Index: src/atomicops_internals_arm_gcc.h |
diff --git a/src/atomicops_internals_arm_gcc.h b/src/atomicops_internals_arm_gcc.h |
deleted file mode 100644 |
index b72ffb6a6dd7b844a0f743a4b4dfadc00b8f131a..0000000000000000000000000000000000000000 |
--- a/src/atomicops_internals_arm_gcc.h |
+++ /dev/null |
@@ -1,301 +0,0 @@ |
-// Copyright 2010 the V8 project authors. All rights reserved. |
-// Use of this source code is governed by a BSD-style license that can be |
-// found in the LICENSE file. |
- |
-// This file is an internal atomic implementation, use atomicops.h instead. |
-// |
-// LinuxKernelCmpxchg and Barrier_AtomicIncrement are from Google Gears. |
- |
-#ifndef V8_ATOMICOPS_INTERNALS_ARM_GCC_H_ |
-#define V8_ATOMICOPS_INTERNALS_ARM_GCC_H_ |
- |
-#if defined(__QNXNTO__) |
-#include <sys/cpuinline.h> |
-#endif |
- |
-namespace v8 { |
-namespace internal { |
- |
-// Memory barriers on ARM are funky, but the kernel is here to help: |
-// |
-// * ARMv5 didn't support SMP, there is no memory barrier instruction at |
-// all on this architecture, or when targeting its machine code. |
-// |
-// * Some ARMv6 CPUs support SMP. A full memory barrier can be produced by |
-// writing a random value to a very specific coprocessor register. |
-// |
-// * On ARMv7, the "dmb" instruction is used to perform a full memory |
-// barrier (though writing to the co-processor will still work). |
-// However, on single core devices (e.g. Nexus One, or Nexus S), |
-// this instruction will take up to 200 ns, which is huge, even though |
-// it's completely un-needed on these devices. |
-// |
-// * There is no easy way to determine at runtime if the device is |
-// single or multi-core. However, the kernel provides a useful helper |
-// function at a fixed memory address (0xffff0fa0), which will always |
-// perform a memory barrier in the most efficient way. I.e. on single |
-// core devices, this is an empty function that exits immediately. |
-// On multi-core devices, it implements a full memory barrier. |
-// |
-// * This source could be compiled to ARMv5 machine code that runs on a |
-// multi-core ARMv6 or ARMv7 device. In this case, memory barriers |
-// are needed for correct execution. Always call the kernel helper, even |
-// when targeting ARMv5TE. |
-// |
- |
-inline void MemoryBarrier() { |
-#if defined(__linux__) || defined(__ANDROID__) |
- // Note: This is a function call, which is also an implicit compiler barrier. |
- typedef void (*KernelMemoryBarrierFunc)(); |
- ((KernelMemoryBarrierFunc)0xffff0fa0)(); |
-#elif defined(__QNXNTO__) |
- __cpu_membarrier(); |
-#else |
-#error MemoryBarrier() is not implemented on this platform. |
-#endif |
-} |
- |
-// An ARM toolchain would only define one of these depending on which |
-// variant of the target architecture is being used. This tests against |
-// any known ARMv6 or ARMv7 variant, where it is possible to directly |
-// use ldrex/strex instructions to implement fast atomic operations. |
-#if defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || \ |
- defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || \ |
- defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || \ |
- defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || \ |
- defined(__ARM_ARCH_6KZ__) || defined(__ARM_ARCH_6T2__) |
- |
-inline Atomic32 NoBarrier_CompareAndSwap(volatile Atomic32* ptr, |
- Atomic32 old_value, |
- Atomic32 new_value) { |
- Atomic32 prev_value; |
- int reloop; |
- do { |
- // The following is equivalent to: |
- // |
- // prev_value = LDREX(ptr) |
- // reloop = 0 |
- // if (prev_value != old_value) |
- // reloop = STREX(ptr, new_value) |
- __asm__ __volatile__(" ldrex %0, [%3]\n" |
- " mov %1, #0\n" |
- " cmp %0, %4\n" |
-#ifdef __thumb2__ |
- " it eq\n" |
-#endif |
- " strexeq %1, %5, [%3]\n" |
- : "=&r"(prev_value), "=&r"(reloop), "+m"(*ptr) |
- : "r"(ptr), "r"(old_value), "r"(new_value) |
- : "cc", "memory"); |
- } while (reloop != 0); |
- return prev_value; |
-} |
- |
-inline Atomic32 Acquire_CompareAndSwap(volatile Atomic32* ptr, |
- Atomic32 old_value, |
- Atomic32 new_value) { |
- Atomic32 result = NoBarrier_CompareAndSwap(ptr, old_value, new_value); |
- MemoryBarrier(); |
- return result; |
-} |
- |
-inline Atomic32 Release_CompareAndSwap(volatile Atomic32* ptr, |
- Atomic32 old_value, |
- Atomic32 new_value) { |
- MemoryBarrier(); |
- return NoBarrier_CompareAndSwap(ptr, old_value, new_value); |
-} |
- |
-inline Atomic32 NoBarrier_AtomicIncrement(volatile Atomic32* ptr, |
- Atomic32 increment) { |
- Atomic32 value; |
- int reloop; |
- do { |
- // Equivalent to: |
- // |
- // value = LDREX(ptr) |
- // value += increment |
- // reloop = STREX(ptr, value) |
- // |
- __asm__ __volatile__(" ldrex %0, [%3]\n" |
- " add %0, %0, %4\n" |
- " strex %1, %0, [%3]\n" |
- : "=&r"(value), "=&r"(reloop), "+m"(*ptr) |
- : "r"(ptr), "r"(increment) |
- : "cc", "memory"); |
- } while (reloop); |
- return value; |
-} |
- |
-inline Atomic32 Barrier_AtomicIncrement(volatile Atomic32* ptr, |
- Atomic32 increment) { |
- // TODO(digit): Investigate if it's possible to implement this with |
- // a single MemoryBarrier() operation between the LDREX and STREX. |
- // See http://crbug.com/246514 |
- MemoryBarrier(); |
- Atomic32 result = NoBarrier_AtomicIncrement(ptr, increment); |
- MemoryBarrier(); |
- return result; |
-} |
- |
-inline Atomic32 NoBarrier_AtomicExchange(volatile Atomic32* ptr, |
- Atomic32 new_value) { |
- Atomic32 old_value; |
- int reloop; |
- do { |
- // old_value = LDREX(ptr) |
- // reloop = STREX(ptr, new_value) |
- __asm__ __volatile__(" ldrex %0, [%3]\n" |
- " strex %1, %4, [%3]\n" |
- : "=&r"(old_value), "=&r"(reloop), "+m"(*ptr) |
- : "r"(ptr), "r"(new_value) |
- : "cc", "memory"); |
- } while (reloop != 0); |
- return old_value; |
-} |
- |
-// This tests against any known ARMv5 variant. |
-#elif defined(__ARM_ARCH_5__) || defined(__ARM_ARCH_5T__) || \ |
- defined(__ARM_ARCH_5TE__) || defined(__ARM_ARCH_5TEJ__) |
- |
-// The kernel also provides a helper function to perform an atomic |
-// compare-and-swap operation at the hard-wired address 0xffff0fc0. |
-// On ARMv5, this is implemented by a special code path that the kernel |
-// detects and treats specially when thread pre-emption happens. |
-// On ARMv6 and higher, it uses LDREX/STREX instructions instead. |
-// |
-// Note that this always perform a full memory barrier, there is no |
-// need to add calls MemoryBarrier() before or after it. It also |
-// returns 0 on success, and 1 on exit. |
-// |
-// Available and reliable since Linux 2.6.24. Both Android and ChromeOS |
-// use newer kernel revisions, so this should not be a concern. |
-namespace { |
- |
-inline int LinuxKernelCmpxchg(Atomic32 old_value, |
- Atomic32 new_value, |
- volatile Atomic32* ptr) { |
- typedef int (*KernelCmpxchgFunc)(Atomic32, Atomic32, volatile Atomic32*); |
- return ((KernelCmpxchgFunc)0xffff0fc0)(old_value, new_value, ptr); |
-} |
- |
-} // namespace |
- |
-inline Atomic32 NoBarrier_CompareAndSwap(volatile Atomic32* ptr, |
- Atomic32 old_value, |
- Atomic32 new_value) { |
- Atomic32 prev_value; |
- for (;;) { |
- prev_value = *ptr; |
- if (prev_value != old_value) |
- return prev_value; |
- if (!LinuxKernelCmpxchg(old_value, new_value, ptr)) |
- return old_value; |
- } |
-} |
- |
-inline Atomic32 NoBarrier_AtomicExchange(volatile Atomic32* ptr, |
- Atomic32 new_value) { |
- Atomic32 old_value; |
- do { |
- old_value = *ptr; |
- } while (LinuxKernelCmpxchg(old_value, new_value, ptr)); |
- return old_value; |
-} |
- |
-inline Atomic32 NoBarrier_AtomicIncrement(volatile Atomic32* ptr, |
- Atomic32 increment) { |
- return Barrier_AtomicIncrement(ptr, increment); |
-} |
- |
-inline Atomic32 Barrier_AtomicIncrement(volatile Atomic32* ptr, |
- Atomic32 increment) { |
- for (;;) { |
- // Atomic exchange the old value with an incremented one. |
- Atomic32 old_value = *ptr; |
- Atomic32 new_value = old_value + increment; |
- if (!LinuxKernelCmpxchg(old_value, new_value, ptr)) { |
- // The exchange took place as expected. |
- return new_value; |
- } |
- // Otherwise, *ptr changed mid-loop and we need to retry. |
- } |
-} |
- |
-inline Atomic32 Acquire_CompareAndSwap(volatile Atomic32* ptr, |
- Atomic32 old_value, |
- Atomic32 new_value) { |
- Atomic32 prev_value; |
- for (;;) { |
- prev_value = *ptr; |
- if (prev_value != old_value) { |
- // Always ensure acquire semantics. |
- MemoryBarrier(); |
- return prev_value; |
- } |
- if (!LinuxKernelCmpxchg(old_value, new_value, ptr)) |
- return old_value; |
- } |
-} |
- |
-inline Atomic32 Release_CompareAndSwap(volatile Atomic32* ptr, |
- Atomic32 old_value, |
- Atomic32 new_value) { |
- // This could be implemented as: |
- // MemoryBarrier(); |
- // return NoBarrier_CompareAndSwap(); |
- // |
- // But would use 3 barriers per succesful CAS. To save performance, |
- // use Acquire_CompareAndSwap(). Its implementation guarantees that: |
- // - A succesful swap uses only 2 barriers (in the kernel helper). |
- // - An early return due to (prev_value != old_value) performs |
- // a memory barrier with no store, which is equivalent to the |
- // generic implementation above. |
- return Acquire_CompareAndSwap(ptr, old_value, new_value); |
-} |
- |
-#else |
-# error "Your CPU's ARM architecture is not supported yet" |
-#endif |
- |
-// NOTE: Atomicity of the following load and store operations is only |
-// guaranteed in case of 32-bit alignement of |ptr| values. |
- |
-inline void NoBarrier_Store(volatile Atomic32* ptr, Atomic32 value) { |
- *ptr = value; |
-} |
- |
-inline void Acquire_Store(volatile Atomic32* ptr, Atomic32 value) { |
- *ptr = value; |
- MemoryBarrier(); |
-} |
- |
-inline void Release_Store(volatile Atomic32* ptr, Atomic32 value) { |
- MemoryBarrier(); |
- *ptr = value; |
-} |
- |
-inline Atomic32 NoBarrier_Load(volatile const Atomic32* ptr) { return *ptr; } |
- |
-inline Atomic32 Acquire_Load(volatile const Atomic32* ptr) { |
- Atomic32 value = *ptr; |
- MemoryBarrier(); |
- return value; |
-} |
- |
-inline Atomic32 Release_Load(volatile const Atomic32* ptr) { |
- MemoryBarrier(); |
- return *ptr; |
-} |
- |
-// Byte accessors. |
- |
-inline void NoBarrier_Store(volatile Atomic8* ptr, Atomic8 value) { |
- *ptr = value; |
-} |
- |
-inline Atomic8 NoBarrier_Load(volatile const Atomic8* ptr) { return *ptr; } |
- |
-} } // namespace v8::internal |
- |
-#endif // V8_ATOMICOPS_INTERNALS_ARM_GCC_H_ |