw $0x010F, (%%ebp)\n" // RDTSCP
348 "jnz 9f\n"
349 "cmpb $0xF9, 2(%%ebp)\n"
350 "jnz 9f\n"
351 "mov $-4, %%ebx\n" // request for RDTSCP
352 "0:"
353 #ifndef NDEBUG
354 "lea 100f, %%eax\n"
355 "push %%eax\n"
356 "call playground$debugMessage\n"
357 "sub $4, %%esp\n"
358 #else
359 "sub $8, %%esp\n" // allocate buffer for receiving timestamp
360 #endif
361 "push %%ebx\n"
362 "mov %%fs:16, %%ebx\n" // fd = threadFdPub
363 "mov %%esp, %%ecx\n" // buf = %esp
364 "mov $4, %%edx\n" // len = sizeof(int)
365 "1:mov %%edx, %%eax\n" // NR_write
366 "int $0x80\n"
367 "cmp %%eax, %%edx\n"
368 "jz 7f\n"
369 "cmp $-4, %%eax\n" // EINTR
370 "jz 1b\n"
371 "2:add $12, %%esp\n" // remove temporary buffer from stack
372 "xor %%eax, %%eax\n"
373 "movl $0, 0xC8(%%esp)\n" // %edx at time of segmentation fault
374 "cmpw $0x310F, (%%ebp)\n" // RDTSC
375 "jz 3f\n"
376 "movl $0, 0xCC(%%esp)\n" // %ecx at time of segmentation fault
377 "3:mov %%eax, 0xD0(%%esp)\n" // %eax at time of segmentation fault
378 "4:mov 0xDC(%%esp), %%ebp\n" // %eip at time of segmentation fault
379 "addl $2, 0xDC(%%esp)\n" // %eip at time of segmentation fault
380 "cmpw $0x010F, (%%ebp)\n" // RDTSCP
381 "jnz 5f\n"
382 "addl $1, 0xDC(%%esp)\n" // %eip at time of segmentation fault
383 "5:sub $0x1C8, %%esp\n" // a legacy signal stack is much larger
384 "mov 0x1CC(%%esp), %%eax\n" // push signal number
385 "push %%eax\n"
386 "lea 0x270(%%esp), %%esi\n" // copy siginfo register values
387 "lea 0x4(%%esp), %%edi\n" // into new location
388 "mov $22, %%ecx\n"
389 "cld\n"
390 "rep movsl\n"
391 "mov 0x2C8(%%esp), %%ebx\n" // copy first half of signal mask
392 "mov %%ebx, 0x54(%%esp)\n"
393 "lea 6f, %%esi\n" // copy "magic" restorer function
394 "push %%esi\n" // push restorer function
395 "lea 0x2D4(%%esp), %%edi\n" // patch up retcode magic numbers
396 "movb $2, %%cl\n"
397 "rep movsl\n"
398 "ret\n" // return to restorer function
399
400 // The restorer function is sometimes used by gdb as a magic marker to
401 // recognize signal stack frames. Don't change any of the next three
402 // instructions.
403 "6:pop %%eax\n" // remove dummy argument (signo)
404 "mov $119, %%eax\n" // NR_sigreturn
405 "int $0x80\n"
406 "7:mov $12, %%edx\n" // len = 3*sizeof(int)
407 "8:mov $3, %%eax\n" // NR_read
408 "int $0x80\n"
409 "cmp $-4, %%eax\n" // EINTR
410 "jz 8b\n"
411 "cmp %%eax, %%edx\n"
412 "jnz 2b\n"
413 "pop %%eax\n"
414 "pop %%edx\n"
415 "pop %%ecx\n"
416 "mov %%edx, 0xC8(%%esp)\n" // %edx at time of segmentation fault
417 "cmpw $0x310F, (%%ebp)\n" // RDTSC
418 "jz 3b\n"
419 "mov %%ecx, 0xCC(%%esp)\n" // %ecx at time of segmentation fault
420 "jmp 3b\n"
421
422 // If the instruction is INT 0, then this was probably the result
423 // of playground::Library being unable to find a way to safely
424 // rewrite the system call instruction. Retrieve the CPU register
425 // at the time of the segmentation fault and invoke syscallWrapper().
426 "9:cmpw $0x00CD, (%%ebp)\n" // INT $0x0
427 "jnz 20f\n"
428 #ifndef NDEBUG
429 "lea 200f, %%eax\n"
430 "push %%eax\n"
431 "call playground$debugMessage\n"
432 "add $0x4, %%esp\n"
433 #endif
434 "mov 0xD0(%%esp), %%eax\n" // %eax at time of segmentation fault
435 "mov 0xC4(%%esp), %%ebx\n" // %ebx at time of segmentation fault
436 "mov 0xCC(%%esp), %%ecx\n" // %ecx at time of segmentation fault
437 "mov 0xC8(%%esp), %%edx\n" // %edx at time of segmentation fault
438 "mov 0xB8(%%esp), %%esi\n" // %esi at time of segmentation fault
439 "mov 0xB4(%%esp), %%edi\n" // %edi at time of segmentation fault
440 "mov 0xB2(%%esp), %%ebp\n" // %ebp at time of segmentation fault
441
442 // Handle sigprocmask() and rt_sigprocmask()
443 "cmp $175, %%eax\n" // NR_rt_sigprocmask
444 "jnz 10f\n"
445 "mov $-22, %%eax\n" // -EINVAL
446 "cmp $8, %%esi\n" // %esi = sigsetsize (8 bytes = 64 signals)
447 "jl 3b\n"
448 "jmp 11f\n"
449 "10:cmp $126, %%eax\n" // NR_sigprocmask
450 "jnz 15f\n"
451 "mov $-22, %%eax\n"
452 "11:mov 0xFC(%%esp), %%edi\n" // signal mask at time of segmentation fault
453 "mov 0x100(%%esp), %%ebp\n"
454 "test %%ecx, %%ecx\n" // only set mask, if set is non-NULL
455 "jz 14f\n"
456 "mov 0(%%ecx), %%esi\n"
457 "mov 4(%%ecx), %%ecx\n"
458 "cmp $0, %%ebx\n" // %ebx = how (SIG_BLOCK)
459 "jnz 12f\n"
460 "or %%esi, 0xFC(%%esp)\n" // signal mask at time of segmentation fault
461 "or %%ecx, 0x100(%%esp)\n"
462 "jmp 14f\n"
463 "12:cmp $1, %%ebx\n" // %ebx = how (SIG_UNBLOCK)
464 "jnz 13f\n"
465 "xor $-1, %%esi\n"
466 "xor $-1, %%ecx\n"
467 "and %%esi, 0xFC(%%esp)\n" // signal mask at time of segmentation fault
468 "and %%ecx, 0x100(%%esp)\n"
469 "jmp 14f\n"
470 "13:cmp $2, %%ebx\n" // %ebx = how (SIG_SETMASK)
471 "jnz 3b\n"
472 "mov %%esi, 0xFC(%%esp)\n" // signal mask at time of segmentation fault
473 "mov %%ecx, 0x100(%%esp)\n"
474 "14:xor %%eax, %%eax\n"
475 "test %%edx, %%edx\n" // only return old mask, if set is non-NULL
476 "jz 3b\n"
477 "mov %%edi, 0(%%edx)\n" // old_set
478 "mov %%ebp, 4(%%edx)\n"
479 "jmp 3b\n"
480
481 // Handle sigreturn() and rt_sigreturn()
482 // See syscall.cc for a discussion on how we can emulate rt_sigreturn()
483 // by calling sigreturn() with a suitably adjusted stack.
484 "15:cmp $119, %%eax\n" // NR_sigreturn
485 "jnz 17f\n"
486 "mov 0xC0(%%esp), %%esp\n" // %esp at time of segmentation fault
487 "16:int $0x80\n" // sigreturn() is unrestricted
488 "17:cmp $173, %%eax\n" // NR_rt_sigreturn
489 "jnz 18f\n"
490 "mov 0xC0(%%esp), %%esp\n" // %esp at time of segmentation fault
491 "sub $4, %%esp\n" // add fake return address
492 "jmp 4b\n"
493
494 // Copy signal frame onto new stack. In the process, we have to convert
495 // it from an RT signal frame to a legacy signal frame.
496 // See clone.cc for details
497 "18:cmp $120+0xF000, %%eax\n" // NR_clone + 0xF000
498 "jnz 19f\n"
499 "lea -0x1C8(%%esp), %%eax\n"// retain stack frame upon returning
500 "mov %%eax, 0xC0(%%esp)\n" // %esp at time of segmentation fault
501 "jmp 3b\n"
502
503 // Forward system call to syscallWrapper()
504 "19:call playground$syscallWrapper\n"
505 "jmp 3b\n"
506
507 // In order to implement SA_NODEFER, we have to keep track of recursive
508 // calls to SIGSEGV handlers. This means we have to increment a counter
509 // before calling the user's signal handler, and decrement it on
510 // leaving the user's signal handler.
511 // Some signal handlers look at the return address of the signal
512 // stack, and more importantly "gdb" uses the call to {,rt_}sigreturn()
513 // as a magic signature when doing stacktraces. So, we have to use
514 // a little more unusual code to regain control after the user's
515 // signal handler is done. We adjust the return address to point to
516 // non-executable memory. And when we trigger another SEGV we pop the
517 // extraneous signal frame and then call sigreturn().
518 // N.B. We currently do not correctly adjust the SEGV counter, if the
519 // user's signal handler exits in way other than by returning (e.g. by
520 // directly calling {,rt_}sigreturn(), or by calling siglongjmp()).
521 "20:lea 30f, %%edi\n" // rt-style restorer function
522 "lea 31f, %%esi\n" // legacy restorer function
523 "cmp %%ebp, %%edi\n" // check if returning from user's handler
524 "jnz 21f\n"
525 "decl %%fs:0x1040-0x58\n" // decrement SEGV recursion counter
526 "mov 0xC0(%%esp), %%esp\n" // %esp at time of segmentation fault
527 "jmp 29f\n"
528 "21:cmp %%ebp, %%esi\n" // check if returning from user's handler
529 "jnz 22f\n"
530 "decl %%fs:0x1040-0x58\n" // decrement SEGV recursion counter
531 "mov 0xC0(%%esp), %%esp\n" // %esp at time of segmentation fault
532 "jmp 6b\n"
533
534 // This was a genuine segmentation fault. Check Sandbox::sa_segv_ for
535 // what we are supposed to do.
536 "22:lea playground$sa_segv, %%eax\n"
537 "cmp $0, 0(%%eax)\n" // SIG_DFL
538 "jz 23f\n"
539 "cmp $1, 0(%%eax)\n" // SIG_IGN
540 "jnz 24f\n" // can't really ignore synchronous signals
541
542 // Trigger the kernel's default signal disposition. The only way we can
543 // do this from seccomp mode is by blocking the signal and retriggering
544 // it.
545 "23:orb $4, 0xFD(%%esp)\n" // signal mask at time of segmentation fault
546 "jmp 5b\n"
547
548 // Check sa_flags:
549 // - We can ignore SA_NOCLDSTOP, SA_NOCLDWAIT, and SA_RESTART as they
550 // do not have any effect for SIGSEGV.
551 // - We have to always register our signal handler with SA_NODEFER so
552 // that the user's signal handler can make system calls which might
553 // require additional help from our SEGV handler.
554 // - If the user's signal handler wasn't supposed to be SA_NODEFER, then
555 // we emulate this behavior by keeping track of a recursion counter.
556 //
557 // TODO(markus): If/when we add support for sigaltstack(), we have to
558 // handle SA_ONSTACK.
559 "24:cmpl $0, %%fs:0x1040-0x58\n"// check if we failed inside of SEGV handler
560 "jnz 23b\n" // if so, then terminate program
561 "mov 0(%%eax), %%ebx\n" // sa_segv_.sa_sigaction
562 "mov 4(%%eax), %%ecx\n" // sa_segv_.sa_flags
563 "btl $31, %%ecx\n" // SA_RESETHAND
564 "jnc 25f\n"
565 "movl $0, 0(%%eax)\n" // set handler to SIG_DFL
566 "25:btl $30, %%ecx\n" // SA_NODEFER
567 "jc 28f\n"
568 "btl $2, %%ecx\n" // SA_SIGINFO
569 "jnc 26f\n"
570 "mov %%edi, 0(%%esp)\n" // trigger a SEGV on return
571 "incl %%fs:0x1040-0x58\n" // increment recursion counter
572 "jmp *%%ebx\n" // call user's signal handler
573 "26:mov %%esi, 0(%%esp)\n"
574 "incl %%fs:0x1040-0x58\n" // increment recursion counter
575
576 // We always register the signal handler to give us rt-style signal
577 // frames. But if the user asked for legacy signal frames, we must
578 // convert the signal frame prior to calling the user's signal handler.
579 "27:sub $0x1C8, %%esp\n" // a legacy signal stack is much larger
580 "mov 0x1CC(%%esp), %%eax\n" // push signal number
581 "push %%eax\n"
582 "mov 0x1CC(%%esp), %%eax\n" // push restorer function
583 "push %%eax\n"
584 "lea 0x274(%%esp), %%esi\n" // copy siginfo register values
585 "lea 0x8(%%esp), %%edi\n" // into new location
586 "mov $22, %%ecx\n"
587 "cld\n"
588 "rep movsl\n"
589 "mov 0x2CC(%%esp), %%eax\n" // copy first half of signal mask
590 "mov %%eax, 0x58(%%esp)\n"
591 "lea 31f, %%esi\n"
592 "lea 0x2D4(%%esp), %%edi\n" // patch up retcode magic numbers
593 "movb $2, %%cl\n"
594 "rep movsl\n"
595 "jmp *%%ebx\n" // call user's signal handler
596 "28:lea 6b, %%eax\n" // set appropriate restorer function
597 "mov %%eax, 0(%%esp)\n"
598 "btl $2, %%ecx\n" // SA_SIGINFO
599 "jnc 27b\n"
600 "lea 29f, %%eax\n"
601 "mov %%eax, 0(%%esp)\n" // set appropriate restorer function
602 "jmp *%%ebx\n" // call user's signal handler
603 "29:pushl $30f\n" // emulate rt_sigreturn()
604 "jmp 5b\n"
605
606 // Non-executable versions of the restorer function. We use these to
607 // trigger a SEGV upon returning from the user's signal handler, giving
608 // us an ability to clean up prior to returning from the SEGV handler.
609 ".pushsection .data\n" // move code into non-executable section
610 "30:mov $173, %%eax\n" // NR_rt_sigreturn
611 "int $0x80\n" // gdb looks for this signature when doing
612 ".byte 0\n" // backtraces
613 "31:pop %%eax\n"
614 "mov $119, %%eax\n" // NR_sigreturn
615 "int $0x80\n"
616 ".popsection\n"
617 #else
618 #error Unsupported target platform
619 #endif
620 ".pushsection \".rodata\"\n"
621 #ifndef NDEBUG
622 "100:.asciz \"RDTSC(P): Executing handler\\n\"\n"
623 "200:.asciz \"INT $0x0: Executing handler\\n\"\n"
624 #endif
625 ".popsection\n"
626 "999:pop %0\n"
627 : "=g"(fnc)
628 :
629 : "memory"
630 #if defined(__x86_64__)
631 , "rsp"
632 #elif defined(__i386__)
633 , "esp"
634 #endif
635 );
636 return fnc;
637 }
638
639 SecureMem::Args* Sandbox::getSecureMem() {
640 // Check trusted_thread.cc for the magic offset that gets us from the TLS
641 // to the beginning of the secure memory area.
642 SecureMem::Args* ret;
643 #if defined(__x86_64__)
644 asm volatile(
645 "movq %%gs:-0xE0, %0\n"
646 : "=q"(ret));
647 #elif defined(__i386__)
648 asm volatile(
649 "movl %%fs:-0x58, %0\n"
650 : "=r"(ret));
651 #else
652 #error Unsupported target platform
653 #endif
654 return ret;
655 }
656
657 void Sandbox::snapshotMemoryMappings(int processFd, int proc_self_maps) {
658 SysCalls sys;
659 if (sys.lseek(proc_self_maps, 0, SEEK_SET) ||
660 !sendFd(processFd, proc_self_maps, -1, NULL, 0)) {
661 failure:
662 die("Cannot access /proc/self/maps");
663 }
664 int dummy;
665 if (read(sys, processFd, &dummy, sizeof(dummy)) != sizeof(dummy)) {
666 goto failure;
667 }
668 }
669
670 int Sandbox::supportsSeccompSandbox(int proc_fd) {
671 if (status_ != STATUS_UNKNOWN) {
672 return status_ != STATUS_UNSUPPORTED;
673 }
674 int fds[2];
675 SysCalls sys;
676 if (sys.pipe(fds)) {
677 status_ = STATUS_UNSUPPORTED;
678 return 0;
679 }
680 pid_t pid;
681 switch ((pid = sys.fork())) {
682 case -1:
683 status_ = STATUS_UNSUPPORTED;
684 return 0;
685 case 0: {
686 int devnull = sys.open("/dev/null", O_RDWR, 0);
687 if (devnull >= 0) {
688 sys.dup2(devnull, 0);
689 sys.dup2(devnull, 1);
690 sys.dup2(devnull, 2);
691 sys.close(devnull);
692 }
693 if (proc_fd >= 0) {
694 setProcSelfMaps(sys.openat(proc_fd, "self/maps", O_RDONLY, 0));
695 }
696 startSandbox();
697 write(sys, fds[1], "", 1);
698
699 // Try to tell the trusted thread to shut down the entire process in an
700 // orderly fashion
701 defaultSystemCallHandler(__NR_exit_group, 0, 0, 0, 0, 0, 0);
702
703 // If that did not work (e.g. because the kernel does not know about the
704 // exit_group() system call), make a direct _exit() system call instead.
705 // This system call is unrestricted in seccomp mode, so it will always
706 // succeed. Normally, we don't like it, because unlike exit_group() it
707 // does not terminate any other thread. But since we know that
708 // exit_group() exists in all kernels which support kernel-level threads,
709 // this is OK we only get here for old kernels where _exit() is OK.
710 sys._exit(0);
711 }
712 default:
713 NOINTR_SYS(sys.close(fds[1]));
714 char ch;
715 if (read(sys, fds[0], &ch, 1) != 1) {
716 status_ = STATUS_UNSUPPORTED;
717 } else {
718 status_ = STATUS_AVAILABLE;
719 }
720 int rc;
721 NOINTR_SYS(sys.waitpid(pid, &rc, 0));
722 NOINTR_SYS(sys.close(fds[0]));
723 return status_ != STATUS_UNSUPPORTED;
724 }
725 }
726
727 void Sandbox::setProcSelfMaps(int proc_self_maps) {
728 proc_self_maps_ = proc_self_maps;
729 }
730
731 void Sandbox::startSandbox() {
732 if (status_ == STATUS_UNSUPPORTED) {
733 die("The seccomp sandbox is not supported on this computer");
734 } else if (status_ == STATUS_ENABLED) {
735 return;
736 }
737
738 SysCalls sys;
739 if (proc_self_maps_ < 0) {
740 proc_self_maps_ = sys.open("/proc/self/maps", O_RDONLY, 0);
741 if (proc_self_maps_ < 0) {
742 die("Cannot access \"/proc/self/maps\"");
743 }
744 }
745
746 // The pid is unchanged for the entire program, so we can retrieve it once
747 // and store it in a global variable.
748 pid_ = sys.getpid();
749
750 // Block all signals, except for the RDTSC handler
751 setupSignalHandlers();
752
753 // Get socketpairs for talking to the trusted process
754 int pair[4];
755 if (sys.socketpair(AF_UNIX, SOCK_STREAM, 0, pair) ||
756 sys.socketpair(AF_UNIX, SOCK_STREAM, 0, pair+2)) {
757 die("Failed to create trusted thread");
758 }
759 processFdPub_ = pair[0];
760 cloneFdPub_ = pair[2];
761 SecureMemArgs* secureMem = createTrustedProcess(pair[0], pair[1],
762 pair[2], pair[3]);
763
764 // We find all libraries that have system calls and redirect the system
765 // calls to the sandbox. If we miss any system calls, the application will be
766 // terminated by the kernel's seccomp code. So, from a security point of
767 // view, if this code fails to identify system calls, we are still behaving
768 // correctly.
769 {
770 Maps maps(proc_self_maps_);
771 const char *libs[] = { "ld", "libc", "librt", "libpthread", NULL };
772
773 // Intercept system calls in the VDSO segment (if any). This has to happen
774 // before intercepting system calls in any of the other libraries, as
775 // the main kernel entry point might be inside of the VDSO and we need to
776 // determine its address before we can compare it to jumps from inside
777 // other libraries.
778 for (Maps::const_iterator iter = maps.begin(); iter != maps.end(); ++iter){
779 Library* library = *iter;
780 if (library->isVDSO() && library->parseElf()) {
781 library->makeWritable(true);
782 library->patchSystemCalls();
783 library->makeWritable(false);
784 break;
785 }
786 }
787
788 // Intercept system calls in libraries that are known to have them.
789 for (Maps::const_iterator iter = maps.begin(); iter != maps.end(); ++iter){
790 Library* library = *iter;
791 const char* mapping = iter.name().c_str();
792
793 // Find the actual base name of the mapped library by skipping past any
794 // SPC and forward-slashes. We don't want to accidentally find matches,
795 // because the directory name included part of our well-known lib names.
796 //
797 // Typically, prior to pruning, entries would look something like this:
798 // 08:01 2289011 /lib/libc-2.7.so
799 for (const char *delim = " /"; *delim; ++delim) {
800 const char* skip = strrchr(mapping, *delim);
801 if (skip) {
802 mapping = skip + 1;
803 }
804 }
805
806 for (const char **ptr = libs; *ptr; ptr++) {
807 const char *name = strstr(mapping, *ptr);
808 if (name == mapping) {
809 char ch = name[strlen(*ptr)];
810 if (ch < 'A' || (ch > 'Z' && ch < 'a') || ch > 'z') {
811 if (library->parseElf()) {
812 library->makeWritable(true);
813 library->patchSystemCalls();
814 library->makeWritable(false);
815 break;
816 }
817 }
818 }
819 }
820 }
821 }
822
823 // Take a snapshot of the current memory mappings. These mappings will be
824 // off-limits to all future mmap(), munmap(), mremap(), and mprotect() calls.
825 snapshotMemoryMappings(processFdPub_, proc_self_maps_);
826 NOINTR_SYS(sys.close(proc_self_maps_));
827 proc_self_maps_ = -1;
828
829 // Creating the trusted thread enables sandboxing
830 createTrustedThread(processFdPub_, cloneFdPub_, secureMem);
831
832 // We can no longer check for sandboxing support at this point, but we also
833 // know for a fact that it is available (as we just turned it on). So update
834 // the status to reflect this information.
835 status_ = STATUS_ENABLED;
836 }
837
838 } // namespace
OLDNEW
« no previous file with comments | « sandbox/linux/seccomp/sandbox.h ('k') | sandbox/linux/seccomp/sandbox_impl.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698