| Index: src/atomicops_internals_arm_gcc.h
 | 
| diff --git a/src/atomicops_internals_arm_gcc.h b/src/atomicops_internals_arm_gcc.h
 | 
| deleted file mode 100644
 | 
| index b72ffb6a6dd7b844a0f743a4b4dfadc00b8f131a..0000000000000000000000000000000000000000
 | 
| --- a/src/atomicops_internals_arm_gcc.h
 | 
| +++ /dev/null
 | 
| @@ -1,301 +0,0 @@
 | 
| -// Copyright 2010 the V8 project authors. All rights reserved.
 | 
| -// Use of this source code is governed by a BSD-style license that can be
 | 
| -// found in the LICENSE file.
 | 
| -
 | 
| -// This file is an internal atomic implementation, use atomicops.h instead.
 | 
| -//
 | 
| -// LinuxKernelCmpxchg and Barrier_AtomicIncrement are from Google Gears.
 | 
| -
 | 
| -#ifndef V8_ATOMICOPS_INTERNALS_ARM_GCC_H_
 | 
| -#define V8_ATOMICOPS_INTERNALS_ARM_GCC_H_
 | 
| -
 | 
| -#if defined(__QNXNTO__)
 | 
| -#include <sys/cpuinline.h>
 | 
| -#endif
 | 
| -
 | 
| -namespace v8 {
 | 
| -namespace internal {
 | 
| -
 | 
| -// Memory barriers on ARM are funky, but the kernel is here to help:
 | 
| -//
 | 
| -// * ARMv5 didn't support SMP, there is no memory barrier instruction at
 | 
| -//   all on this architecture, or when targeting its machine code.
 | 
| -//
 | 
| -// * Some ARMv6 CPUs support SMP. A full memory barrier can be produced by
 | 
| -//   writing a random value to a very specific coprocessor register.
 | 
| -//
 | 
| -// * On ARMv7, the "dmb" instruction is used to perform a full memory
 | 
| -//   barrier (though writing to the co-processor will still work).
 | 
| -//   However, on single core devices (e.g. Nexus One, or Nexus S),
 | 
| -//   this instruction will take up to 200 ns, which is huge, even though
 | 
| -//   it's completely un-needed on these devices.
 | 
| -//
 | 
| -// * There is no easy way to determine at runtime if the device is
 | 
| -//   single or multi-core. However, the kernel provides a useful helper
 | 
| -//   function at a fixed memory address (0xffff0fa0), which will always
 | 
| -//   perform a memory barrier in the most efficient way. I.e. on single
 | 
| -//   core devices, this is an empty function that exits immediately.
 | 
| -//   On multi-core devices, it implements a full memory barrier.
 | 
| -//
 | 
| -// * This source could be compiled to ARMv5 machine code that runs on a
 | 
| -//   multi-core ARMv6 or ARMv7 device. In this case, memory barriers
 | 
| -//   are needed for correct execution. Always call the kernel helper, even
 | 
| -//   when targeting ARMv5TE.
 | 
| -//
 | 
| -
 | 
| -inline void MemoryBarrier() {
 | 
| -#if defined(__linux__) || defined(__ANDROID__)
 | 
| -  // Note: This is a function call, which is also an implicit compiler barrier.
 | 
| -  typedef void (*KernelMemoryBarrierFunc)();
 | 
| -  ((KernelMemoryBarrierFunc)0xffff0fa0)();
 | 
| -#elif defined(__QNXNTO__)
 | 
| -  __cpu_membarrier();
 | 
| -#else
 | 
| -#error MemoryBarrier() is not implemented on this platform.
 | 
| -#endif
 | 
| -}
 | 
| -
 | 
| -// An ARM toolchain would only define one of these depending on which
 | 
| -// variant of the target architecture is being used. This tests against
 | 
| -// any known ARMv6 or ARMv7 variant, where it is possible to directly
 | 
| -// use ldrex/strex instructions to implement fast atomic operations.
 | 
| -#if defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || \
 | 
| -    defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || \
 | 
| -    defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || \
 | 
| -    defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || \
 | 
| -    defined(__ARM_ARCH_6KZ__) || defined(__ARM_ARCH_6T2__)
 | 
| -
 | 
| -inline Atomic32 NoBarrier_CompareAndSwap(volatile Atomic32* ptr,
 | 
| -                                         Atomic32 old_value,
 | 
| -                                         Atomic32 new_value) {
 | 
| -  Atomic32 prev_value;
 | 
| -  int reloop;
 | 
| -  do {
 | 
| -    // The following is equivalent to:
 | 
| -    //
 | 
| -    //   prev_value = LDREX(ptr)
 | 
| -    //   reloop = 0
 | 
| -    //   if (prev_value != old_value)
 | 
| -    //      reloop = STREX(ptr, new_value)
 | 
| -    __asm__ __volatile__("    ldrex %0, [%3]\n"
 | 
| -                         "    mov %1, #0\n"
 | 
| -                         "    cmp %0, %4\n"
 | 
| -#ifdef __thumb2__
 | 
| -                         "    it eq\n"
 | 
| -#endif
 | 
| -                         "    strexeq %1, %5, [%3]\n"
 | 
| -                         : "=&r"(prev_value), "=&r"(reloop), "+m"(*ptr)
 | 
| -                         : "r"(ptr), "r"(old_value), "r"(new_value)
 | 
| -                         : "cc", "memory");
 | 
| -  } while (reloop != 0);
 | 
| -  return prev_value;
 | 
| -}
 | 
| -
 | 
| -inline Atomic32 Acquire_CompareAndSwap(volatile Atomic32* ptr,
 | 
| -                                       Atomic32 old_value,
 | 
| -                                       Atomic32 new_value) {
 | 
| -  Atomic32 result = NoBarrier_CompareAndSwap(ptr, old_value, new_value);
 | 
| -  MemoryBarrier();
 | 
| -  return result;
 | 
| -}
 | 
| -
 | 
| -inline Atomic32 Release_CompareAndSwap(volatile Atomic32* ptr,
 | 
| -                                       Atomic32 old_value,
 | 
| -                                       Atomic32 new_value) {
 | 
| -  MemoryBarrier();
 | 
| -  return NoBarrier_CompareAndSwap(ptr, old_value, new_value);
 | 
| -}
 | 
| -
 | 
| -inline Atomic32 NoBarrier_AtomicIncrement(volatile Atomic32* ptr,
 | 
| -                                          Atomic32 increment) {
 | 
| -  Atomic32 value;
 | 
| -  int reloop;
 | 
| -  do {
 | 
| -    // Equivalent to:
 | 
| -    //
 | 
| -    //  value = LDREX(ptr)
 | 
| -    //  value += increment
 | 
| -    //  reloop = STREX(ptr, value)
 | 
| -    //
 | 
| -    __asm__ __volatile__("    ldrex %0, [%3]\n"
 | 
| -                         "    add %0, %0, %4\n"
 | 
| -                         "    strex %1, %0, [%3]\n"
 | 
| -                         : "=&r"(value), "=&r"(reloop), "+m"(*ptr)
 | 
| -                         : "r"(ptr), "r"(increment)
 | 
| -                         : "cc", "memory");
 | 
| -  } while (reloop);
 | 
| -  return value;
 | 
| -}
 | 
| -
 | 
| -inline Atomic32 Barrier_AtomicIncrement(volatile Atomic32* ptr,
 | 
| -                                        Atomic32 increment) {
 | 
| -  // TODO(digit): Investigate if it's possible to implement this with
 | 
| -  // a single MemoryBarrier() operation between the LDREX and STREX.
 | 
| -  // See http://crbug.com/246514
 | 
| -  MemoryBarrier();
 | 
| -  Atomic32 result = NoBarrier_AtomicIncrement(ptr, increment);
 | 
| -  MemoryBarrier();
 | 
| -  return result;
 | 
| -}
 | 
| -
 | 
| -inline Atomic32 NoBarrier_AtomicExchange(volatile Atomic32* ptr,
 | 
| -                                         Atomic32 new_value) {
 | 
| -  Atomic32 old_value;
 | 
| -  int reloop;
 | 
| -  do {
 | 
| -    // old_value = LDREX(ptr)
 | 
| -    // reloop = STREX(ptr, new_value)
 | 
| -    __asm__ __volatile__("   ldrex %0, [%3]\n"
 | 
| -                         "   strex %1, %4, [%3]\n"
 | 
| -                         : "=&r"(old_value), "=&r"(reloop), "+m"(*ptr)
 | 
| -                         : "r"(ptr), "r"(new_value)
 | 
| -                         : "cc", "memory");
 | 
| -  } while (reloop != 0);
 | 
| -  return old_value;
 | 
| -}
 | 
| -
 | 
| -// This tests against any known ARMv5 variant.
 | 
| -#elif defined(__ARM_ARCH_5__) || defined(__ARM_ARCH_5T__) || \
 | 
| -      defined(__ARM_ARCH_5TE__) || defined(__ARM_ARCH_5TEJ__)
 | 
| -
 | 
| -// The kernel also provides a helper function to perform an atomic
 | 
| -// compare-and-swap operation at the hard-wired address 0xffff0fc0.
 | 
| -// On ARMv5, this is implemented by a special code path that the kernel
 | 
| -// detects and treats specially when thread pre-emption happens.
 | 
| -// On ARMv6 and higher, it uses LDREX/STREX instructions instead.
 | 
| -//
 | 
| -// Note that this always perform a full memory barrier, there is no
 | 
| -// need to add calls MemoryBarrier() before or after it. It also
 | 
| -// returns 0 on success, and 1 on exit.
 | 
| -//
 | 
| -// Available and reliable since Linux 2.6.24. Both Android and ChromeOS
 | 
| -// use newer kernel revisions, so this should not be a concern.
 | 
| -namespace {
 | 
| -
 | 
| -inline int LinuxKernelCmpxchg(Atomic32 old_value,
 | 
| -                              Atomic32 new_value,
 | 
| -                              volatile Atomic32* ptr) {
 | 
| -  typedef int (*KernelCmpxchgFunc)(Atomic32, Atomic32, volatile Atomic32*);
 | 
| -  return ((KernelCmpxchgFunc)0xffff0fc0)(old_value, new_value, ptr);
 | 
| -}
 | 
| -
 | 
| -}  // namespace
 | 
| -
 | 
| -inline Atomic32 NoBarrier_CompareAndSwap(volatile Atomic32* ptr,
 | 
| -                                         Atomic32 old_value,
 | 
| -                                         Atomic32 new_value) {
 | 
| -  Atomic32 prev_value;
 | 
| -  for (;;) {
 | 
| -    prev_value = *ptr;
 | 
| -    if (prev_value != old_value)
 | 
| -      return prev_value;
 | 
| -    if (!LinuxKernelCmpxchg(old_value, new_value, ptr))
 | 
| -      return old_value;
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -inline Atomic32 NoBarrier_AtomicExchange(volatile Atomic32* ptr,
 | 
| -                                         Atomic32 new_value) {
 | 
| -  Atomic32 old_value;
 | 
| -  do {
 | 
| -    old_value = *ptr;
 | 
| -  } while (LinuxKernelCmpxchg(old_value, new_value, ptr));
 | 
| -  return old_value;
 | 
| -}
 | 
| -
 | 
| -inline Atomic32 NoBarrier_AtomicIncrement(volatile Atomic32* ptr,
 | 
| -                                          Atomic32 increment) {
 | 
| -  return Barrier_AtomicIncrement(ptr, increment);
 | 
| -}
 | 
| -
 | 
| -inline Atomic32 Barrier_AtomicIncrement(volatile Atomic32* ptr,
 | 
| -                                        Atomic32 increment) {
 | 
| -  for (;;) {
 | 
| -    // Atomic exchange the old value with an incremented one.
 | 
| -    Atomic32 old_value = *ptr;
 | 
| -    Atomic32 new_value = old_value + increment;
 | 
| -    if (!LinuxKernelCmpxchg(old_value, new_value, ptr)) {
 | 
| -      // The exchange took place as expected.
 | 
| -      return new_value;
 | 
| -    }
 | 
| -    // Otherwise, *ptr changed mid-loop and we need to retry.
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -inline Atomic32 Acquire_CompareAndSwap(volatile Atomic32* ptr,
 | 
| -                                       Atomic32 old_value,
 | 
| -                                       Atomic32 new_value) {
 | 
| -  Atomic32 prev_value;
 | 
| -  for (;;) {
 | 
| -    prev_value = *ptr;
 | 
| -    if (prev_value != old_value) {
 | 
| -      // Always ensure acquire semantics.
 | 
| -      MemoryBarrier();
 | 
| -      return prev_value;
 | 
| -    }
 | 
| -    if (!LinuxKernelCmpxchg(old_value, new_value, ptr))
 | 
| -      return old_value;
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -inline Atomic32 Release_CompareAndSwap(volatile Atomic32* ptr,
 | 
| -                                       Atomic32 old_value,
 | 
| -                                       Atomic32 new_value) {
 | 
| -  // This could be implemented as:
 | 
| -  //    MemoryBarrier();
 | 
| -  //    return NoBarrier_CompareAndSwap();
 | 
| -  //
 | 
| -  // But would use 3 barriers per succesful CAS. To save performance,
 | 
| -  // use Acquire_CompareAndSwap(). Its implementation guarantees that:
 | 
| -  // - A succesful swap uses only 2 barriers (in the kernel helper).
 | 
| -  // - An early return due to (prev_value != old_value) performs
 | 
| -  //   a memory barrier with no store, which is equivalent to the
 | 
| -  //   generic implementation above.
 | 
| -  return Acquire_CompareAndSwap(ptr, old_value, new_value);
 | 
| -}
 | 
| -
 | 
| -#else
 | 
| -#  error "Your CPU's ARM architecture is not supported yet"
 | 
| -#endif
 | 
| -
 | 
| -// NOTE: Atomicity of the following load and store operations is only
 | 
| -// guaranteed in case of 32-bit alignement of |ptr| values.
 | 
| -
 | 
| -inline void NoBarrier_Store(volatile Atomic32* ptr, Atomic32 value) {
 | 
| -  *ptr = value;
 | 
| -}
 | 
| -
 | 
| -inline void Acquire_Store(volatile Atomic32* ptr, Atomic32 value) {
 | 
| -  *ptr = value;
 | 
| -  MemoryBarrier();
 | 
| -}
 | 
| -
 | 
| -inline void Release_Store(volatile Atomic32* ptr, Atomic32 value) {
 | 
| -  MemoryBarrier();
 | 
| -  *ptr = value;
 | 
| -}
 | 
| -
 | 
| -inline Atomic32 NoBarrier_Load(volatile const Atomic32* ptr) { return *ptr; }
 | 
| -
 | 
| -inline Atomic32 Acquire_Load(volatile const Atomic32* ptr) {
 | 
| -  Atomic32 value = *ptr;
 | 
| -  MemoryBarrier();
 | 
| -  return value;
 | 
| -}
 | 
| -
 | 
| -inline Atomic32 Release_Load(volatile const Atomic32* ptr) {
 | 
| -  MemoryBarrier();
 | 
| -  return *ptr;
 | 
| -}
 | 
| -
 | 
| -// Byte accessors.
 | 
| -
 | 
| -inline void NoBarrier_Store(volatile Atomic8* ptr, Atomic8 value) {
 | 
| -  *ptr = value;
 | 
| -}
 | 
| -
 | 
| -inline Atomic8 NoBarrier_Load(volatile const Atomic8* ptr) { return *ptr; }
 | 
| -
 | 
| -} }  // namespace v8::internal
 | 
| -
 | 
| -#endif  // V8_ATOMICOPS_INTERNALS_ARM_GCC_H_
 | 
| 
 |