| Index: src/utils/SkDashPath.cpp
|
| diff --git a/src/utils/SkDashPath.cpp b/src/utils/SkDashPath.cpp
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..3c4aef343d3399bbc8f30a846116063537499cea
|
| --- /dev/null
|
| +++ b/src/utils/SkDashPath.cpp
|
| @@ -0,0 +1,328 @@
|
| +/*
|
| + * Copyright 2014 Google Inc.
|
| + *
|
| + * Use of this source code is governed by a BSD-style license that can be
|
| + * found in the LICENSE file.
|
| + */
|
| +
|
| +#include "SkDashPathPriv.h"
|
| +#include "SkPathMeasure.h"
|
| +
|
| +static inline int is_even(int x) {
|
| + return (~x) << 31;
|
| +}
|
| +
|
| +static SkScalar find_first_interval(const SkScalar intervals[], SkScalar phase,
|
| + int32_t* index, int count) {
|
| + for (int i = 0; i < count; ++i) {
|
| + if (phase > intervals[i]) {
|
| + phase -= intervals[i];
|
| + } else {
|
| + *index = i;
|
| + return intervals[i] - phase;
|
| + }
|
| + }
|
| + // If we get here, phase "appears" to be larger than our length. This
|
| + // shouldn't happen with perfect precision, but we can accumulate errors
|
| + // during the initial length computation (rounding can make our sum be too
|
| + // big or too small. In that event, we just have to eat the error here.
|
| + *index = 0;
|
| + return intervals[0];
|
| +}
|
| +
|
| +void SkDashPath::CalcDashParameters(SkScalar phase, const SkScalar intervals[], int32_t count,
|
| + SkScalar* initialDashLength, int32_t* initialDashIndex,
|
| + SkScalar* intervalLength, SkScalar* adjustedPhase) {
|
| + SkScalar len = 0;
|
| + for (int i = 0; i < count; i++) {
|
| + len += intervals[i];
|
| + }
|
| + *intervalLength = len;
|
| +
|
| + // watch out for values that might make us go out of bounds
|
| + if ((len > 0) && SkScalarIsFinite(phase) && SkScalarIsFinite(len)) {
|
| +
|
| + // Adjust phase to be between 0 and len, "flipping" phase if negative.
|
| + // e.g., if len is 100, then phase of -20 (or -120) is equivalent to 80
|
| + if (adjustedPhase) {
|
| + if (phase < 0) {
|
| + phase = -phase;
|
| + if (phase > len) {
|
| + phase = SkScalarMod(phase, len);
|
| + }
|
| + phase = len - phase;
|
| +
|
| + // Due to finite precision, it's possible that phase == len,
|
| + // even after the subtract (if len >>> phase), so fix that here.
|
| + // This fixes http://crbug.com/124652 .
|
| + SkASSERT(phase <= len);
|
| + if (phase == len) {
|
| + phase = 0;
|
| + }
|
| + } else if (phase >= len) {
|
| + phase = SkScalarMod(phase, len);
|
| + }
|
| + *adjustedPhase = phase;
|
| + }
|
| + SkASSERT(phase >= 0 && phase < len);
|
| +
|
| + *initialDashLength = find_first_interval(intervals, phase,
|
| + initialDashIndex, count);
|
| +
|
| + SkASSERT(*initialDashLength >= 0);
|
| + SkASSERT(*initialDashIndex >= 0 && *initialDashIndex < count);
|
| + } else {
|
| + *initialDashLength = -1; // signal bad dash intervals
|
| + }
|
| +}
|
| +
|
| +static void outset_for_stroke(SkRect* rect, const SkStrokeRec& rec) {
|
| + SkScalar radius = SkScalarHalf(rec.getWidth());
|
| + if (0 == radius) {
|
| + radius = SK_Scalar1; // hairlines
|
| + }
|
| + if (SkPaint::kMiter_Join == rec.getJoin()) {
|
| + radius = SkScalarMul(radius, rec.getMiter());
|
| + }
|
| + rect->outset(radius, radius);
|
| +}
|
| +
|
| +// Only handles lines for now. If returns true, dstPath is the new (smaller)
|
| +// path. If returns false, then dstPath parameter is ignored.
|
| +static bool cull_path(const SkPath& srcPath, const SkStrokeRec& rec,
|
| + const SkRect* cullRect, SkScalar intervalLength,
|
| + SkPath* dstPath) {
|
| + if (NULL == cullRect) {
|
| + return false;
|
| + }
|
| +
|
| + SkPoint pts[2];
|
| + if (!srcPath.isLine(pts)) {
|
| + return false;
|
| + }
|
| +
|
| + SkRect bounds = *cullRect;
|
| + outset_for_stroke(&bounds, rec);
|
| +
|
| + SkScalar dx = pts[1].x() - pts[0].x();
|
| + SkScalar dy = pts[1].y() - pts[0].y();
|
| +
|
| + // just do horizontal lines for now (lazy)
|
| + if (dy) {
|
| + return false;
|
| + }
|
| +
|
| + SkScalar minX = pts[0].fX;
|
| + SkScalar maxX = pts[1].fX;
|
| +
|
| + if (maxX < bounds.fLeft || minX > bounds.fRight) {
|
| + return false;
|
| + }
|
| +
|
| + if (dx < 0) {
|
| + SkTSwap(minX, maxX);
|
| + }
|
| +
|
| + // Now we actually perform the chop, removing the excess to the left and
|
| + // right of the bounds (keeping our new line "in phase" with the dash,
|
| + // hence the (mod intervalLength).
|
| +
|
| + if (minX < bounds.fLeft) {
|
| + minX = bounds.fLeft - SkScalarMod(bounds.fLeft - minX,
|
| + intervalLength);
|
| + }
|
| + if (maxX > bounds.fRight) {
|
| + maxX = bounds.fRight + SkScalarMod(maxX - bounds.fRight,
|
| + intervalLength);
|
| + }
|
| +
|
| + SkASSERT(maxX >= minX);
|
| + if (dx < 0) {
|
| + SkTSwap(minX, maxX);
|
| + }
|
| + pts[0].fX = minX;
|
| + pts[1].fX = maxX;
|
| +
|
| + dstPath->moveTo(pts[0]);
|
| + dstPath->lineTo(pts[1]);
|
| + return true;
|
| +}
|
| +
|
| +class SpecialLineRec {
|
| +public:
|
| + bool init(const SkPath& src, SkPath* dst, SkStrokeRec* rec,
|
| + int intervalCount, SkScalar intervalLength) {
|
| + if (rec->isHairlineStyle() || !src.isLine(fPts)) {
|
| + return false;
|
| + }
|
| +
|
| + // can relax this in the future, if we handle square and round caps
|
| + if (SkPaint::kButt_Cap != rec->getCap()) {
|
| + return false;
|
| + }
|
| +
|
| + SkScalar pathLength = SkPoint::Distance(fPts[0], fPts[1]);
|
| +
|
| + fTangent = fPts[1] - fPts[0];
|
| + if (fTangent.isZero()) {
|
| + return false;
|
| + }
|
| +
|
| + fPathLength = pathLength;
|
| + fTangent.scale(SkScalarInvert(pathLength));
|
| + fTangent.rotateCCW(&fNormal);
|
| + fNormal.scale(SkScalarHalf(rec->getWidth()));
|
| +
|
| + // now estimate how many quads will be added to the path
|
| + // resulting segments = pathLen * intervalCount / intervalLen
|
| + // resulting points = 4 * segments
|
| +
|
| + SkScalar ptCount = SkScalarMulDiv(pathLength,
|
| + SkIntToScalar(intervalCount),
|
| + intervalLength);
|
| + int n = SkScalarCeilToInt(ptCount) << 2;
|
| + dst->incReserve(n);
|
| +
|
| + // we will take care of the stroking
|
| + rec->setFillStyle();
|
| + return true;
|
| + }
|
| +
|
| + void addSegment(SkScalar d0, SkScalar d1, SkPath* path) const {
|
| + SkASSERT(d0 < fPathLength);
|
| + // clamp the segment to our length
|
| + if (d1 > fPathLength) {
|
| + d1 = fPathLength;
|
| + }
|
| +
|
| + SkScalar x0 = fPts[0].fX + SkScalarMul(fTangent.fX, d0);
|
| + SkScalar x1 = fPts[0].fX + SkScalarMul(fTangent.fX, d1);
|
| + SkScalar y0 = fPts[0].fY + SkScalarMul(fTangent.fY, d0);
|
| + SkScalar y1 = fPts[0].fY + SkScalarMul(fTangent.fY, d1);
|
| +
|
| + SkPoint pts[4];
|
| + pts[0].set(x0 + fNormal.fX, y0 + fNormal.fY); // moveTo
|
| + pts[1].set(x1 + fNormal.fX, y1 + fNormal.fY); // lineTo
|
| + pts[2].set(x1 - fNormal.fX, y1 - fNormal.fY); // lineTo
|
| + pts[3].set(x0 - fNormal.fX, y0 - fNormal.fY); // lineTo
|
| +
|
| + path->addPoly(pts, SK_ARRAY_COUNT(pts), false);
|
| + }
|
| +
|
| +private:
|
| + SkPoint fPts[2];
|
| + SkVector fTangent;
|
| + SkVector fNormal;
|
| + SkScalar fPathLength;
|
| +};
|
| +
|
| +
|
| +bool SkDashPath::FilterDashPath(SkPath* dst, const SkPath& src, SkStrokeRec* rec,
|
| + const SkRect* cullRect, const SkScalar aIntervals[],
|
| + int32_t count, SkScalar initialDashLength, int32_t initialDashIndex,
|
| + SkScalar intervalLength) {
|
| +
|
| + // we do nothing if the src wants to be filled, or if our dashlength is 0
|
| + if (rec->isFillStyle() || initialDashLength < 0) {
|
| + return false;
|
| + }
|
| +
|
| + const SkScalar* intervals = aIntervals;
|
| + SkScalar dashCount = 0;
|
| + int segCount = 0;
|
| +
|
| + SkPath cullPathStorage;
|
| + const SkPath* srcPtr = &src;
|
| + if (cull_path(src, *rec, cullRect, intervalLength, &cullPathStorage)) {
|
| + srcPtr = &cullPathStorage;
|
| + }
|
| +
|
| + SpecialLineRec lineRec;
|
| + bool specialLine = lineRec.init(*srcPtr, dst, rec, count >> 1, intervalLength);
|
| +
|
| + SkPathMeasure meas(*srcPtr, false);
|
| +
|
| + do {
|
| + bool skipFirstSegment = meas.isClosed();
|
| + bool addedSegment = false;
|
| + SkScalar length = meas.getLength();
|
| + int index = initialDashIndex;
|
| +
|
| + // Since the path length / dash length ratio may be arbitrarily large, we can exert
|
| + // significant memory pressure while attempting to build the filtered path. To avoid this,
|
| + // we simply give up dashing beyond a certain threshold.
|
| + //
|
| + // The original bug report (http://crbug.com/165432) is based on a path yielding more than
|
| + // 90 million dash segments and crashing the memory allocator. A limit of 1 million
|
| + // segments seems reasonable: at 2 verbs per segment * 9 bytes per verb, this caps the
|
| + // maximum dash memory overhead at roughly 17MB per path.
|
| + static const SkScalar kMaxDashCount = 1000000;
|
| + dashCount += length * (count >> 1) / intervalLength;
|
| + if (dashCount > kMaxDashCount) {
|
| + dst->reset();
|
| + return false;
|
| + }
|
| +
|
| + // Using double precision to avoid looping indefinitely due to single precision rounding
|
| + // (for extreme path_length/dash_length ratios). See test_infinite_dash() unittest.
|
| + double distance = 0;
|
| + double dlen = initialDashLength;
|
| +
|
| + while (distance < length) {
|
| + SkASSERT(dlen >= 0);
|
| + addedSegment = false;
|
| + if (is_even(index) && dlen > 0 && !skipFirstSegment) {
|
| + addedSegment = true;
|
| + ++segCount;
|
| +
|
| + if (specialLine) {
|
| + lineRec.addSegment(SkDoubleToScalar(distance),
|
| + SkDoubleToScalar(distance + dlen),
|
| + dst);
|
| + } else {
|
| + meas.getSegment(SkDoubleToScalar(distance),
|
| + SkDoubleToScalar(distance + dlen),
|
| + dst, true);
|
| + }
|
| + }
|
| + distance += dlen;
|
| +
|
| + // clear this so we only respect it the first time around
|
| + skipFirstSegment = false;
|
| +
|
| + // wrap around our intervals array if necessary
|
| + index += 1;
|
| + SkASSERT(index <= count);
|
| + if (index == count) {
|
| + index = 0;
|
| + }
|
| +
|
| + // fetch our next dlen
|
| + dlen = intervals[index];
|
| + }
|
| +
|
| + // extend if we ended on a segment and we need to join up with the (skipped) initial segment
|
| + if (meas.isClosed() && is_even(initialDashIndex) &&
|
| + initialDashLength > 0) {
|
| + meas.getSegment(0, initialDashLength, dst, !addedSegment);
|
| + ++segCount;
|
| + }
|
| + } while (meas.nextContour());
|
| +
|
| + if (segCount > 1) {
|
| + dst->setConvexity(SkPath::kConcave_Convexity);
|
| + }
|
| +
|
| + return true;
|
| +}
|
| +
|
| +bool SkDashPath::FilterDashPath(SkPath* dst, const SkPath& src, SkStrokeRec* rec,
|
| + const SkRect* cullRect, const SkPathEffect::DashInfo& info) {
|
| + SkScalar initialDashLength = 0;
|
| + int32_t initialDashIndex = 0;
|
| + SkScalar intervalLength = 0;
|
| + CalcDashParameters(info.fPhase, info.fIntervals, info.fCount,
|
| + &initialDashLength, &initialDashIndex, &intervalLength);
|
| + return FilterDashPath(dst, src, rec, cullRect, info.fIntervals, info.fCount, initialDashLength,
|
| + initialDashIndex, intervalLength);
|
| +}
|
|
|