| Index: media/base/simd/vector_math_sse.cc
|
| diff --git a/media/base/simd/vector_math_sse.cc b/media/base/simd/vector_math_sse.cc
|
| deleted file mode 100644
|
| index c2121225cd6b715f56b1b6025e12897213a3f4bb..0000000000000000000000000000000000000000
|
| --- a/media/base/simd/vector_math_sse.cc
|
| +++ /dev/null
|
| @@ -1,118 +0,0 @@
|
| -// Copyright 2013 The Chromium Authors. All rights reserved.
|
| -// Use of this source code is governed by a BSD-style license that can be
|
| -// found in the LICENSE file.
|
| -
|
| -#include "media/base/vector_math_testing.h"
|
| -
|
| -#include <algorithm>
|
| -
|
| -#include <xmmintrin.h> // NOLINT
|
| -
|
| -namespace media {
|
| -namespace vector_math {
|
| -
|
| -void FMUL_SSE(const float src[], float scale, int len, float dest[]) {
|
| - const int rem = len % 4;
|
| - const int last_index = len - rem;
|
| - __m128 m_scale = _mm_set_ps1(scale);
|
| - for (int i = 0; i < last_index; i += 4)
|
| - _mm_store_ps(dest + i, _mm_mul_ps(_mm_load_ps(src + i), m_scale));
|
| -
|
| - // Handle any remaining values that wouldn't fit in an SSE pass.
|
| - for (int i = last_index; i < len; ++i)
|
| - dest[i] = src[i] * scale;
|
| -}
|
| -
|
| -void FMAC_SSE(const float src[], float scale, int len, float dest[]) {
|
| - const int rem = len % 4;
|
| - const int last_index = len - rem;
|
| - __m128 m_scale = _mm_set_ps1(scale);
|
| - for (int i = 0; i < last_index; i += 4) {
|
| - _mm_store_ps(dest + i, _mm_add_ps(_mm_load_ps(dest + i),
|
| - _mm_mul_ps(_mm_load_ps(src + i), m_scale)));
|
| - }
|
| -
|
| - // Handle any remaining values that wouldn't fit in an SSE pass.
|
| - for (int i = last_index; i < len; ++i)
|
| - dest[i] += src[i] * scale;
|
| -}
|
| -
|
| -// Convenience macro to extract float 0 through 3 from the vector |a|. This is
|
| -// needed because compilers other than clang don't support access via
|
| -// operator[]().
|
| -#define EXTRACT_FLOAT(a, i) \
|
| - (i == 0 ? \
|
| - _mm_cvtss_f32(a) : \
|
| - _mm_cvtss_f32(_mm_shuffle_ps(a, a, i)))
|
| -
|
| -std::pair<float, float> EWMAAndMaxPower_SSE(
|
| - float initial_value, const float src[], int len, float smoothing_factor) {
|
| - // When the recurrence is unrolled, we see that we can split it into 4
|
| - // separate lanes of evaluation:
|
| - //
|
| - // y[n] = a(S[n]^2) + (1-a)(y[n-1])
|
| - // = a(S[n]^2) + (1-a)^1(aS[n-1]^2) + (1-a)^2(aS[n-2]^2) + ...
|
| - // = z[n] + (1-a)^1(z[n-1]) + (1-a)^2(z[n-2]) + (1-a)^3(z[n-3])
|
| - //
|
| - // where z[n] = a(S[n]^2) + (1-a)^4(z[n-4]) + (1-a)^8(z[n-8]) + ...
|
| - //
|
| - // Thus, the strategy here is to compute z[n], z[n-1], z[n-2], and z[n-3] in
|
| - // each of the 4 lanes, and then combine them to give y[n].
|
| -
|
| - const int rem = len % 4;
|
| - const int last_index = len - rem;
|
| -
|
| - const __m128 smoothing_factor_x4 = _mm_set_ps1(smoothing_factor);
|
| - const float weight_prev = 1.0f - smoothing_factor;
|
| - const __m128 weight_prev_x4 = _mm_set_ps1(weight_prev);
|
| - const __m128 weight_prev_squared_x4 =
|
| - _mm_mul_ps(weight_prev_x4, weight_prev_x4);
|
| - const __m128 weight_prev_4th_x4 =
|
| - _mm_mul_ps(weight_prev_squared_x4, weight_prev_squared_x4);
|
| -
|
| - // Compute z[n], z[n-1], z[n-2], and z[n-3] in parallel in lanes 3, 2, 1 and
|
| - // 0, respectively.
|
| - __m128 max_x4 = _mm_setzero_ps();
|
| - __m128 ewma_x4 = _mm_setr_ps(0.0f, 0.0f, 0.0f, initial_value);
|
| - int i;
|
| - for (i = 0; i < last_index; i += 4) {
|
| - ewma_x4 = _mm_mul_ps(ewma_x4, weight_prev_4th_x4);
|
| - const __m128 sample_x4 = _mm_load_ps(src + i);
|
| - const __m128 sample_squared_x4 = _mm_mul_ps(sample_x4, sample_x4);
|
| - max_x4 = _mm_max_ps(max_x4, sample_squared_x4);
|
| - // Note: The compiler optimizes this to a single multiply-and-accumulate
|
| - // instruction:
|
| - ewma_x4 = _mm_add_ps(ewma_x4,
|
| - _mm_mul_ps(sample_squared_x4, smoothing_factor_x4));
|
| - }
|
| -
|
| - // y[n] = z[n] + (1-a)^1(z[n-1]) + (1-a)^2(z[n-2]) + (1-a)^3(z[n-3])
|
| - float ewma = EXTRACT_FLOAT(ewma_x4, 3);
|
| - ewma_x4 = _mm_mul_ps(ewma_x4, weight_prev_x4);
|
| - ewma += EXTRACT_FLOAT(ewma_x4, 2);
|
| - ewma_x4 = _mm_mul_ps(ewma_x4, weight_prev_x4);
|
| - ewma += EXTRACT_FLOAT(ewma_x4, 1);
|
| - ewma_x4 = _mm_mul_ss(ewma_x4, weight_prev_x4);
|
| - ewma += EXTRACT_FLOAT(ewma_x4, 0);
|
| -
|
| - // Fold the maximums together to get the overall maximum.
|
| - max_x4 = _mm_max_ps(max_x4,
|
| - _mm_shuffle_ps(max_x4, max_x4, _MM_SHUFFLE(3, 3, 1, 1)));
|
| - max_x4 = _mm_max_ss(max_x4, _mm_shuffle_ps(max_x4, max_x4, 2));
|
| -
|
| - std::pair<float, float> result(ewma, EXTRACT_FLOAT(max_x4, 0));
|
| -
|
| - // Handle remaining values at the end of |src|.
|
| - for (; i < len; ++i) {
|
| - result.first *= weight_prev;
|
| - const float sample = src[i];
|
| - const float sample_squared = sample * sample;
|
| - result.first += sample_squared * smoothing_factor;
|
| - result.second = std::max(result.second, sample_squared);
|
| - }
|
| -
|
| - return result;
|
| -}
|
| -
|
| -} // namespace vector_math
|
| -} // namespace media
|
|
|