| Index: tools/relocation_packer/src/elf_file.cc
|
| diff --git a/tools/relocation_packer/src/elf_file.cc b/tools/relocation_packer/src/elf_file.cc
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..103dff7d1ec6ae8f558bf085e523cf427b057f65
|
| --- /dev/null
|
| +++ b/tools/relocation_packer/src/elf_file.cc
|
| @@ -0,0 +1,977 @@
|
| +// Copyright 2014 The Chromium Authors. All rights reserved.
|
| +// Use of this source code is governed by a BSD-style license that can be
|
| +// found in the LICENSE file.
|
| +
|
| +// TODO(simonb): Extend for 64-bit target libraries.
|
| +
|
| +#include "elf_file.h"
|
| +
|
| +#include <stdlib.h>
|
| +#include <sys/types.h>
|
| +#include <unistd.h>
|
| +#include <string>
|
| +#include <vector>
|
| +
|
| +#include "debug.h"
|
| +#include "libelf.h"
|
| +#include "packer.h"
|
| +
|
| +namespace relocation_packer {
|
| +
|
| +// Stub identifier written to 'null out' packed data, "NULL".
|
| +static const Elf32_Word kStubIdentifier = 0x4c4c554eu;
|
| +
|
| +// Out-of-band dynamic tags used to indicate the offset and size of the
|
| +// .android.rel.dyn section.
|
| +static const Elf32_Sword DT_ANDROID_ARM_REL_OFFSET = DT_LOPROC;
|
| +static const Elf32_Sword DT_ANDROID_ARM_REL_SIZE = DT_LOPROC + 1;
|
| +
|
| +namespace {
|
| +
|
| +// Get section data. Checks that the section has exactly one data entry,
|
| +// so that the section size and the data size are the same. True in
|
| +// practice for all sections we resize when packing or unpacking. Done
|
| +// by ensuring that a call to elf_getdata(section, data) returns NULL as
|
| +// the next data entry.
|
| +Elf_Data* GetSectionData(Elf_Scn* section) {
|
| + Elf_Data* data = elf_getdata(section, NULL);
|
| + CHECK(data && elf_getdata(section, data) == NULL);
|
| + return data;
|
| +}
|
| +
|
| +// Rewrite section data. Allocates new data and makes it the data element's
|
| +// buffer. Relies on program exit to free allocated data.
|
| +void RewriteSectionData(Elf_Data* data,
|
| + const void* section_data,
|
| + size_t size) {
|
| + CHECK(size == data->d_size);
|
| + uint8_t* area = new uint8_t[size];
|
| + memcpy(area, section_data, size);
|
| + data->d_buf = area;
|
| +}
|
| +
|
| +// Verbose ELF header logging.
|
| +void VerboseLogElfHeader(const Elf32_Ehdr* elf_header) {
|
| + VLOG("e_phoff = %u\n", elf_header->e_phoff);
|
| + VLOG("e_shoff = %u\n", elf_header->e_shoff);
|
| + VLOG("e_ehsize = %u\n", elf_header->e_ehsize);
|
| + VLOG("e_phentsize = %u\n", elf_header->e_phentsize);
|
| + VLOG("e_phnum = %u\n", elf_header->e_phnum);
|
| + VLOG("e_shnum = %u\n", elf_header->e_shnum);
|
| + VLOG("e_shstrndx = %u\n", elf_header->e_shstrndx);
|
| +}
|
| +
|
| +// Verbose ELF program header logging.
|
| +void VerboseLogProgramHeader(size_t program_header_index,
|
| + const Elf32_Phdr* program_header) {
|
| + std::string type;
|
| + switch (program_header->p_type) {
|
| + case PT_NULL: type = "NULL"; break;
|
| + case PT_LOAD: type = "LOAD"; break;
|
| + case PT_DYNAMIC: type = "DYNAMIC"; break;
|
| + case PT_INTERP: type = "INTERP"; break;
|
| + case PT_NOTE: type = "NOTE"; break;
|
| + case PT_SHLIB: type = "SHLIB"; break;
|
| + case PT_PHDR: type = "PHDR"; break;
|
| + case PT_TLS: type = "TLS"; break;
|
| + default: type = "(OTHER)"; break;
|
| + }
|
| + VLOG("phdr %lu : %s\n", program_header_index, type.c_str());
|
| + VLOG(" p_offset = %u\n", program_header->p_offset);
|
| + VLOG(" p_vaddr = %u\n", program_header->p_vaddr);
|
| + VLOG(" p_paddr = %u\n", program_header->p_paddr);
|
| + VLOG(" p_filesz = %u\n", program_header->p_filesz);
|
| + VLOG(" p_memsz = %u\n", program_header->p_memsz);
|
| +}
|
| +
|
| +// Verbose ELF section header logging.
|
| +void VerboseLogSectionHeader(const std::string& section_name,
|
| + const Elf32_Shdr* section_header) {
|
| + VLOG("section %s\n", section_name.c_str());
|
| + VLOG(" sh_addr = %u\n", section_header->sh_addr);
|
| + VLOG(" sh_offset = %u\n", section_header->sh_offset);
|
| + VLOG(" sh_size = %u\n", section_header->sh_size);
|
| +}
|
| +
|
| +// Verbose ELF section data logging.
|
| +void VerboseLogSectionData(const Elf_Data* data) {
|
| + VLOG(" data\n");
|
| + VLOG(" d_buf = %p\n", data->d_buf);
|
| + VLOG(" d_off = %lu\n", data->d_off);
|
| + VLOG(" d_size = %lu\n", data->d_size);
|
| +}
|
| +
|
| +} // namespace
|
| +
|
| +// Load the complete ELF file into a memory image in libelf, and identify
|
| +// the .rel.dyn, .dynamic, and .android.rel.dyn sections. No-op if the
|
| +// ELF file has already been loaded.
|
| +bool ElfFile::Load() {
|
| + if (elf_)
|
| + return true;
|
| +
|
| + elf_ = elf_begin(fd_, ELF_C_RDWR, NULL);
|
| + CHECK(elf_);
|
| +
|
| + if (elf_kind(elf_) != ELF_K_ELF) {
|
| + LOG("ERROR: File not in ELF format\n");
|
| + return false;
|
| + }
|
| +
|
| + Elf32_Ehdr* elf_header = elf32_getehdr(elf_);
|
| + if (!elf_header) {
|
| + LOG("ERROR: Failed to load ELF header\n");
|
| + return false;
|
| + }
|
| + if (elf_header->e_machine != EM_ARM) {
|
| + LOG("ERROR: File is not an arm32 ELF file\n");
|
| + return false;
|
| + }
|
| +
|
| + // Require that our endianness matches that of the target, and that both
|
| + // are little-endian. Safe for all current build/target combinations.
|
| + const int endian = static_cast<int>(elf_header->e_ident[5]);
|
| + CHECK(endian == ELFDATA2LSB);
|
| + CHECK(__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__);
|
| +
|
| + VLOG("endian = %u\n", endian);
|
| + VerboseLogElfHeader(elf_header);
|
| +
|
| + const Elf32_Phdr* elf_program_header = elf32_getphdr(elf_);
|
| + CHECK(elf_program_header);
|
| +
|
| + const Elf32_Phdr* dynamic_program_header = NULL;
|
| + for (size_t i = 0; i < elf_header->e_phnum; ++i) {
|
| + const Elf32_Phdr* program_header = &elf_program_header[i];
|
| + VerboseLogProgramHeader(i, program_header);
|
| +
|
| + if (program_header->p_type == PT_DYNAMIC) {
|
| + CHECK(dynamic_program_header == NULL);
|
| + dynamic_program_header = program_header;
|
| + }
|
| + }
|
| + CHECK(dynamic_program_header != NULL);
|
| +
|
| + size_t string_index;
|
| + elf_getshdrstrndx(elf_, &string_index);
|
| +
|
| + // Notes of the .rel.dyn, .android.rel.dyn, and .dynamic sections. Found
|
| + // while iterating sections, and later stored in class attributes.
|
| + Elf_Scn* found_rel_dyn_section = NULL;
|
| + Elf_Scn* found_android_rel_dyn_section = NULL;
|
| + Elf_Scn* found_dynamic_section = NULL;
|
| +
|
| + // Flag set if we encounter any .debug* section. We do not adjust any
|
| + // offsets or addresses of any debug data, so if we find one of these then
|
| + // the resulting output shared object should still run, but might not be
|
| + // usable for debugging, disassembly, and so on. Provides a warning if
|
| + // this occurs.
|
| + bool has_debug_section = false;
|
| +
|
| + Elf_Scn* section = NULL;
|
| + while ((section = elf_nextscn(elf_, section)) != NULL) {
|
| + const Elf32_Shdr* section_header = elf32_getshdr(section);
|
| + std::string name = elf_strptr(elf_, string_index, section_header->sh_name);
|
| + VerboseLogSectionHeader(name, section_header);
|
| +
|
| + // Note special sections as we encounter them.
|
| + if (name == ".rel.dyn") {
|
| + found_rel_dyn_section = section;
|
| + }
|
| + if (name == ".android.rel.dyn") {
|
| + found_android_rel_dyn_section = section;
|
| + }
|
| + if (section_header->sh_offset == dynamic_program_header->p_offset) {
|
| + found_dynamic_section = section;
|
| + }
|
| +
|
| + // If we find a section named .debug*, set the debug warning flag.
|
| + if (std::string(name).find(".debug") == 0) {
|
| + has_debug_section = true;
|
| + }
|
| +
|
| + Elf_Data* data = NULL;
|
| + while ((data = elf_getdata(section, data)) != NULL) {
|
| + VerboseLogSectionData(data);
|
| + }
|
| + }
|
| +
|
| + // Loading failed if we did not find the required special sections.
|
| + if (!found_rel_dyn_section) {
|
| + LOG("ERROR: Missing .rel.dyn section\n");
|
| + return false;
|
| + }
|
| + if (!found_dynamic_section) {
|
| + LOG("ERROR: Missing .dynamic section\n");
|
| + return false;
|
| + }
|
| + if (!found_android_rel_dyn_section) {
|
| + LOG("ERROR: Missing .android.rel.dyn section "
|
| + "(to fix, run with --help and follow the pre-packing instructions)\n");
|
| + return false;
|
| + }
|
| +
|
| + if (has_debug_section) {
|
| + LOG("WARNING: found .debug section(s), and ignored them\n");
|
| + }
|
| +
|
| + rel_dyn_section_ = found_rel_dyn_section;
|
| + dynamic_section_ = found_dynamic_section;
|
| + android_rel_dyn_section_ = found_android_rel_dyn_section;
|
| + return true;
|
| +}
|
| +
|
| +namespace {
|
| +
|
| +// Helper for ResizeSection(). Adjust the main ELF header for the hole.
|
| +void AdjustElfHeaderForHole(Elf32_Ehdr* elf_header,
|
| + Elf32_Off hole_start,
|
| + int32_t hole_size) {
|
| + if (elf_header->e_phoff > hole_start) {
|
| + elf_header->e_phoff += hole_size;
|
| + VLOG("e_phoff adjusted to %u\n", elf_header->e_phoff);
|
| + }
|
| + if (elf_header->e_shoff > hole_start) {
|
| + elf_header->e_shoff += hole_size;
|
| + VLOG("e_shoff adjusted to %u\n", elf_header->e_shoff);
|
| + }
|
| +}
|
| +
|
| +// Helper for ResizeSection(). Adjust all program headers for the hole.
|
| +void AdjustProgramHeadersForHole(Elf32_Phdr* elf_program_header,
|
| + size_t program_header_count,
|
| + Elf32_Off hole_start,
|
| + int32_t hole_size) {
|
| + for (size_t i = 0; i < program_header_count; ++i) {
|
| + Elf32_Phdr* program_header = &elf_program_header[i];
|
| +
|
| + if (program_header->p_offset > hole_start) {
|
| + // The hole start is past this segment, so adjust offsets and addrs.
|
| + program_header->p_offset += hole_size;
|
| + VLOG("phdr %lu p_offset adjusted to %u\n", i, program_header->p_offset);
|
| +
|
| + // Only adjust vaddr and paddr if this program header has them.
|
| + if (program_header->p_vaddr != 0) {
|
| + program_header->p_vaddr += hole_size;
|
| + VLOG("phdr %lu p_vaddr adjusted to %u\n", i, program_header->p_vaddr);
|
| + }
|
| + if (program_header->p_paddr != 0) {
|
| + program_header->p_paddr += hole_size;
|
| + VLOG("phdr %lu p_paddr adjusted to %u\n", i, program_header->p_paddr);
|
| + }
|
| + } else if (program_header->p_offset +
|
| + program_header->p_filesz > hole_start) {
|
| + // The hole start is within this segment, so adjust file and in-memory
|
| + // sizes, but leave offsets and addrs unchanged.
|
| + program_header->p_filesz += hole_size;
|
| + VLOG("phdr %lu p_filesz adjusted to %u\n", i, program_header->p_filesz);
|
| + program_header->p_memsz += hole_size;
|
| + VLOG("phdr %lu p_memsz adjusted to %u\n", i, program_header->p_memsz);
|
| + }
|
| + }
|
| +}
|
| +
|
| +// Helper for ResizeSection(). Adjust all section headers for the hole.
|
| +void AdjustSectionHeadersForHole(Elf* elf,
|
| + Elf32_Off hole_start,
|
| + int32_t hole_size) {
|
| + size_t string_index;
|
| + elf_getshdrstrndx(elf, &string_index);
|
| +
|
| + Elf_Scn* section = NULL;
|
| + while ((section = elf_nextscn(elf, section)) != NULL) {
|
| + Elf32_Shdr* section_header = elf32_getshdr(section);
|
| + std::string name = elf_strptr(elf, string_index, section_header->sh_name);
|
| +
|
| + if (section_header->sh_offset > hole_start) {
|
| + section_header->sh_offset += hole_size;
|
| + VLOG("section %s sh_offset"
|
| + " adjusted to %u\n", name.c_str(), section_header->sh_offset);
|
| + // Only adjust section addr if this section has one.
|
| + if (section_header->sh_addr != 0) {
|
| + section_header->sh_addr += hole_size;
|
| + VLOG("section %s sh_addr"
|
| + " adjusted to %u\n", name.c_str(), section_header->sh_addr);
|
| + }
|
| + }
|
| + }
|
| +}
|
| +
|
| +// Helper for ResizeSection(). Adjust the .dynamic section for the hole.
|
| +void AdjustDynamicSectionForHole(Elf_Scn* dynamic_section,
|
| + bool is_rel_dyn_resize,
|
| + Elf32_Off hole_start,
|
| + int32_t hole_size) {
|
| + Elf_Data* data = GetSectionData(dynamic_section);
|
| +
|
| + const Elf32_Dyn* dynamic_base = reinterpret_cast<Elf32_Dyn*>(data->d_buf);
|
| + std::vector<Elf32_Dyn> dynamics(
|
| + dynamic_base,
|
| + dynamic_base + data->d_size / sizeof(dynamics[0]));
|
| +
|
| + for (size_t i = 0; i < dynamics.size(); ++i) {
|
| + Elf32_Dyn* dynamic = &dynamics[i];
|
| + const Elf32_Sword tag = dynamic->d_tag;
|
| + // Any tags that hold offsets are adjustment candidates.
|
| + const bool is_adjustable = (tag == DT_PLTGOT ||
|
| + tag == DT_HASH ||
|
| + tag == DT_STRTAB ||
|
| + tag == DT_SYMTAB ||
|
| + tag == DT_RELA ||
|
| + tag == DT_INIT ||
|
| + tag == DT_FINI ||
|
| + tag == DT_REL ||
|
| + tag == DT_JMPREL ||
|
| + tag == DT_INIT_ARRAY ||
|
| + tag == DT_FINI_ARRAY ||
|
| + tag == DT_ANDROID_ARM_REL_OFFSET);
|
| + if (is_adjustable && dynamic->d_un.d_ptr > hole_start) {
|
| + dynamic->d_un.d_ptr += hole_size;
|
| + VLOG("dynamic[%lu] %u"
|
| + " d_ptr adjusted to %u\n", i, dynamic->d_tag, dynamic->d_un.d_ptr);
|
| + }
|
| +
|
| + // If we are specifically resizing .rel.dyn, we need to make some added
|
| + // adjustments to tags that indicate the counts of R_ARM_RELATIVE
|
| + // relocations in the shared object.
|
| + if (is_rel_dyn_resize) {
|
| + // DT_RELSZ is the overall size of relocations. Adjust by hole size.
|
| + if (tag == DT_RELSZ) {
|
| + dynamic->d_un.d_val += hole_size;
|
| + VLOG("dynamic[%lu] %u"
|
| + " d_val adjusted to %u\n", i, dynamic->d_tag, dynamic->d_un.d_val);
|
| + }
|
| +
|
| + // The crazy linker does not use DT_RELCOUNT, but we keep it updated
|
| + // anyway. In practice the section hole is always equal to the size
|
| + // of R_ARM_RELATIVE relocations, and DT_RELCOUNT is the count of
|
| + // relative relocations. So closing a hole on packing reduces
|
| + // DT_RELCOUNT to zero, and opening a hole on unpacking restores it to
|
| + // its pre-packed value.
|
| + if (tag == DT_RELCOUNT) {
|
| + dynamic->d_un.d_val += hole_size / sizeof(Elf32_Rel);
|
| + VLOG("dynamic[%lu] %u"
|
| + " d_val adjusted to %u\n", i, dynamic->d_tag, dynamic->d_un.d_val);
|
| + }
|
| +
|
| + // DT_RELENT doesn't change, but make sure it is what we expect.
|
| + if (tag == DT_RELENT) {
|
| + CHECK(dynamic->d_un.d_val == sizeof(Elf32_Rel));
|
| + }
|
| + }
|
| + }
|
| +
|
| + void* section_data = &dynamics[0];
|
| + size_t bytes = dynamics.size() * sizeof(dynamics[0]);
|
| + RewriteSectionData(data, section_data, bytes);
|
| +}
|
| +
|
| +// Helper for ResizeSection(). Adjust the .dynsym section for the hole.
|
| +// We need to adjust the values for the symbols represented in it.
|
| +void AdjustDynSymSectionForHole(Elf_Scn* dynsym_section,
|
| + Elf32_Off hole_start,
|
| + int32_t hole_size) {
|
| + Elf_Data* data = GetSectionData(dynsym_section);
|
| +
|
| + const Elf32_Sym* dynsym_base = reinterpret_cast<Elf32_Sym*>(data->d_buf);
|
| + std::vector<Elf32_Sym> dynsyms
|
| + (dynsym_base,
|
| + dynsym_base + data->d_size / sizeof(dynsyms[0]));
|
| +
|
| + for (size_t i = 0; i < dynsyms.size(); ++i) {
|
| + Elf32_Sym* dynsym = &dynsyms[i];
|
| + const int type = static_cast<int>(ELF32_ST_TYPE(dynsym->st_info));
|
| + const bool is_adjustable = (type == STT_OBJECT ||
|
| + type == STT_FUNC ||
|
| + type == STT_SECTION ||
|
| + type == STT_FILE ||
|
| + type == STT_COMMON ||
|
| + type == STT_TLS);
|
| + if (is_adjustable && dynsym->st_value > hole_start) {
|
| + dynsym->st_value += hole_size;
|
| + VLOG("dynsym[%lu] type=%u"
|
| + " st_value adjusted to %u\n", i, type, dynsym->st_value);
|
| + }
|
| + }
|
| +
|
| + void* section_data = &dynsyms[0];
|
| + size_t bytes = dynsyms.size() * sizeof(dynsyms[0]);
|
| + RewriteSectionData(data, section_data, bytes);
|
| +}
|
| +
|
| +// Helper for ResizeSection(). Adjust the .rel.plt section for the hole.
|
| +// We need to adjust the offset of every relocation inside it that falls
|
| +// beyond the hole start.
|
| +void AdjustRelPltSectionForHole(Elf_Scn* relplt_section,
|
| + Elf32_Off hole_start,
|
| + int32_t hole_size) {
|
| + Elf_Data* data = GetSectionData(relplt_section);
|
| +
|
| + const Elf32_Rel* relplt_base = reinterpret_cast<Elf32_Rel*>(data->d_buf);
|
| + std::vector<Elf32_Rel> relplts(
|
| + relplt_base,
|
| + relplt_base + data->d_size / sizeof(relplts[0]));
|
| +
|
| + for (size_t i = 0; i < relplts.size(); ++i) {
|
| + Elf32_Rel* relplt = &relplts[i];
|
| + if (relplt->r_offset > hole_start) {
|
| + relplt->r_offset += hole_size;
|
| + VLOG("relplt[%lu] r_offset adjusted to %u\n", i, relplt->r_offset);
|
| + }
|
| + }
|
| +
|
| + void* section_data = &relplts[0];
|
| + size_t bytes = relplts.size() * sizeof(relplts[0]);
|
| + RewriteSectionData(data, section_data, bytes);
|
| +}
|
| +
|
| +// Helper for ResizeSection(). Adjust the .symtab section for the hole.
|
| +// We want to adjust the value of every symbol in it that falls beyond
|
| +// the hole start.
|
| +void AdjustSymTabSectionForHole(Elf_Scn* symtab_section,
|
| + Elf32_Off hole_start,
|
| + int32_t hole_size) {
|
| + Elf_Data* data = GetSectionData(symtab_section);
|
| +
|
| + const Elf32_Sym* symtab_base = reinterpret_cast<Elf32_Sym*>(data->d_buf);
|
| + std::vector<Elf32_Sym> symtab(
|
| + symtab_base,
|
| + symtab_base + data->d_size / sizeof(symtab[0]));
|
| +
|
| + for (size_t i = 0; i < symtab.size(); ++i) {
|
| + Elf32_Sym* sym = &symtab[i];
|
| + if (sym->st_value > hole_start) {
|
| + sym->st_value += hole_size;
|
| + VLOG("symtab[%lu] value adjusted to %u\n", i, sym->st_value);
|
| + }
|
| + }
|
| +
|
| + void* section_data = &symtab[0];
|
| + size_t bytes = symtab.size() * sizeof(symtab[0]);
|
| + RewriteSectionData(data, section_data, bytes);
|
| +}
|
| +
|
| +// Resize a section. If the new size is larger than the current size, open
|
| +// up a hole by increasing file offsets that come after the hole. If smaller
|
| +// than the current size, remove the hole by decreasing those offsets.
|
| +void ResizeSection(Elf* elf, Elf_Scn* section, size_t new_size) {
|
| + Elf32_Shdr* section_header = elf32_getshdr(section);
|
| + if (section_header->sh_size == new_size)
|
| + return;
|
| +
|
| + // Note if we are resizing the real .rel.dyn. If yes, then we have to
|
| + // massage d_un.d_val in the dynamic section where d_tag is DT_RELSZ and
|
| + // DT_RELCOUNT.
|
| + size_t string_index;
|
| + elf_getshdrstrndx(elf, &string_index);
|
| + const std::string section_name =
|
| + elf_strptr(elf, string_index, section_header->sh_name);
|
| + const bool is_rel_dyn_resize = section_name == ".rel.dyn";
|
| +
|
| + // Require that the section size and the data size are the same. True
|
| + // in practice for all sections we resize when packing or unpacking.
|
| + Elf_Data* data = GetSectionData(section);
|
| + CHECK(data->d_off == 0 && data->d_size == section_header->sh_size);
|
| +
|
| + // Require that the section is not zero-length (that is, has allocated
|
| + // data that we can validly expand).
|
| + CHECK(data->d_size && data->d_buf);
|
| +
|
| + const Elf32_Off hole_start = section_header->sh_offset;
|
| + const int32_t hole_size = new_size - data->d_size;
|
| +
|
| + VLOG_IF(hole_size > 0, "expand section size = %lu\n", data->d_size);
|
| + VLOG_IF(hole_size < 0, "shrink section size = %lu\n", data->d_size);
|
| +
|
| + // Resize the data and the section header.
|
| + data->d_size += hole_size;
|
| + section_header->sh_size += hole_size;
|
| +
|
| + Elf32_Ehdr* elf_header = elf32_getehdr(elf);
|
| + Elf32_Phdr* elf_program_header = elf32_getphdr(elf);
|
| +
|
| + // Add the hole size to all offsets in the ELF file that are after the
|
| + // start of the hole. If the hole size is positive we are expanding the
|
| + // section to create a new hole; if negative, we are closing up a hole.
|
| +
|
| + // Start with the main ELF header.
|
| + AdjustElfHeaderForHole(elf_header, hole_start, hole_size);
|
| +
|
| + // Adjust all program headers.
|
| + AdjustProgramHeadersForHole(elf_program_header,
|
| + elf_header->e_phnum,
|
| + hole_start,
|
| + hole_size);
|
| +
|
| + // Adjust all section headers.
|
| + AdjustSectionHeadersForHole(elf, hole_start, hole_size);
|
| +
|
| + // We use the dynamic program header entry to locate the dynamic section.
|
| + const Elf32_Phdr* dynamic_program_header = NULL;
|
| +
|
| + // Find the dynamic program header entry.
|
| + for (size_t i = 0; i < elf_header->e_phnum; ++i) {
|
| + Elf32_Phdr* program_header = &elf_program_header[i];
|
| +
|
| + if (program_header->p_type == PT_DYNAMIC) {
|
| + dynamic_program_header = program_header;
|
| + }
|
| + }
|
| + CHECK(dynamic_program_header);
|
| +
|
| + // Sections requiring special attention, and the .android.rel.dyn offset.
|
| + Elf_Scn* dynamic_section = NULL;
|
| + Elf_Scn* dynsym_section = NULL;
|
| + Elf_Scn* relplt_section = NULL;
|
| + Elf_Scn* symtab_section = NULL;
|
| + Elf32_Off android_rel_dyn_offset = 0;
|
| +
|
| + // Find these sections, and the .android.rel.dyn offset.
|
| + section = NULL;
|
| + while ((section = elf_nextscn(elf, section)) != NULL) {
|
| + Elf32_Shdr* section_header = elf32_getshdr(section);
|
| + std::string name = elf_strptr(elf, string_index, section_header->sh_name);
|
| +
|
| + if (section_header->sh_offset == dynamic_program_header->p_offset) {
|
| + dynamic_section = section;
|
| + }
|
| + if (name == ".dynsym") {
|
| + dynsym_section = section;
|
| + }
|
| + if (name == ".rel.plt") {
|
| + relplt_section = section;
|
| + }
|
| + if (name == ".symtab") {
|
| + symtab_section = section;
|
| + }
|
| +
|
| + // Note .android.rel.dyn offset.
|
| + if (name == ".android.rel.dyn") {
|
| + android_rel_dyn_offset = section_header->sh_offset;
|
| + }
|
| + }
|
| + CHECK(dynamic_section != NULL);
|
| + CHECK(dynsym_section != NULL);
|
| + CHECK(relplt_section != NULL);
|
| + CHECK(android_rel_dyn_offset != 0);
|
| +
|
| + // Adjust the .dynamic section for the hole. Because we have to edit the
|
| + // current contents of .dynamic we disallow resizing it.
|
| + CHECK(section != dynamic_section);
|
| + AdjustDynamicSectionForHole(dynamic_section,
|
| + is_rel_dyn_resize,
|
| + hole_start,
|
| + hole_size);
|
| +
|
| + // Adjust the .dynsym section for the hole.
|
| + AdjustDynSymSectionForHole(dynsym_section, hole_start, hole_size);
|
| +
|
| + // Adjust the .rel.plt section for the hole.
|
| + AdjustRelPltSectionForHole(relplt_section, hole_start, hole_size);
|
| +
|
| + // If present, adjust the .symtab section for the hole. If the shared
|
| + // library was stripped then .symtab will be absent.
|
| + if (symtab_section)
|
| + AdjustSymTabSectionForHole(symtab_section, hole_start, hole_size);
|
| +}
|
| +
|
| +// Replace the first free (unused) slot in a dynamics vector with the given
|
| +// value. The vector always ends with a free (unused) element, so the slot
|
| +// found cannot be the last one in the vector.
|
| +void AddDynamicEntry(Elf32_Dyn dyn,
|
| + std::vector<Elf32_Dyn>* dynamics) {
|
| + // Loop until the penultimate entry. We cannot replace the end sentinel.
|
| + for (size_t i = 0; i < dynamics->size() - 1; ++i) {
|
| + Elf32_Dyn &slot = dynamics->at(i);
|
| + if (slot.d_tag == DT_NULL) {
|
| + slot = dyn;
|
| + VLOG("dynamic[%lu] overwritten with %u\n", i, dyn.d_tag);
|
| + return;
|
| + }
|
| + }
|
| +
|
| + // No free dynamics vector slot was found.
|
| + LOG("FATAL: No spare dynamic vector slots found "
|
| + "(to fix, increase gold's --spare-dynamic-tags value)\n");
|
| + NOTREACHED();
|
| +}
|
| +
|
| +// Remove the element in the dynamics vector that matches the given tag with
|
| +// unused slot data. Shuffle the following elements up, and ensure that the
|
| +// last is the null sentinel.
|
| +void RemoveDynamicEntry(Elf32_Sword tag,
|
| + std::vector<Elf32_Dyn>* dynamics) {
|
| + // Loop until the penultimate entry, and never match the end sentinel.
|
| + for (size_t i = 0; i < dynamics->size() - 1; ++i) {
|
| + Elf32_Dyn &slot = dynamics->at(i);
|
| + if (slot.d_tag == tag) {
|
| + for ( ; i < dynamics->size() - 1; ++i) {
|
| + dynamics->at(i) = dynamics->at(i + 1);
|
| + VLOG("dynamic[%lu] overwritten with dynamic[%lu]\n", i, i + 1);
|
| + }
|
| + CHECK(dynamics->at(i).d_tag == DT_NULL);
|
| + return;
|
| + }
|
| + }
|
| +
|
| + // No matching dynamics vector entry was found.
|
| + NOTREACHED();
|
| +}
|
| +
|
| +// Apply R_ARM_RELATIVE relocations to the file data to which they refer.
|
| +// This relocates data into the area it will occupy after the hole in
|
| +// .rel.dyn is added or removed.
|
| +void AdjustRelocationTargets(Elf* elf,
|
| + Elf32_Off hole_start,
|
| + size_t hole_size,
|
| + const std::vector<Elf32_Rel>& relocations) {
|
| + Elf_Scn* section = NULL;
|
| + while ((section = elf_nextscn(elf, section)) != NULL) {
|
| + const Elf32_Shdr* section_header = elf32_getshdr(section);
|
| +
|
| + // Identify this section's start and end addresses.
|
| + const Elf32_Addr section_start = section_header->sh_addr;
|
| + const Elf32_Addr section_end = section_start + section_header->sh_size;
|
| +
|
| + Elf_Data* data = GetSectionData(section);
|
| +
|
| + // Ignore sections with no effective data.
|
| + if (data->d_buf == NULL)
|
| + continue;
|
| +
|
| + // Create a copy-on-write pointer to the section's data.
|
| + uint8_t* area = reinterpret_cast<uint8_t*>(data->d_buf);
|
| +
|
| + for (size_t i = 0; i < relocations.size(); ++i) {
|
| + const Elf32_Rel* relocation = &relocations[i];
|
| + CHECK(ELF32_R_TYPE(relocation->r_info) == R_ARM_RELATIVE);
|
| +
|
| + // See if this relocation points into the current section.
|
| + if (relocation->r_offset >= section_start &&
|
| + relocation->r_offset < section_end) {
|
| + Elf32_Addr byte_offset = relocation->r_offset - section_start;
|
| + Elf32_Off* target = reinterpret_cast<Elf32_Off*>(area + byte_offset);
|
| +
|
| + // Is the relocation's target after the hole's start?
|
| + if (*target > hole_start) {
|
| +
|
| + // Copy on first write. Recompute target to point into the newly
|
| + // allocated buffer.
|
| + if (area == data->d_buf) {
|
| + area = new uint8_t[data->d_size];
|
| + memcpy(area, data->d_buf, data->d_size);
|
| + target = reinterpret_cast<Elf32_Off*>(area + byte_offset);
|
| + }
|
| +
|
| + *target += hole_size;
|
| + VLOG("relocation[%lu] target adjusted to %u\n", i, *target);
|
| + }
|
| + }
|
| + }
|
| +
|
| + // If we applied any relocation to this section, write it back.
|
| + if (area != data->d_buf) {
|
| + RewriteSectionData(data, area, data->d_size);
|
| + delete [] area;
|
| + }
|
| + }
|
| +}
|
| +
|
| +// Adjust relocations so that the offset that they indicate will be correct
|
| +// after the hole in .rel.dyn is added or removed (in effect, relocate the
|
| +// relocations).
|
| +void AdjustRelocations(Elf32_Off hole_start,
|
| + size_t hole_size,
|
| + std::vector<Elf32_Rel>* relocations) {
|
| + for (size_t i = 0; i < relocations->size(); ++i) {
|
| + Elf32_Rel* relocation = &relocations->at(i);
|
| + if (relocation->r_offset > hole_start) {
|
| + relocation->r_offset += hole_size;
|
| + VLOG("relocation[%lu] offset adjusted to %u\n", i, relocation->r_offset);
|
| + }
|
| + }
|
| +}
|
| +
|
| +} // namespace
|
| +
|
| +// Remove R_ARM_RELATIVE entries from .rel.dyn and write as packed data
|
| +// into .android.rel.dyn.
|
| +bool ElfFile::PackRelocations() {
|
| + // Load the ELF file into libelf.
|
| + if (!Load()) {
|
| + LOG("ERROR: Failed to load as ELF (elf_error=%d)\n", elf_errno());
|
| + return false;
|
| + }
|
| +
|
| + // Retrieve the current .rel.dyn section data.
|
| + Elf_Data* data = GetSectionData(rel_dyn_section_);
|
| +
|
| + // Convert data to a vector of Elf32 relocations.
|
| + const Elf32_Rel* relocations_base = reinterpret_cast<Elf32_Rel*>(data->d_buf);
|
| + std::vector<Elf32_Rel> relocations(
|
| + relocations_base,
|
| + relocations_base + data->d_size / sizeof(relocations[0]));
|
| +
|
| + std::vector<Elf32_Rel> relative_relocations;
|
| + std::vector<Elf32_Rel> other_relocations;
|
| +
|
| + // Filter relocations into those that are R_ARM_RELATIVE and others.
|
| + for (size_t i = 0; i < relocations.size(); ++i) {
|
| + const Elf32_Rel& relocation = relocations[i];
|
| + if (ELF32_R_TYPE(relocation.r_info) == R_ARM_RELATIVE) {
|
| + CHECK(ELF32_R_SYM(relocation.r_info) == 0);
|
| + relative_relocations.push_back(relocation);
|
| + } else {
|
| + other_relocations.push_back(relocation);
|
| + }
|
| + }
|
| + VLOG("R_ARM_RELATIVE: %lu entries\n", relative_relocations.size());
|
| + VLOG("Other : %lu entries\n", other_relocations.size());
|
| + VLOG("Total : %lu entries\n", relocations.size());
|
| +
|
| + // If no relative relocations then we have nothing packable. Perhaps
|
| + // the shared object has already been packed?
|
| + if (relative_relocations.empty()) {
|
| + LOG("ERROR: No R_ARM_RELATIVE relocations found (already packed?)\n");
|
| + return false;
|
| + }
|
| +
|
| + // Pre-calculate the size of the hole we will close up when we rewrite
|
| + // .reldyn. We have to adjust all relocation addresses to account for this.
|
| + Elf32_Shdr* section_header = elf32_getshdr(rel_dyn_section_);
|
| + const Elf32_Off hole_start = section_header->sh_offset;
|
| + const size_t hole_size =
|
| + relative_relocations.size() * sizeof(relative_relocations[0]);
|
| +
|
| + // Unless padding, pre-apply R_ARM_RELATIVE relocations to account for the
|
| + // hole, and pre-adjust all relocation offsets accordingly.
|
| + if (!is_padding_rel_dyn_) {
|
| + // Apply relocations to all R_ARM_RELATIVE data to relocate it into the
|
| + // area it will occupy once the hole in .rel.dyn is removed.
|
| + AdjustRelocationTargets(elf_, hole_start, -hole_size, relative_relocations);
|
| + // Relocate the relocations.
|
| + AdjustRelocations(hole_start, -hole_size, &relative_relocations);
|
| + AdjustRelocations(hole_start, -hole_size, &other_relocations);
|
| + }
|
| +
|
| + // Pack R_ARM_RELATIVE relocations.
|
| + const size_t initial_bytes =
|
| + relative_relocations.size() * sizeof(relative_relocations[0]);
|
| + LOG("Unpacked R_ARM_RELATIVE: %lu bytes\n", initial_bytes);
|
| + std::vector<uint8_t> packed;
|
| + RelocationPacker packer;
|
| + packer.PackRelativeRelocations(relative_relocations, &packed);
|
| + const void* packed_data = &packed[0];
|
| + const size_t packed_bytes = packed.size() * sizeof(packed[0]);
|
| + LOG("Packed R_ARM_RELATIVE: %lu bytes\n", packed_bytes);
|
| +
|
| + // If we have insufficient R_ARM_RELATIVE relocations to form a run then
|
| + // packing fails.
|
| + if (packed.empty()) {
|
| + LOG("Too few R_ARM_RELATIVE relocations to pack\n");
|
| + return false;
|
| + }
|
| +
|
| + // Run a loopback self-test as a check that packing is lossless.
|
| + std::vector<Elf32_Rel> unpacked;
|
| + packer.UnpackRelativeRelocations(packed, &unpacked);
|
| + CHECK(unpacked.size() == relative_relocations.size());
|
| + for (size_t i = 0; i < unpacked.size(); ++i) {
|
| + CHECK(unpacked[i].r_offset == relative_relocations[i].r_offset);
|
| + CHECK(unpacked[i].r_info == relative_relocations[i].r_info);
|
| + }
|
| +
|
| + // Make sure packing saved some space.
|
| + if (packed_bytes >= initial_bytes) {
|
| + LOG("Packing R_ARM_RELATIVE relocations saves no space\n");
|
| + return false;
|
| + }
|
| +
|
| + // If padding, add R_ARM_NONE relocations to other_relocations to make it
|
| + // the same size as the the original relocations we read in. This makes
|
| + // the ResizeSection() below a no-op.
|
| + if (is_padding_rel_dyn_) {
|
| + const Elf32_Rel r_arm_none = {R_ARM_NONE, 0};
|
| + const size_t required = relocations.size() - other_relocations.size();
|
| + std::vector<Elf32_Rel> padding(required, r_arm_none);
|
| + other_relocations.insert(
|
| + other_relocations.end(), padding.begin(), padding.end());
|
| + }
|
| +
|
| + // Rewrite the current .rel.dyn section to be only the non-R_ARM_RELATIVE
|
| + // relocations, then shrink it to size.
|
| + const void* section_data = &other_relocations[0];
|
| + const size_t bytes = other_relocations.size() * sizeof(other_relocations[0]);
|
| + ResizeSection(elf_, rel_dyn_section_, bytes);
|
| + RewriteSectionData(data, section_data, bytes);
|
| +
|
| + // Rewrite the current .android.rel.dyn section to hold the packed
|
| + // R_ARM_RELATIVE relocations.
|
| + data = GetSectionData(android_rel_dyn_section_);
|
| + ResizeSection(elf_, android_rel_dyn_section_, packed_bytes);
|
| + RewriteSectionData(data, packed_data, packed_bytes);
|
| +
|
| + // Rewrite .dynamic to include two new tags describing .android.rel.dyn.
|
| + data = GetSectionData(dynamic_section_);
|
| + const Elf32_Dyn* dynamic_base = reinterpret_cast<Elf32_Dyn*>(data->d_buf);
|
| + std::vector<Elf32_Dyn> dynamics(
|
| + dynamic_base,
|
| + dynamic_base + data->d_size / sizeof(dynamics[0]));
|
| + section_header = elf32_getshdr(android_rel_dyn_section_);
|
| + // Use two of the spare slots to describe the .android.rel.dyn section.
|
| + const Elf32_Dyn offset_dyn
|
| + = {DT_ANDROID_ARM_REL_OFFSET, {section_header->sh_offset}};
|
| + AddDynamicEntry(offset_dyn, &dynamics);
|
| + const Elf32_Dyn size_dyn
|
| + = {DT_ANDROID_ARM_REL_SIZE, {section_header->sh_size}};
|
| + AddDynamicEntry(size_dyn, &dynamics);
|
| + const void* dynamics_data = &dynamics[0];
|
| + const size_t dynamics_bytes = dynamics.size() * sizeof(dynamics[0]);
|
| + RewriteSectionData(data, dynamics_data, dynamics_bytes);
|
| +
|
| + Flush();
|
| + return true;
|
| +}
|
| +
|
| +// Find packed R_ARM_RELATIVE relocations in .android.rel.dyn, unpack them,
|
| +// and rewrite the .rel.dyn section in so_file to contain unpacked data.
|
| +bool ElfFile::UnpackRelocations() {
|
| + // Load the ELF file into libelf.
|
| + if (!Load()) {
|
| + LOG("ERROR: Failed to load as ELF (elf_error=%d)\n", elf_errno());
|
| + return false;
|
| + }
|
| +
|
| + // Retrieve the current .android.rel.dyn section data.
|
| + Elf_Data* data = GetSectionData(android_rel_dyn_section_);
|
| +
|
| + // Convert data to a vector of bytes.
|
| + const uint8_t* packed_base = reinterpret_cast<uint8_t*>(data->d_buf);
|
| + std::vector<uint8_t> packed(
|
| + packed_base,
|
| + packed_base + data->d_size / sizeof(packed[0]));
|
| +
|
| + // Properly packed data must begin with "APR1".
|
| + if (packed.empty() ||
|
| + packed[0] != 'A' || packed[1] != 'P' ||
|
| + packed[2] != 'R' || packed[3] != '1') {
|
| + LOG("ERROR: Packed R_ARM_RELATIVE relocations not found (not packed?)\n");
|
| + return false;
|
| + }
|
| +
|
| + // Unpack the data to re-materialize the R_ARM_RELATIVE relocations.
|
| + const size_t packed_bytes = packed.size() * sizeof(packed[0]);
|
| + LOG("Packed R_ARM_RELATIVE: %lu bytes\n", packed_bytes);
|
| + std::vector<Elf32_Rel> relative_relocations;
|
| + RelocationPacker packer;
|
| + packer.UnpackRelativeRelocations(packed, &relative_relocations);
|
| + const size_t unpacked_bytes =
|
| + relative_relocations.size() * sizeof(relative_relocations[0]);
|
| + LOG("Unpacked R_ARM_RELATIVE: %lu bytes\n", unpacked_bytes);
|
| +
|
| + // Retrieve the current .rel.dyn section data.
|
| + data = GetSectionData(rel_dyn_section_);
|
| +
|
| + // Interpret data as Elf32 relocations.
|
| + const Elf32_Rel* relocations_base = reinterpret_cast<Elf32_Rel*>(data->d_buf);
|
| + std::vector<Elf32_Rel> relocations(
|
| + relocations_base,
|
| + relocations_base + data->d_size / sizeof(relocations[0]));
|
| +
|
| + std::vector<Elf32_Rel> other_relocations;
|
| + size_t padding = 0;
|
| +
|
| + // Filter relocations to locate any that are R_ARM_NONE. These will occur
|
| + // if padding was turned on for packing.
|
| + for (size_t i = 0; i < relocations.size(); ++i) {
|
| + const Elf32_Rel& relocation = relocations[i];
|
| + if (ELF32_R_TYPE(relocation.r_info) != R_ARM_NONE) {
|
| + other_relocations.push_back(relocation);
|
| + } else {
|
| + ++padding;
|
| + }
|
| + }
|
| + LOG("R_ARM_RELATIVE: %lu entries\n", relative_relocations.size());
|
| + LOG("Other : %lu entries\n", other_relocations.size());
|
| +
|
| + // If we found the same number of R_ARM_NONE entries in .rel.dyn as we
|
| + // hold as unpacked relative relocations, then this is a padded file.
|
| + const bool is_padded = padding == relative_relocations.size();
|
| +
|
| + // Pre-calculate the size of the hole we will open up when we rewrite
|
| + // .reldyn. We have to adjust all relocation addresses to account for this.
|
| + Elf32_Shdr* section_header = elf32_getshdr(rel_dyn_section_);
|
| + const Elf32_Off hole_start = section_header->sh_offset;
|
| + const size_t hole_size =
|
| + relative_relocations.size() * sizeof(relative_relocations[0]);
|
| +
|
| + // Unless padded, pre-apply R_ARM_RELATIVE relocations to account for the
|
| + // hole, and pre-adjust all relocation offsets accordingly.
|
| + if (!is_padded) {
|
| + // Apply relocations to all R_ARM_RELATIVE data to relocate it into the
|
| + // area it will occupy once the hole in .rel.dyn is opened.
|
| + AdjustRelocationTargets(elf_, hole_start, hole_size, relative_relocations);
|
| + // Relocate the relocations.
|
| + AdjustRelocations(hole_start, hole_size, &relative_relocations);
|
| + AdjustRelocations(hole_start, hole_size, &other_relocations);
|
| + }
|
| +
|
| + // Rewrite the current .rel.dyn section to be the R_ARM_RELATIVE relocations
|
| + // followed by other relocations. This is the usual order in which we find
|
| + // them after linking, so this action will normally put the entire .rel.dyn
|
| + // section back to its pre-split-and-packed state.
|
| + relocations.assign(relative_relocations.begin(), relative_relocations.end());
|
| + relocations.insert(relocations.end(),
|
| + other_relocations.begin(), other_relocations.end());
|
| + const void* section_data = &relocations[0];
|
| + const size_t bytes = relocations.size() * sizeof(relocations[0]);
|
| + LOG("Total : %lu entries\n", relocations.size());
|
| + ResizeSection(elf_, rel_dyn_section_, bytes);
|
| + RewriteSectionData(data, section_data, bytes);
|
| +
|
| + // Nearly empty the current .android.rel.dyn section. Leaves a four-byte
|
| + // stub so that some data remains allocated to the section. This is a
|
| + // convenience which allows us to re-pack this file again without
|
| + // having to remove the section and then add a new small one with objcopy.
|
| + // The way we resize sections relies on there being some data in a section.
|
| + data = GetSectionData(android_rel_dyn_section_);
|
| + ResizeSection(elf_, android_rel_dyn_section_, sizeof(kStubIdentifier));
|
| + RewriteSectionData(data, &kStubIdentifier, sizeof(kStubIdentifier));
|
| +
|
| + // Rewrite .dynamic to remove two tags describing .android.rel.dyn.
|
| + data = GetSectionData(dynamic_section_);
|
| + const Elf32_Dyn* dynamic_base = reinterpret_cast<Elf32_Dyn*>(data->d_buf);
|
| + std::vector<Elf32_Dyn> dynamics(
|
| + dynamic_base,
|
| + dynamic_base + data->d_size / sizeof(dynamics[0]));
|
| + RemoveDynamicEntry(DT_ANDROID_ARM_REL_SIZE, &dynamics);
|
| + RemoveDynamicEntry(DT_ANDROID_ARM_REL_OFFSET, &dynamics);
|
| + const void* dynamics_data = &dynamics[0];
|
| + const size_t dynamics_bytes = dynamics.size() * sizeof(dynamics[0]);
|
| + RewriteSectionData(data, dynamics_data, dynamics_bytes);
|
| +
|
| + Flush();
|
| + return true;
|
| +}
|
| +
|
| +// Flush rewritten shared object file data.
|
| +void ElfFile::Flush() {
|
| + // Flag all ELF data held in memory as needing to be written back to the
|
| + // file, and tell libelf that we have controlled the file layout.
|
| + elf_flagelf(elf_, ELF_C_SET, ELF_F_DIRTY);
|
| + elf_flagelf(elf_, ELF_C_SET, ELF_F_LAYOUT);
|
| +
|
| + // Write ELF data back to disk.
|
| + const off_t file_bytes = elf_update(elf_, ELF_C_WRITE);
|
| + CHECK(file_bytes > 0);
|
| + VLOG("elf_update returned: %lu\n", file_bytes);
|
| +
|
| + // Clean up libelf, and truncate the output file to the number of bytes
|
| + // written by elf_update().
|
| + elf_end(elf_);
|
| + elf_ = NULL;
|
| + const int truncate = ftruncate(fd_, file_bytes);
|
| + CHECK(truncate == 0);
|
| +}
|
| +
|
| +} // namespace relocation_packer
|
|
|