Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(887)

Unified Diff: tools/relocation_packer/src/elf_file.cc

Issue 310483003: Add a host tool to pack R_ARM_RELATIVE relocations in libchrome.<ver>.so. (Closed) Base URL: https://chromium.googlesource.com/chromium/src.git@master
Patch Set: Remove binary test data files, dcommit separately. Created 6 years, 6 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « tools/relocation_packer/src/elf_file.h ('k') | tools/relocation_packer/src/elf_file_unittest.cc » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: tools/relocation_packer/src/elf_file.cc
diff --git a/tools/relocation_packer/src/elf_file.cc b/tools/relocation_packer/src/elf_file.cc
new file mode 100644
index 0000000000000000000000000000000000000000..103dff7d1ec6ae8f558bf085e523cf427b057f65
--- /dev/null
+++ b/tools/relocation_packer/src/elf_file.cc
@@ -0,0 +1,977 @@
+// Copyright 2014 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+// TODO(simonb): Extend for 64-bit target libraries.
+
+#include "elf_file.h"
+
+#include <stdlib.h>
+#include <sys/types.h>
+#include <unistd.h>
+#include <string>
+#include <vector>
+
+#include "debug.h"
+#include "libelf.h"
+#include "packer.h"
+
+namespace relocation_packer {
+
+// Stub identifier written to 'null out' packed data, "NULL".
+static const Elf32_Word kStubIdentifier = 0x4c4c554eu;
+
+// Out-of-band dynamic tags used to indicate the offset and size of the
+// .android.rel.dyn section.
+static const Elf32_Sword DT_ANDROID_ARM_REL_OFFSET = DT_LOPROC;
+static const Elf32_Sword DT_ANDROID_ARM_REL_SIZE = DT_LOPROC + 1;
+
+namespace {
+
+// Get section data. Checks that the section has exactly one data entry,
+// so that the section size and the data size are the same. True in
+// practice for all sections we resize when packing or unpacking. Done
+// by ensuring that a call to elf_getdata(section, data) returns NULL as
+// the next data entry.
+Elf_Data* GetSectionData(Elf_Scn* section) {
+ Elf_Data* data = elf_getdata(section, NULL);
+ CHECK(data && elf_getdata(section, data) == NULL);
+ return data;
+}
+
+// Rewrite section data. Allocates new data and makes it the data element's
+// buffer. Relies on program exit to free allocated data.
+void RewriteSectionData(Elf_Data* data,
+ const void* section_data,
+ size_t size) {
+ CHECK(size == data->d_size);
+ uint8_t* area = new uint8_t[size];
+ memcpy(area, section_data, size);
+ data->d_buf = area;
+}
+
+// Verbose ELF header logging.
+void VerboseLogElfHeader(const Elf32_Ehdr* elf_header) {
+ VLOG("e_phoff = %u\n", elf_header->e_phoff);
+ VLOG("e_shoff = %u\n", elf_header->e_shoff);
+ VLOG("e_ehsize = %u\n", elf_header->e_ehsize);
+ VLOG("e_phentsize = %u\n", elf_header->e_phentsize);
+ VLOG("e_phnum = %u\n", elf_header->e_phnum);
+ VLOG("e_shnum = %u\n", elf_header->e_shnum);
+ VLOG("e_shstrndx = %u\n", elf_header->e_shstrndx);
+}
+
+// Verbose ELF program header logging.
+void VerboseLogProgramHeader(size_t program_header_index,
+ const Elf32_Phdr* program_header) {
+ std::string type;
+ switch (program_header->p_type) {
+ case PT_NULL: type = "NULL"; break;
+ case PT_LOAD: type = "LOAD"; break;
+ case PT_DYNAMIC: type = "DYNAMIC"; break;
+ case PT_INTERP: type = "INTERP"; break;
+ case PT_NOTE: type = "NOTE"; break;
+ case PT_SHLIB: type = "SHLIB"; break;
+ case PT_PHDR: type = "PHDR"; break;
+ case PT_TLS: type = "TLS"; break;
+ default: type = "(OTHER)"; break;
+ }
+ VLOG("phdr %lu : %s\n", program_header_index, type.c_str());
+ VLOG(" p_offset = %u\n", program_header->p_offset);
+ VLOG(" p_vaddr = %u\n", program_header->p_vaddr);
+ VLOG(" p_paddr = %u\n", program_header->p_paddr);
+ VLOG(" p_filesz = %u\n", program_header->p_filesz);
+ VLOG(" p_memsz = %u\n", program_header->p_memsz);
+}
+
+// Verbose ELF section header logging.
+void VerboseLogSectionHeader(const std::string& section_name,
+ const Elf32_Shdr* section_header) {
+ VLOG("section %s\n", section_name.c_str());
+ VLOG(" sh_addr = %u\n", section_header->sh_addr);
+ VLOG(" sh_offset = %u\n", section_header->sh_offset);
+ VLOG(" sh_size = %u\n", section_header->sh_size);
+}
+
+// Verbose ELF section data logging.
+void VerboseLogSectionData(const Elf_Data* data) {
+ VLOG(" data\n");
+ VLOG(" d_buf = %p\n", data->d_buf);
+ VLOG(" d_off = %lu\n", data->d_off);
+ VLOG(" d_size = %lu\n", data->d_size);
+}
+
+} // namespace
+
+// Load the complete ELF file into a memory image in libelf, and identify
+// the .rel.dyn, .dynamic, and .android.rel.dyn sections. No-op if the
+// ELF file has already been loaded.
+bool ElfFile::Load() {
+ if (elf_)
+ return true;
+
+ elf_ = elf_begin(fd_, ELF_C_RDWR, NULL);
+ CHECK(elf_);
+
+ if (elf_kind(elf_) != ELF_K_ELF) {
+ LOG("ERROR: File not in ELF format\n");
+ return false;
+ }
+
+ Elf32_Ehdr* elf_header = elf32_getehdr(elf_);
+ if (!elf_header) {
+ LOG("ERROR: Failed to load ELF header\n");
+ return false;
+ }
+ if (elf_header->e_machine != EM_ARM) {
+ LOG("ERROR: File is not an arm32 ELF file\n");
+ return false;
+ }
+
+ // Require that our endianness matches that of the target, and that both
+ // are little-endian. Safe for all current build/target combinations.
+ const int endian = static_cast<int>(elf_header->e_ident[5]);
+ CHECK(endian == ELFDATA2LSB);
+ CHECK(__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__);
+
+ VLOG("endian = %u\n", endian);
+ VerboseLogElfHeader(elf_header);
+
+ const Elf32_Phdr* elf_program_header = elf32_getphdr(elf_);
+ CHECK(elf_program_header);
+
+ const Elf32_Phdr* dynamic_program_header = NULL;
+ for (size_t i = 0; i < elf_header->e_phnum; ++i) {
+ const Elf32_Phdr* program_header = &elf_program_header[i];
+ VerboseLogProgramHeader(i, program_header);
+
+ if (program_header->p_type == PT_DYNAMIC) {
+ CHECK(dynamic_program_header == NULL);
+ dynamic_program_header = program_header;
+ }
+ }
+ CHECK(dynamic_program_header != NULL);
+
+ size_t string_index;
+ elf_getshdrstrndx(elf_, &string_index);
+
+ // Notes of the .rel.dyn, .android.rel.dyn, and .dynamic sections. Found
+ // while iterating sections, and later stored in class attributes.
+ Elf_Scn* found_rel_dyn_section = NULL;
+ Elf_Scn* found_android_rel_dyn_section = NULL;
+ Elf_Scn* found_dynamic_section = NULL;
+
+ // Flag set if we encounter any .debug* section. We do not adjust any
+ // offsets or addresses of any debug data, so if we find one of these then
+ // the resulting output shared object should still run, but might not be
+ // usable for debugging, disassembly, and so on. Provides a warning if
+ // this occurs.
+ bool has_debug_section = false;
+
+ Elf_Scn* section = NULL;
+ while ((section = elf_nextscn(elf_, section)) != NULL) {
+ const Elf32_Shdr* section_header = elf32_getshdr(section);
+ std::string name = elf_strptr(elf_, string_index, section_header->sh_name);
+ VerboseLogSectionHeader(name, section_header);
+
+ // Note special sections as we encounter them.
+ if (name == ".rel.dyn") {
+ found_rel_dyn_section = section;
+ }
+ if (name == ".android.rel.dyn") {
+ found_android_rel_dyn_section = section;
+ }
+ if (section_header->sh_offset == dynamic_program_header->p_offset) {
+ found_dynamic_section = section;
+ }
+
+ // If we find a section named .debug*, set the debug warning flag.
+ if (std::string(name).find(".debug") == 0) {
+ has_debug_section = true;
+ }
+
+ Elf_Data* data = NULL;
+ while ((data = elf_getdata(section, data)) != NULL) {
+ VerboseLogSectionData(data);
+ }
+ }
+
+ // Loading failed if we did not find the required special sections.
+ if (!found_rel_dyn_section) {
+ LOG("ERROR: Missing .rel.dyn section\n");
+ return false;
+ }
+ if (!found_dynamic_section) {
+ LOG("ERROR: Missing .dynamic section\n");
+ return false;
+ }
+ if (!found_android_rel_dyn_section) {
+ LOG("ERROR: Missing .android.rel.dyn section "
+ "(to fix, run with --help and follow the pre-packing instructions)\n");
+ return false;
+ }
+
+ if (has_debug_section) {
+ LOG("WARNING: found .debug section(s), and ignored them\n");
+ }
+
+ rel_dyn_section_ = found_rel_dyn_section;
+ dynamic_section_ = found_dynamic_section;
+ android_rel_dyn_section_ = found_android_rel_dyn_section;
+ return true;
+}
+
+namespace {
+
+// Helper for ResizeSection(). Adjust the main ELF header for the hole.
+void AdjustElfHeaderForHole(Elf32_Ehdr* elf_header,
+ Elf32_Off hole_start,
+ int32_t hole_size) {
+ if (elf_header->e_phoff > hole_start) {
+ elf_header->e_phoff += hole_size;
+ VLOG("e_phoff adjusted to %u\n", elf_header->e_phoff);
+ }
+ if (elf_header->e_shoff > hole_start) {
+ elf_header->e_shoff += hole_size;
+ VLOG("e_shoff adjusted to %u\n", elf_header->e_shoff);
+ }
+}
+
+// Helper for ResizeSection(). Adjust all program headers for the hole.
+void AdjustProgramHeadersForHole(Elf32_Phdr* elf_program_header,
+ size_t program_header_count,
+ Elf32_Off hole_start,
+ int32_t hole_size) {
+ for (size_t i = 0; i < program_header_count; ++i) {
+ Elf32_Phdr* program_header = &elf_program_header[i];
+
+ if (program_header->p_offset > hole_start) {
+ // The hole start is past this segment, so adjust offsets and addrs.
+ program_header->p_offset += hole_size;
+ VLOG("phdr %lu p_offset adjusted to %u\n", i, program_header->p_offset);
+
+ // Only adjust vaddr and paddr if this program header has them.
+ if (program_header->p_vaddr != 0) {
+ program_header->p_vaddr += hole_size;
+ VLOG("phdr %lu p_vaddr adjusted to %u\n", i, program_header->p_vaddr);
+ }
+ if (program_header->p_paddr != 0) {
+ program_header->p_paddr += hole_size;
+ VLOG("phdr %lu p_paddr adjusted to %u\n", i, program_header->p_paddr);
+ }
+ } else if (program_header->p_offset +
+ program_header->p_filesz > hole_start) {
+ // The hole start is within this segment, so adjust file and in-memory
+ // sizes, but leave offsets and addrs unchanged.
+ program_header->p_filesz += hole_size;
+ VLOG("phdr %lu p_filesz adjusted to %u\n", i, program_header->p_filesz);
+ program_header->p_memsz += hole_size;
+ VLOG("phdr %lu p_memsz adjusted to %u\n", i, program_header->p_memsz);
+ }
+ }
+}
+
+// Helper for ResizeSection(). Adjust all section headers for the hole.
+void AdjustSectionHeadersForHole(Elf* elf,
+ Elf32_Off hole_start,
+ int32_t hole_size) {
+ size_t string_index;
+ elf_getshdrstrndx(elf, &string_index);
+
+ Elf_Scn* section = NULL;
+ while ((section = elf_nextscn(elf, section)) != NULL) {
+ Elf32_Shdr* section_header = elf32_getshdr(section);
+ std::string name = elf_strptr(elf, string_index, section_header->sh_name);
+
+ if (section_header->sh_offset > hole_start) {
+ section_header->sh_offset += hole_size;
+ VLOG("section %s sh_offset"
+ " adjusted to %u\n", name.c_str(), section_header->sh_offset);
+ // Only adjust section addr if this section has one.
+ if (section_header->sh_addr != 0) {
+ section_header->sh_addr += hole_size;
+ VLOG("section %s sh_addr"
+ " adjusted to %u\n", name.c_str(), section_header->sh_addr);
+ }
+ }
+ }
+}
+
+// Helper for ResizeSection(). Adjust the .dynamic section for the hole.
+void AdjustDynamicSectionForHole(Elf_Scn* dynamic_section,
+ bool is_rel_dyn_resize,
+ Elf32_Off hole_start,
+ int32_t hole_size) {
+ Elf_Data* data = GetSectionData(dynamic_section);
+
+ const Elf32_Dyn* dynamic_base = reinterpret_cast<Elf32_Dyn*>(data->d_buf);
+ std::vector<Elf32_Dyn> dynamics(
+ dynamic_base,
+ dynamic_base + data->d_size / sizeof(dynamics[0]));
+
+ for (size_t i = 0; i < dynamics.size(); ++i) {
+ Elf32_Dyn* dynamic = &dynamics[i];
+ const Elf32_Sword tag = dynamic->d_tag;
+ // Any tags that hold offsets are adjustment candidates.
+ const bool is_adjustable = (tag == DT_PLTGOT ||
+ tag == DT_HASH ||
+ tag == DT_STRTAB ||
+ tag == DT_SYMTAB ||
+ tag == DT_RELA ||
+ tag == DT_INIT ||
+ tag == DT_FINI ||
+ tag == DT_REL ||
+ tag == DT_JMPREL ||
+ tag == DT_INIT_ARRAY ||
+ tag == DT_FINI_ARRAY ||
+ tag == DT_ANDROID_ARM_REL_OFFSET);
+ if (is_adjustable && dynamic->d_un.d_ptr > hole_start) {
+ dynamic->d_un.d_ptr += hole_size;
+ VLOG("dynamic[%lu] %u"
+ " d_ptr adjusted to %u\n", i, dynamic->d_tag, dynamic->d_un.d_ptr);
+ }
+
+ // If we are specifically resizing .rel.dyn, we need to make some added
+ // adjustments to tags that indicate the counts of R_ARM_RELATIVE
+ // relocations in the shared object.
+ if (is_rel_dyn_resize) {
+ // DT_RELSZ is the overall size of relocations. Adjust by hole size.
+ if (tag == DT_RELSZ) {
+ dynamic->d_un.d_val += hole_size;
+ VLOG("dynamic[%lu] %u"
+ " d_val adjusted to %u\n", i, dynamic->d_tag, dynamic->d_un.d_val);
+ }
+
+ // The crazy linker does not use DT_RELCOUNT, but we keep it updated
+ // anyway. In practice the section hole is always equal to the size
+ // of R_ARM_RELATIVE relocations, and DT_RELCOUNT is the count of
+ // relative relocations. So closing a hole on packing reduces
+ // DT_RELCOUNT to zero, and opening a hole on unpacking restores it to
+ // its pre-packed value.
+ if (tag == DT_RELCOUNT) {
+ dynamic->d_un.d_val += hole_size / sizeof(Elf32_Rel);
+ VLOG("dynamic[%lu] %u"
+ " d_val adjusted to %u\n", i, dynamic->d_tag, dynamic->d_un.d_val);
+ }
+
+ // DT_RELENT doesn't change, but make sure it is what we expect.
+ if (tag == DT_RELENT) {
+ CHECK(dynamic->d_un.d_val == sizeof(Elf32_Rel));
+ }
+ }
+ }
+
+ void* section_data = &dynamics[0];
+ size_t bytes = dynamics.size() * sizeof(dynamics[0]);
+ RewriteSectionData(data, section_data, bytes);
+}
+
+// Helper for ResizeSection(). Adjust the .dynsym section for the hole.
+// We need to adjust the values for the symbols represented in it.
+void AdjustDynSymSectionForHole(Elf_Scn* dynsym_section,
+ Elf32_Off hole_start,
+ int32_t hole_size) {
+ Elf_Data* data = GetSectionData(dynsym_section);
+
+ const Elf32_Sym* dynsym_base = reinterpret_cast<Elf32_Sym*>(data->d_buf);
+ std::vector<Elf32_Sym> dynsyms
+ (dynsym_base,
+ dynsym_base + data->d_size / sizeof(dynsyms[0]));
+
+ for (size_t i = 0; i < dynsyms.size(); ++i) {
+ Elf32_Sym* dynsym = &dynsyms[i];
+ const int type = static_cast<int>(ELF32_ST_TYPE(dynsym->st_info));
+ const bool is_adjustable = (type == STT_OBJECT ||
+ type == STT_FUNC ||
+ type == STT_SECTION ||
+ type == STT_FILE ||
+ type == STT_COMMON ||
+ type == STT_TLS);
+ if (is_adjustable && dynsym->st_value > hole_start) {
+ dynsym->st_value += hole_size;
+ VLOG("dynsym[%lu] type=%u"
+ " st_value adjusted to %u\n", i, type, dynsym->st_value);
+ }
+ }
+
+ void* section_data = &dynsyms[0];
+ size_t bytes = dynsyms.size() * sizeof(dynsyms[0]);
+ RewriteSectionData(data, section_data, bytes);
+}
+
+// Helper for ResizeSection(). Adjust the .rel.plt section for the hole.
+// We need to adjust the offset of every relocation inside it that falls
+// beyond the hole start.
+void AdjustRelPltSectionForHole(Elf_Scn* relplt_section,
+ Elf32_Off hole_start,
+ int32_t hole_size) {
+ Elf_Data* data = GetSectionData(relplt_section);
+
+ const Elf32_Rel* relplt_base = reinterpret_cast<Elf32_Rel*>(data->d_buf);
+ std::vector<Elf32_Rel> relplts(
+ relplt_base,
+ relplt_base + data->d_size / sizeof(relplts[0]));
+
+ for (size_t i = 0; i < relplts.size(); ++i) {
+ Elf32_Rel* relplt = &relplts[i];
+ if (relplt->r_offset > hole_start) {
+ relplt->r_offset += hole_size;
+ VLOG("relplt[%lu] r_offset adjusted to %u\n", i, relplt->r_offset);
+ }
+ }
+
+ void* section_data = &relplts[0];
+ size_t bytes = relplts.size() * sizeof(relplts[0]);
+ RewriteSectionData(data, section_data, bytes);
+}
+
+// Helper for ResizeSection(). Adjust the .symtab section for the hole.
+// We want to adjust the value of every symbol in it that falls beyond
+// the hole start.
+void AdjustSymTabSectionForHole(Elf_Scn* symtab_section,
+ Elf32_Off hole_start,
+ int32_t hole_size) {
+ Elf_Data* data = GetSectionData(symtab_section);
+
+ const Elf32_Sym* symtab_base = reinterpret_cast<Elf32_Sym*>(data->d_buf);
+ std::vector<Elf32_Sym> symtab(
+ symtab_base,
+ symtab_base + data->d_size / sizeof(symtab[0]));
+
+ for (size_t i = 0; i < symtab.size(); ++i) {
+ Elf32_Sym* sym = &symtab[i];
+ if (sym->st_value > hole_start) {
+ sym->st_value += hole_size;
+ VLOG("symtab[%lu] value adjusted to %u\n", i, sym->st_value);
+ }
+ }
+
+ void* section_data = &symtab[0];
+ size_t bytes = symtab.size() * sizeof(symtab[0]);
+ RewriteSectionData(data, section_data, bytes);
+}
+
+// Resize a section. If the new size is larger than the current size, open
+// up a hole by increasing file offsets that come after the hole. If smaller
+// than the current size, remove the hole by decreasing those offsets.
+void ResizeSection(Elf* elf, Elf_Scn* section, size_t new_size) {
+ Elf32_Shdr* section_header = elf32_getshdr(section);
+ if (section_header->sh_size == new_size)
+ return;
+
+ // Note if we are resizing the real .rel.dyn. If yes, then we have to
+ // massage d_un.d_val in the dynamic section where d_tag is DT_RELSZ and
+ // DT_RELCOUNT.
+ size_t string_index;
+ elf_getshdrstrndx(elf, &string_index);
+ const std::string section_name =
+ elf_strptr(elf, string_index, section_header->sh_name);
+ const bool is_rel_dyn_resize = section_name == ".rel.dyn";
+
+ // Require that the section size and the data size are the same. True
+ // in practice for all sections we resize when packing or unpacking.
+ Elf_Data* data = GetSectionData(section);
+ CHECK(data->d_off == 0 && data->d_size == section_header->sh_size);
+
+ // Require that the section is not zero-length (that is, has allocated
+ // data that we can validly expand).
+ CHECK(data->d_size && data->d_buf);
+
+ const Elf32_Off hole_start = section_header->sh_offset;
+ const int32_t hole_size = new_size - data->d_size;
+
+ VLOG_IF(hole_size > 0, "expand section size = %lu\n", data->d_size);
+ VLOG_IF(hole_size < 0, "shrink section size = %lu\n", data->d_size);
+
+ // Resize the data and the section header.
+ data->d_size += hole_size;
+ section_header->sh_size += hole_size;
+
+ Elf32_Ehdr* elf_header = elf32_getehdr(elf);
+ Elf32_Phdr* elf_program_header = elf32_getphdr(elf);
+
+ // Add the hole size to all offsets in the ELF file that are after the
+ // start of the hole. If the hole size is positive we are expanding the
+ // section to create a new hole; if negative, we are closing up a hole.
+
+ // Start with the main ELF header.
+ AdjustElfHeaderForHole(elf_header, hole_start, hole_size);
+
+ // Adjust all program headers.
+ AdjustProgramHeadersForHole(elf_program_header,
+ elf_header->e_phnum,
+ hole_start,
+ hole_size);
+
+ // Adjust all section headers.
+ AdjustSectionHeadersForHole(elf, hole_start, hole_size);
+
+ // We use the dynamic program header entry to locate the dynamic section.
+ const Elf32_Phdr* dynamic_program_header = NULL;
+
+ // Find the dynamic program header entry.
+ for (size_t i = 0; i < elf_header->e_phnum; ++i) {
+ Elf32_Phdr* program_header = &elf_program_header[i];
+
+ if (program_header->p_type == PT_DYNAMIC) {
+ dynamic_program_header = program_header;
+ }
+ }
+ CHECK(dynamic_program_header);
+
+ // Sections requiring special attention, and the .android.rel.dyn offset.
+ Elf_Scn* dynamic_section = NULL;
+ Elf_Scn* dynsym_section = NULL;
+ Elf_Scn* relplt_section = NULL;
+ Elf_Scn* symtab_section = NULL;
+ Elf32_Off android_rel_dyn_offset = 0;
+
+ // Find these sections, and the .android.rel.dyn offset.
+ section = NULL;
+ while ((section = elf_nextscn(elf, section)) != NULL) {
+ Elf32_Shdr* section_header = elf32_getshdr(section);
+ std::string name = elf_strptr(elf, string_index, section_header->sh_name);
+
+ if (section_header->sh_offset == dynamic_program_header->p_offset) {
+ dynamic_section = section;
+ }
+ if (name == ".dynsym") {
+ dynsym_section = section;
+ }
+ if (name == ".rel.plt") {
+ relplt_section = section;
+ }
+ if (name == ".symtab") {
+ symtab_section = section;
+ }
+
+ // Note .android.rel.dyn offset.
+ if (name == ".android.rel.dyn") {
+ android_rel_dyn_offset = section_header->sh_offset;
+ }
+ }
+ CHECK(dynamic_section != NULL);
+ CHECK(dynsym_section != NULL);
+ CHECK(relplt_section != NULL);
+ CHECK(android_rel_dyn_offset != 0);
+
+ // Adjust the .dynamic section for the hole. Because we have to edit the
+ // current contents of .dynamic we disallow resizing it.
+ CHECK(section != dynamic_section);
+ AdjustDynamicSectionForHole(dynamic_section,
+ is_rel_dyn_resize,
+ hole_start,
+ hole_size);
+
+ // Adjust the .dynsym section for the hole.
+ AdjustDynSymSectionForHole(dynsym_section, hole_start, hole_size);
+
+ // Adjust the .rel.plt section for the hole.
+ AdjustRelPltSectionForHole(relplt_section, hole_start, hole_size);
+
+ // If present, adjust the .symtab section for the hole. If the shared
+ // library was stripped then .symtab will be absent.
+ if (symtab_section)
+ AdjustSymTabSectionForHole(symtab_section, hole_start, hole_size);
+}
+
+// Replace the first free (unused) slot in a dynamics vector with the given
+// value. The vector always ends with a free (unused) element, so the slot
+// found cannot be the last one in the vector.
+void AddDynamicEntry(Elf32_Dyn dyn,
+ std::vector<Elf32_Dyn>* dynamics) {
+ // Loop until the penultimate entry. We cannot replace the end sentinel.
+ for (size_t i = 0; i < dynamics->size() - 1; ++i) {
+ Elf32_Dyn &slot = dynamics->at(i);
+ if (slot.d_tag == DT_NULL) {
+ slot = dyn;
+ VLOG("dynamic[%lu] overwritten with %u\n", i, dyn.d_tag);
+ return;
+ }
+ }
+
+ // No free dynamics vector slot was found.
+ LOG("FATAL: No spare dynamic vector slots found "
+ "(to fix, increase gold's --spare-dynamic-tags value)\n");
+ NOTREACHED();
+}
+
+// Remove the element in the dynamics vector that matches the given tag with
+// unused slot data. Shuffle the following elements up, and ensure that the
+// last is the null sentinel.
+void RemoveDynamicEntry(Elf32_Sword tag,
+ std::vector<Elf32_Dyn>* dynamics) {
+ // Loop until the penultimate entry, and never match the end sentinel.
+ for (size_t i = 0; i < dynamics->size() - 1; ++i) {
+ Elf32_Dyn &slot = dynamics->at(i);
+ if (slot.d_tag == tag) {
+ for ( ; i < dynamics->size() - 1; ++i) {
+ dynamics->at(i) = dynamics->at(i + 1);
+ VLOG("dynamic[%lu] overwritten with dynamic[%lu]\n", i, i + 1);
+ }
+ CHECK(dynamics->at(i).d_tag == DT_NULL);
+ return;
+ }
+ }
+
+ // No matching dynamics vector entry was found.
+ NOTREACHED();
+}
+
+// Apply R_ARM_RELATIVE relocations to the file data to which they refer.
+// This relocates data into the area it will occupy after the hole in
+// .rel.dyn is added or removed.
+void AdjustRelocationTargets(Elf* elf,
+ Elf32_Off hole_start,
+ size_t hole_size,
+ const std::vector<Elf32_Rel>& relocations) {
+ Elf_Scn* section = NULL;
+ while ((section = elf_nextscn(elf, section)) != NULL) {
+ const Elf32_Shdr* section_header = elf32_getshdr(section);
+
+ // Identify this section's start and end addresses.
+ const Elf32_Addr section_start = section_header->sh_addr;
+ const Elf32_Addr section_end = section_start + section_header->sh_size;
+
+ Elf_Data* data = GetSectionData(section);
+
+ // Ignore sections with no effective data.
+ if (data->d_buf == NULL)
+ continue;
+
+ // Create a copy-on-write pointer to the section's data.
+ uint8_t* area = reinterpret_cast<uint8_t*>(data->d_buf);
+
+ for (size_t i = 0; i < relocations.size(); ++i) {
+ const Elf32_Rel* relocation = &relocations[i];
+ CHECK(ELF32_R_TYPE(relocation->r_info) == R_ARM_RELATIVE);
+
+ // See if this relocation points into the current section.
+ if (relocation->r_offset >= section_start &&
+ relocation->r_offset < section_end) {
+ Elf32_Addr byte_offset = relocation->r_offset - section_start;
+ Elf32_Off* target = reinterpret_cast<Elf32_Off*>(area + byte_offset);
+
+ // Is the relocation's target after the hole's start?
+ if (*target > hole_start) {
+
+ // Copy on first write. Recompute target to point into the newly
+ // allocated buffer.
+ if (area == data->d_buf) {
+ area = new uint8_t[data->d_size];
+ memcpy(area, data->d_buf, data->d_size);
+ target = reinterpret_cast<Elf32_Off*>(area + byte_offset);
+ }
+
+ *target += hole_size;
+ VLOG("relocation[%lu] target adjusted to %u\n", i, *target);
+ }
+ }
+ }
+
+ // If we applied any relocation to this section, write it back.
+ if (area != data->d_buf) {
+ RewriteSectionData(data, area, data->d_size);
+ delete [] area;
+ }
+ }
+}
+
+// Adjust relocations so that the offset that they indicate will be correct
+// after the hole in .rel.dyn is added or removed (in effect, relocate the
+// relocations).
+void AdjustRelocations(Elf32_Off hole_start,
+ size_t hole_size,
+ std::vector<Elf32_Rel>* relocations) {
+ for (size_t i = 0; i < relocations->size(); ++i) {
+ Elf32_Rel* relocation = &relocations->at(i);
+ if (relocation->r_offset > hole_start) {
+ relocation->r_offset += hole_size;
+ VLOG("relocation[%lu] offset adjusted to %u\n", i, relocation->r_offset);
+ }
+ }
+}
+
+} // namespace
+
+// Remove R_ARM_RELATIVE entries from .rel.dyn and write as packed data
+// into .android.rel.dyn.
+bool ElfFile::PackRelocations() {
+ // Load the ELF file into libelf.
+ if (!Load()) {
+ LOG("ERROR: Failed to load as ELF (elf_error=%d)\n", elf_errno());
+ return false;
+ }
+
+ // Retrieve the current .rel.dyn section data.
+ Elf_Data* data = GetSectionData(rel_dyn_section_);
+
+ // Convert data to a vector of Elf32 relocations.
+ const Elf32_Rel* relocations_base = reinterpret_cast<Elf32_Rel*>(data->d_buf);
+ std::vector<Elf32_Rel> relocations(
+ relocations_base,
+ relocations_base + data->d_size / sizeof(relocations[0]));
+
+ std::vector<Elf32_Rel> relative_relocations;
+ std::vector<Elf32_Rel> other_relocations;
+
+ // Filter relocations into those that are R_ARM_RELATIVE and others.
+ for (size_t i = 0; i < relocations.size(); ++i) {
+ const Elf32_Rel& relocation = relocations[i];
+ if (ELF32_R_TYPE(relocation.r_info) == R_ARM_RELATIVE) {
+ CHECK(ELF32_R_SYM(relocation.r_info) == 0);
+ relative_relocations.push_back(relocation);
+ } else {
+ other_relocations.push_back(relocation);
+ }
+ }
+ VLOG("R_ARM_RELATIVE: %lu entries\n", relative_relocations.size());
+ VLOG("Other : %lu entries\n", other_relocations.size());
+ VLOG("Total : %lu entries\n", relocations.size());
+
+ // If no relative relocations then we have nothing packable. Perhaps
+ // the shared object has already been packed?
+ if (relative_relocations.empty()) {
+ LOG("ERROR: No R_ARM_RELATIVE relocations found (already packed?)\n");
+ return false;
+ }
+
+ // Pre-calculate the size of the hole we will close up when we rewrite
+ // .reldyn. We have to adjust all relocation addresses to account for this.
+ Elf32_Shdr* section_header = elf32_getshdr(rel_dyn_section_);
+ const Elf32_Off hole_start = section_header->sh_offset;
+ const size_t hole_size =
+ relative_relocations.size() * sizeof(relative_relocations[0]);
+
+ // Unless padding, pre-apply R_ARM_RELATIVE relocations to account for the
+ // hole, and pre-adjust all relocation offsets accordingly.
+ if (!is_padding_rel_dyn_) {
+ // Apply relocations to all R_ARM_RELATIVE data to relocate it into the
+ // area it will occupy once the hole in .rel.dyn is removed.
+ AdjustRelocationTargets(elf_, hole_start, -hole_size, relative_relocations);
+ // Relocate the relocations.
+ AdjustRelocations(hole_start, -hole_size, &relative_relocations);
+ AdjustRelocations(hole_start, -hole_size, &other_relocations);
+ }
+
+ // Pack R_ARM_RELATIVE relocations.
+ const size_t initial_bytes =
+ relative_relocations.size() * sizeof(relative_relocations[0]);
+ LOG("Unpacked R_ARM_RELATIVE: %lu bytes\n", initial_bytes);
+ std::vector<uint8_t> packed;
+ RelocationPacker packer;
+ packer.PackRelativeRelocations(relative_relocations, &packed);
+ const void* packed_data = &packed[0];
+ const size_t packed_bytes = packed.size() * sizeof(packed[0]);
+ LOG("Packed R_ARM_RELATIVE: %lu bytes\n", packed_bytes);
+
+ // If we have insufficient R_ARM_RELATIVE relocations to form a run then
+ // packing fails.
+ if (packed.empty()) {
+ LOG("Too few R_ARM_RELATIVE relocations to pack\n");
+ return false;
+ }
+
+ // Run a loopback self-test as a check that packing is lossless.
+ std::vector<Elf32_Rel> unpacked;
+ packer.UnpackRelativeRelocations(packed, &unpacked);
+ CHECK(unpacked.size() == relative_relocations.size());
+ for (size_t i = 0; i < unpacked.size(); ++i) {
+ CHECK(unpacked[i].r_offset == relative_relocations[i].r_offset);
+ CHECK(unpacked[i].r_info == relative_relocations[i].r_info);
+ }
+
+ // Make sure packing saved some space.
+ if (packed_bytes >= initial_bytes) {
+ LOG("Packing R_ARM_RELATIVE relocations saves no space\n");
+ return false;
+ }
+
+ // If padding, add R_ARM_NONE relocations to other_relocations to make it
+ // the same size as the the original relocations we read in. This makes
+ // the ResizeSection() below a no-op.
+ if (is_padding_rel_dyn_) {
+ const Elf32_Rel r_arm_none = {R_ARM_NONE, 0};
+ const size_t required = relocations.size() - other_relocations.size();
+ std::vector<Elf32_Rel> padding(required, r_arm_none);
+ other_relocations.insert(
+ other_relocations.end(), padding.begin(), padding.end());
+ }
+
+ // Rewrite the current .rel.dyn section to be only the non-R_ARM_RELATIVE
+ // relocations, then shrink it to size.
+ const void* section_data = &other_relocations[0];
+ const size_t bytes = other_relocations.size() * sizeof(other_relocations[0]);
+ ResizeSection(elf_, rel_dyn_section_, bytes);
+ RewriteSectionData(data, section_data, bytes);
+
+ // Rewrite the current .android.rel.dyn section to hold the packed
+ // R_ARM_RELATIVE relocations.
+ data = GetSectionData(android_rel_dyn_section_);
+ ResizeSection(elf_, android_rel_dyn_section_, packed_bytes);
+ RewriteSectionData(data, packed_data, packed_bytes);
+
+ // Rewrite .dynamic to include two new tags describing .android.rel.dyn.
+ data = GetSectionData(dynamic_section_);
+ const Elf32_Dyn* dynamic_base = reinterpret_cast<Elf32_Dyn*>(data->d_buf);
+ std::vector<Elf32_Dyn> dynamics(
+ dynamic_base,
+ dynamic_base + data->d_size / sizeof(dynamics[0]));
+ section_header = elf32_getshdr(android_rel_dyn_section_);
+ // Use two of the spare slots to describe the .android.rel.dyn section.
+ const Elf32_Dyn offset_dyn
+ = {DT_ANDROID_ARM_REL_OFFSET, {section_header->sh_offset}};
+ AddDynamicEntry(offset_dyn, &dynamics);
+ const Elf32_Dyn size_dyn
+ = {DT_ANDROID_ARM_REL_SIZE, {section_header->sh_size}};
+ AddDynamicEntry(size_dyn, &dynamics);
+ const void* dynamics_data = &dynamics[0];
+ const size_t dynamics_bytes = dynamics.size() * sizeof(dynamics[0]);
+ RewriteSectionData(data, dynamics_data, dynamics_bytes);
+
+ Flush();
+ return true;
+}
+
+// Find packed R_ARM_RELATIVE relocations in .android.rel.dyn, unpack them,
+// and rewrite the .rel.dyn section in so_file to contain unpacked data.
+bool ElfFile::UnpackRelocations() {
+ // Load the ELF file into libelf.
+ if (!Load()) {
+ LOG("ERROR: Failed to load as ELF (elf_error=%d)\n", elf_errno());
+ return false;
+ }
+
+ // Retrieve the current .android.rel.dyn section data.
+ Elf_Data* data = GetSectionData(android_rel_dyn_section_);
+
+ // Convert data to a vector of bytes.
+ const uint8_t* packed_base = reinterpret_cast<uint8_t*>(data->d_buf);
+ std::vector<uint8_t> packed(
+ packed_base,
+ packed_base + data->d_size / sizeof(packed[0]));
+
+ // Properly packed data must begin with "APR1".
+ if (packed.empty() ||
+ packed[0] != 'A' || packed[1] != 'P' ||
+ packed[2] != 'R' || packed[3] != '1') {
+ LOG("ERROR: Packed R_ARM_RELATIVE relocations not found (not packed?)\n");
+ return false;
+ }
+
+ // Unpack the data to re-materialize the R_ARM_RELATIVE relocations.
+ const size_t packed_bytes = packed.size() * sizeof(packed[0]);
+ LOG("Packed R_ARM_RELATIVE: %lu bytes\n", packed_bytes);
+ std::vector<Elf32_Rel> relative_relocations;
+ RelocationPacker packer;
+ packer.UnpackRelativeRelocations(packed, &relative_relocations);
+ const size_t unpacked_bytes =
+ relative_relocations.size() * sizeof(relative_relocations[0]);
+ LOG("Unpacked R_ARM_RELATIVE: %lu bytes\n", unpacked_bytes);
+
+ // Retrieve the current .rel.dyn section data.
+ data = GetSectionData(rel_dyn_section_);
+
+ // Interpret data as Elf32 relocations.
+ const Elf32_Rel* relocations_base = reinterpret_cast<Elf32_Rel*>(data->d_buf);
+ std::vector<Elf32_Rel> relocations(
+ relocations_base,
+ relocations_base + data->d_size / sizeof(relocations[0]));
+
+ std::vector<Elf32_Rel> other_relocations;
+ size_t padding = 0;
+
+ // Filter relocations to locate any that are R_ARM_NONE. These will occur
+ // if padding was turned on for packing.
+ for (size_t i = 0; i < relocations.size(); ++i) {
+ const Elf32_Rel& relocation = relocations[i];
+ if (ELF32_R_TYPE(relocation.r_info) != R_ARM_NONE) {
+ other_relocations.push_back(relocation);
+ } else {
+ ++padding;
+ }
+ }
+ LOG("R_ARM_RELATIVE: %lu entries\n", relative_relocations.size());
+ LOG("Other : %lu entries\n", other_relocations.size());
+
+ // If we found the same number of R_ARM_NONE entries in .rel.dyn as we
+ // hold as unpacked relative relocations, then this is a padded file.
+ const bool is_padded = padding == relative_relocations.size();
+
+ // Pre-calculate the size of the hole we will open up when we rewrite
+ // .reldyn. We have to adjust all relocation addresses to account for this.
+ Elf32_Shdr* section_header = elf32_getshdr(rel_dyn_section_);
+ const Elf32_Off hole_start = section_header->sh_offset;
+ const size_t hole_size =
+ relative_relocations.size() * sizeof(relative_relocations[0]);
+
+ // Unless padded, pre-apply R_ARM_RELATIVE relocations to account for the
+ // hole, and pre-adjust all relocation offsets accordingly.
+ if (!is_padded) {
+ // Apply relocations to all R_ARM_RELATIVE data to relocate it into the
+ // area it will occupy once the hole in .rel.dyn is opened.
+ AdjustRelocationTargets(elf_, hole_start, hole_size, relative_relocations);
+ // Relocate the relocations.
+ AdjustRelocations(hole_start, hole_size, &relative_relocations);
+ AdjustRelocations(hole_start, hole_size, &other_relocations);
+ }
+
+ // Rewrite the current .rel.dyn section to be the R_ARM_RELATIVE relocations
+ // followed by other relocations. This is the usual order in which we find
+ // them after linking, so this action will normally put the entire .rel.dyn
+ // section back to its pre-split-and-packed state.
+ relocations.assign(relative_relocations.begin(), relative_relocations.end());
+ relocations.insert(relocations.end(),
+ other_relocations.begin(), other_relocations.end());
+ const void* section_data = &relocations[0];
+ const size_t bytes = relocations.size() * sizeof(relocations[0]);
+ LOG("Total : %lu entries\n", relocations.size());
+ ResizeSection(elf_, rel_dyn_section_, bytes);
+ RewriteSectionData(data, section_data, bytes);
+
+ // Nearly empty the current .android.rel.dyn section. Leaves a four-byte
+ // stub so that some data remains allocated to the section. This is a
+ // convenience which allows us to re-pack this file again without
+ // having to remove the section and then add a new small one with objcopy.
+ // The way we resize sections relies on there being some data in a section.
+ data = GetSectionData(android_rel_dyn_section_);
+ ResizeSection(elf_, android_rel_dyn_section_, sizeof(kStubIdentifier));
+ RewriteSectionData(data, &kStubIdentifier, sizeof(kStubIdentifier));
+
+ // Rewrite .dynamic to remove two tags describing .android.rel.dyn.
+ data = GetSectionData(dynamic_section_);
+ const Elf32_Dyn* dynamic_base = reinterpret_cast<Elf32_Dyn*>(data->d_buf);
+ std::vector<Elf32_Dyn> dynamics(
+ dynamic_base,
+ dynamic_base + data->d_size / sizeof(dynamics[0]));
+ RemoveDynamicEntry(DT_ANDROID_ARM_REL_SIZE, &dynamics);
+ RemoveDynamicEntry(DT_ANDROID_ARM_REL_OFFSET, &dynamics);
+ const void* dynamics_data = &dynamics[0];
+ const size_t dynamics_bytes = dynamics.size() * sizeof(dynamics[0]);
+ RewriteSectionData(data, dynamics_data, dynamics_bytes);
+
+ Flush();
+ return true;
+}
+
+// Flush rewritten shared object file data.
+void ElfFile::Flush() {
+ // Flag all ELF data held in memory as needing to be written back to the
+ // file, and tell libelf that we have controlled the file layout.
+ elf_flagelf(elf_, ELF_C_SET, ELF_F_DIRTY);
+ elf_flagelf(elf_, ELF_C_SET, ELF_F_LAYOUT);
+
+ // Write ELF data back to disk.
+ const off_t file_bytes = elf_update(elf_, ELF_C_WRITE);
+ CHECK(file_bytes > 0);
+ VLOG("elf_update returned: %lu\n", file_bytes);
+
+ // Clean up libelf, and truncate the output file to the number of bytes
+ // written by elf_update().
+ elf_end(elf_);
+ elf_ = NULL;
+ const int truncate = ftruncate(fd_, file_bytes);
+ CHECK(truncate == 0);
+}
+
+} // namespace relocation_packer
« no previous file with comments | « tools/relocation_packer/src/elf_file.h ('k') | tools/relocation_packer/src/elf_file_unittest.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698