| Index: media/base/vector_math.cc
|
| diff --git a/media/base/vector_math.cc b/media/base/vector_math.cc
|
| index 6152204ff39f3c223fe10c6901c417e0c288fe1c..359c0f9b14c37964ca0ecab3f7050bc6984ec53c 100644
|
| --- a/media/base/vector_math.cc
|
| +++ b/media/base/vector_math.cc
|
| @@ -7,63 +7,28 @@
|
|
|
| #include <algorithm>
|
|
|
| -#include "base/cpu.h"
|
| #include "base/logging.h"
|
| #include "build/build_config.h"
|
|
|
| -#if defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON)
|
| -#include <arm_neon.h>
|
| -#endif
|
| -
|
| -namespace media {
|
| -namespace vector_math {
|
| -
|
| -// If we know the minimum architecture at compile time, avoid CPU detection.
|
| -// Force NaCl code to use C routines since (at present) nothing there uses these
|
| -// methods and plumbing the -msse built library is non-trivial.
|
| -#if defined(ARCH_CPU_X86_FAMILY) && !defined(OS_NACL)
|
| -#if defined(__SSE__)
|
| +#if defined(ARCH_CPU_X86_FAMILY)
|
| +#include <xmmintrin.h>
|
| #define FMAC_FUNC FMAC_SSE
|
| #define FMUL_FUNC FMUL_SSE
|
| #define EWMAAndMaxPower_FUNC EWMAAndMaxPower_SSE
|
| -void Initialize() {}
|
| -#else
|
| -// X86 CPU detection required. Functions will be set by Initialize().
|
| -// TODO(dalecurtis): Once Chrome moves to an SSE baseline this can be removed.
|
| -#define FMAC_FUNC g_fmac_proc_
|
| -#define FMUL_FUNC g_fmul_proc_
|
| -#define EWMAAndMaxPower_FUNC g_ewma_power_proc_
|
| -
|
| -typedef void (*MathProc)(const float src[], float scale, int len, float dest[]);
|
| -static MathProc g_fmac_proc_ = NULL;
|
| -static MathProc g_fmul_proc_ = NULL;
|
| -typedef std::pair<float, float> (*EWMAAndMaxPowerProc)(
|
| - float initial_value, const float src[], int len, float smoothing_factor);
|
| -static EWMAAndMaxPowerProc g_ewma_power_proc_ = NULL;
|
| -
|
| -void Initialize() {
|
| - CHECK(!g_fmac_proc_);
|
| - CHECK(!g_fmul_proc_);
|
| - CHECK(!g_ewma_power_proc_);
|
| - const bool kUseSSE = base::CPU().has_sse();
|
| - g_fmac_proc_ = kUseSSE ? FMAC_SSE : FMAC_C;
|
| - g_fmul_proc_ = kUseSSE ? FMUL_SSE : FMUL_C;
|
| - g_ewma_power_proc_ = kUseSSE ? EWMAAndMaxPower_SSE : EWMAAndMaxPower_C;
|
| -}
|
| -#endif
|
| #elif defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON)
|
| +#include <arm_neon.h>
|
| #define FMAC_FUNC FMAC_NEON
|
| #define FMUL_FUNC FMUL_NEON
|
| #define EWMAAndMaxPower_FUNC EWMAAndMaxPower_NEON
|
| -void Initialize() {}
|
| #else
|
| -// Unknown architecture.
|
| #define FMAC_FUNC FMAC_C
|
| #define FMUL_FUNC FMUL_C
|
| #define EWMAAndMaxPower_FUNC EWMAAndMaxPower_C
|
| -void Initialize() {}
|
| #endif
|
|
|
| +namespace media {
|
| +namespace vector_math {
|
| +
|
| void FMAC(const float src[], float scale, int len, float dest[]) {
|
| // Ensure |src| and |dest| are 16-byte aligned.
|
| DCHECK_EQ(0u, reinterpret_cast<uintptr_t>(src) & (kRequiredAlignment - 1));
|
| @@ -116,6 +81,111 @@ std::pair<float, float> EWMAAndMaxPower_C(
|
| return result;
|
| }
|
|
|
| +#if defined(ARCH_CPU_X86_FAMILY)
|
| +void FMUL_SSE(const float src[], float scale, int len, float dest[]) {
|
| + const int rem = len % 4;
|
| + const int last_index = len - rem;
|
| + __m128 m_scale = _mm_set_ps1(scale);
|
| + for (int i = 0; i < last_index; i += 4)
|
| + _mm_store_ps(dest + i, _mm_mul_ps(_mm_load_ps(src + i), m_scale));
|
| +
|
| + // Handle any remaining values that wouldn't fit in an SSE pass.
|
| + for (int i = last_index; i < len; ++i)
|
| + dest[i] = src[i] * scale;
|
| +}
|
| +
|
| +void FMAC_SSE(const float src[], float scale, int len, float dest[]) {
|
| + const int rem = len % 4;
|
| + const int last_index = len - rem;
|
| + __m128 m_scale = _mm_set_ps1(scale);
|
| + for (int i = 0; i < last_index; i += 4) {
|
| + _mm_store_ps(dest + i, _mm_add_ps(_mm_load_ps(dest + i),
|
| + _mm_mul_ps(_mm_load_ps(src + i), m_scale)));
|
| + }
|
| +
|
| + // Handle any remaining values that wouldn't fit in an SSE pass.
|
| + for (int i = last_index; i < len; ++i)
|
| + dest[i] += src[i] * scale;
|
| +}
|
| +
|
| +// Convenience macro to extract float 0 through 3 from the vector |a|. This is
|
| +// needed because compilers other than clang don't support access via
|
| +// operator[]().
|
| +#define EXTRACT_FLOAT(a, i) \
|
| + (i == 0 ? \
|
| + _mm_cvtss_f32(a) : \
|
| + _mm_cvtss_f32(_mm_shuffle_ps(a, a, i)))
|
| +
|
| +std::pair<float, float> EWMAAndMaxPower_SSE(
|
| + float initial_value, const float src[], int len, float smoothing_factor) {
|
| + // When the recurrence is unrolled, we see that we can split it into 4
|
| + // separate lanes of evaluation:
|
| + //
|
| + // y[n] = a(S[n]^2) + (1-a)(y[n-1])
|
| + // = a(S[n]^2) + (1-a)^1(aS[n-1]^2) + (1-a)^2(aS[n-2]^2) + ...
|
| + // = z[n] + (1-a)^1(z[n-1]) + (1-a)^2(z[n-2]) + (1-a)^3(z[n-3])
|
| + //
|
| + // where z[n] = a(S[n]^2) + (1-a)^4(z[n-4]) + (1-a)^8(z[n-8]) + ...
|
| + //
|
| + // Thus, the strategy here is to compute z[n], z[n-1], z[n-2], and z[n-3] in
|
| + // each of the 4 lanes, and then combine them to give y[n].
|
| +
|
| + const int rem = len % 4;
|
| + const int last_index = len - rem;
|
| +
|
| + const __m128 smoothing_factor_x4 = _mm_set_ps1(smoothing_factor);
|
| + const float weight_prev = 1.0f - smoothing_factor;
|
| + const __m128 weight_prev_x4 = _mm_set_ps1(weight_prev);
|
| + const __m128 weight_prev_squared_x4 =
|
| + _mm_mul_ps(weight_prev_x4, weight_prev_x4);
|
| + const __m128 weight_prev_4th_x4 =
|
| + _mm_mul_ps(weight_prev_squared_x4, weight_prev_squared_x4);
|
| +
|
| + // Compute z[n], z[n-1], z[n-2], and z[n-3] in parallel in lanes 3, 2, 1 and
|
| + // 0, respectively.
|
| + __m128 max_x4 = _mm_setzero_ps();
|
| + __m128 ewma_x4 = _mm_setr_ps(0.0f, 0.0f, 0.0f, initial_value);
|
| + int i;
|
| + for (i = 0; i < last_index; i += 4) {
|
| + ewma_x4 = _mm_mul_ps(ewma_x4, weight_prev_4th_x4);
|
| + const __m128 sample_x4 = _mm_load_ps(src + i);
|
| + const __m128 sample_squared_x4 = _mm_mul_ps(sample_x4, sample_x4);
|
| + max_x4 = _mm_max_ps(max_x4, sample_squared_x4);
|
| + // Note: The compiler optimizes this to a single multiply-and-accumulate
|
| + // instruction:
|
| + ewma_x4 = _mm_add_ps(ewma_x4,
|
| + _mm_mul_ps(sample_squared_x4, smoothing_factor_x4));
|
| + }
|
| +
|
| + // y[n] = z[n] + (1-a)^1(z[n-1]) + (1-a)^2(z[n-2]) + (1-a)^3(z[n-3])
|
| + float ewma = EXTRACT_FLOAT(ewma_x4, 3);
|
| + ewma_x4 = _mm_mul_ps(ewma_x4, weight_prev_x4);
|
| + ewma += EXTRACT_FLOAT(ewma_x4, 2);
|
| + ewma_x4 = _mm_mul_ps(ewma_x4, weight_prev_x4);
|
| + ewma += EXTRACT_FLOAT(ewma_x4, 1);
|
| + ewma_x4 = _mm_mul_ss(ewma_x4, weight_prev_x4);
|
| + ewma += EXTRACT_FLOAT(ewma_x4, 0);
|
| +
|
| + // Fold the maximums together to get the overall maximum.
|
| + max_x4 = _mm_max_ps(max_x4,
|
| + _mm_shuffle_ps(max_x4, max_x4, _MM_SHUFFLE(3, 3, 1, 1)));
|
| + max_x4 = _mm_max_ss(max_x4, _mm_shuffle_ps(max_x4, max_x4, 2));
|
| +
|
| + std::pair<float, float> result(ewma, EXTRACT_FLOAT(max_x4, 0));
|
| +
|
| + // Handle remaining values at the end of |src|.
|
| + for (; i < len; ++i) {
|
| + result.first *= weight_prev;
|
| + const float sample = src[i];
|
| + const float sample_squared = sample * sample;
|
| + result.first += sample_squared * smoothing_factor;
|
| + result.second = std::max(result.second, sample_squared);
|
| + }
|
| +
|
| + return result;
|
| +}
|
| +#endif
|
| +
|
| #if defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON)
|
| void FMAC_NEON(const float src[], float scale, int len, float dest[]) {
|
| const int rem = len % 4;
|
|
|