OLD | NEW |
---|---|
1 /* | 1 /* |
2 * Copyright 2013 Google Inc. | 2 * Copyright 2013 Google Inc. |
3 * | 3 * |
4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
6 */ | 6 */ |
7 | 7 |
8 #ifndef SkOnce_DEFINED | 8 #ifndef SkOnce_DEFINED |
9 #define SkOnce_DEFINED | 9 #define SkOnce_DEFINED |
10 | 10 |
11 // Before trying SkOnce, see if SkLazyPtr or SkLazyFnPtr will work for you. | |
12 // They're smaller and faster, if slightly less versatile. | |
13 | |
14 | |
11 // SkOnce.h defines SK_DECLARE_STATIC_ONCE and SkOnce(), which you can use | 15 // SkOnce.h defines SK_DECLARE_STATIC_ONCE and SkOnce(), which you can use |
12 // together to create a threadsafe way to call a function just once. This | 16 // together to create a threadsafe way to call a function just once. E.g. |
13 // is particularly useful for lazy singleton initialization. E.g. | |
14 // | 17 // |
15 // static void set_up_my_singleton(Singleton** singleton) { | 18 // static void register_my_stuff(GlobalRegistry* registry) { |
16 // *singleton = new Singleton(...); | 19 // registry->register(...); |
17 // } | 20 // } |
18 // ... | 21 // ... |
19 // const Singleton& GetSingleton() { | 22 // void EnsureRegistered() { |
20 // static Singleton* singleton = NULL; | |
21 // SK_DECLARE_STATIC_ONCE(once); | 23 // SK_DECLARE_STATIC_ONCE(once); |
22 // SkOnce(&once, set_up_my_singleton, &singleton); | 24 // SkOnce(&once, register_my_stuff, GetGlobalRegistry()); |
23 // SkASSERT(NULL != singleton); | |
24 // return *singleton; | |
25 // } | 25 // } |
26 // | 26 // |
27 // No matter how many times you call EnsureRegistered(), register_my_stuff will be called just once. | |
27 // OnceTest.cpp also should serve as a few other simple examples. | 28 // OnceTest.cpp also should serve as a few other simple examples. |
28 // | |
29 // You may optionally pass SkOnce a second function to be called at exit for cle anup. | |
30 | 29 |
31 #include "SkDynamicAnnotations.h" | 30 #include "SkDynamicAnnotations.h" |
32 #include "SkThread.h" | 31 #include "SkThread.h" |
33 #include "SkTypes.h" | 32 #include "SkTypes.h" |
34 | 33 |
35 #define SK_ONCE_INIT { false, { 0, SkDEBUGCODE(0) } } | 34 // This must be used in a global or function scope, not as a class member. |
36 #define SK_DECLARE_STATIC_ONCE(name) static SkOnceFlag name = SK_ONCE_INIT | 35 #define SK_DECLARE_STATIC_ONCE(name) static SkOnceFlag name |
37 | 36 |
38 struct SkOnceFlag; // If manually created, initialize with SkOnceFlag once = SK _ONCE_INIT | 37 class SkOnceFlag; |
39 | 38 |
40 template <typename Func, typename Arg> | 39 inline void SkOnce(SkOnceFlag* once, void (*f)()); |
41 inline void SkOnce(SkOnceFlag* once, Func f, Arg arg, void(*atExit)() = NULL); | 40 |
41 template <typename Arg> | |
42 inline void SkOnce(SkOnceFlag* once, void (*f)(Arg), Arg arg); | |
42 | 43 |
43 // If you've already got a lock and a flag to use, this variant lets you avoid a n extra SkOnceFlag. | 44 // If you've already got a lock and a flag to use, this variant lets you avoid a n extra SkOnceFlag. |
44 template <typename Lock, typename Func, typename Arg> | 45 template <typename Lock> |
45 inline void SkOnce(bool* done, Lock* lock, Func f, Arg arg, void(*atExit)() = NU LL); | 46 inline void SkOnce(bool* done, Lock* lock, void (*f)()); |
47 | |
48 template <typename Lock, typename Arg> | |
49 inline void SkOnce(bool* done, Lock* lock, void (*f)(Arg), Arg arg); | |
46 | 50 |
47 // ---------------------- Implementation details below here. ----------------- ------------ | 51 // ---------------------- Implementation details below here. ----------------- ------------ |
48 | 52 |
49 // This is POD and must be zero-initialized. | 53 // This class has no constructor and must be zero-initialized (the macro above d oes this). |
50 struct SkSpinlock { | 54 class SkOnceFlag { |
55 public: | |
56 bool* mutableDone() { return &fDone; } | |
57 | |
51 void acquire() { | 58 void acquire() { |
52 SkASSERT(shouldBeZero == 0); | 59 // To act as a mutex, this needs an acquire barrier on success. |
53 // No memory barrier needed, but sk_atomic_cas gives us at least release anyway. | 60 // sk_atomic_cas doesn't guarantee this ... |
54 while (!sk_atomic_cas(&thisIsPrivate, 0, 1)) { | 61 while (!sk_atomic_cas(&fSpinlock, 0, 1)) { |
55 // spin | 62 // spin |
56 } | 63 } |
64 // ... so make sure to issue one of our own. | |
65 SkAssertResult(1 == sk_acquire_load(&fSpinlock)); | |
57 } | 66 } |
58 | 67 |
59 void release() { | 68 void release() { |
60 SkASSERT(shouldBeZero == 0); | 69 // To act as a mutex, this needs a release barrier. sk_atomic_cas guara ntees this. |
61 // This requires a release memory barrier before storing, which sk_atomi c_cas guarantees. | 70 SkAssertResult(1 == sk_atomic_cas(&fSpinlock, 1, 0)); |
62 SkAssertResult(sk_atomic_cas(&thisIsPrivate, 1, 0)); | |
63 } | 71 } |
64 | 72 |
65 int32_t thisIsPrivate; | |
66 SkDEBUGCODE(int32_t shouldBeZero;) | |
67 }; | |
68 | |
69 struct SkOnceFlag { | |
70 bool done; | |
71 SkSpinlock lock; | |
72 }; | |
73 | |
74 // Works with SkSpinlock or SkMutex. | |
75 template <typename Lock> | |
76 class SkAutoLockAcquire { | |
77 public: | |
78 explicit SkAutoLockAcquire(Lock* lock) : fLock(lock) { fLock->acquire(); } | |
79 ~SkAutoLockAcquire() { fLock->release(); } | |
80 private: | 73 private: |
81 Lock* fLock; | 74 bool fDone; |
75 int32_t fSpinlock; | |
82 }; | 76 }; |
83 | 77 |
84 // We've pulled a pretty standard double-checked locking implementation apart | 78 // We've pulled a pretty standard double-checked locking implementation apart |
85 // into its main fast path and a slow path that's called when we suspect the | 79 // into its main fast path and a slow path that's called when we suspect the |
86 // one-time code hasn't run yet. | 80 // one-time code hasn't run yet. |
87 | 81 |
88 // This is the guts of the code, called when we suspect the one-time code hasn't been run yet. | 82 // This is the guts of the code, called when we suspect the one-time code hasn't been run yet. |
89 // This should be rarely called, so we separate it from SkOnce and don't mark it as inline. | 83 // This should be rarely called, so we separate it from SkOnce and don't mark it as inline. |
90 // (We don't mind if this is an actual function call, but odds are it'll be inli ned anyway.) | 84 // (We don't mind if this is an actual function call, but odds are it'll be inli ned anyway.) |
91 template <typename Lock, typename Func, typename Arg> | 85 template <typename Lock, typename Arg> |
92 static void sk_once_slow(bool* done, Lock* lock, Func f, Arg arg, void (*atExit) ()) { | 86 static void sk_once_slow(bool* done, Lock* lock, void (*f)(Arg), Arg arg) { |
93 const SkAutoLockAcquire<Lock> locked(lock); | 87 lock->acquire(); |
94 if (!*done) { | 88 if (!*done) { |
95 f(arg); | 89 f(arg); |
96 if (atExit != NULL) { | |
97 atexit(atExit); | |
98 } | |
99 // Also known as a store-store/load-store barrier, this makes sure that the writes | 90 // Also known as a store-store/load-store barrier, this makes sure that the writes |
100 // done before here---in particular, those done by calling f(arg)---are observable | 91 // done before here---in particular, those done by calling f(arg)---are observable |
101 // before the writes after the line, *done = true. | 92 // before the writes after the line, *done = true. |
102 // | 93 // |
103 // In version control terms this is like saying, "check in the work up | 94 // In version control terms this is like saying, "check in the work up |
104 // to and including f(arg), then check in *done=true as a subsequent cha nge". | 95 // to and including f(arg), then check in *done=true as a subsequent cha nge". |
105 // | 96 // |
106 // We'll use this in the fast path to make sure f(arg)'s effects are | 97 // We'll use this in the fast path to make sure f(arg)'s effects are |
107 // observable whenever we observe *done == true. | 98 // observable whenever we observe *done == true. |
108 sk_release_store(done, true); | 99 sk_release_store(done, true); |
109 } | 100 } |
101 lock->release(); | |
110 } | 102 } |
111 | 103 |
112 // This is our fast path, called all the time. We do really want it to be inlin ed. | 104 // This is our fast path, called all the time. We do really want it to be inlin ed. |
113 template <typename Lock, typename Func, typename Arg> | 105 template <typename Lock, typename Arg> |
114 inline void SkOnce(bool* done, Lock* lock, Func f, Arg arg, void(*atExit)()) { | 106 inline void SkOnce(bool* done, Lock* lock, void (*f)(Arg), Arg arg) { |
115 if (!SK_ANNOTATE_UNPROTECTED_READ(*done)) { | 107 if (!SK_ANNOTATE_UNPROTECTED_READ(*done)) { |
116 sk_once_slow(done, lock, f, arg, atExit); | 108 sk_once_slow(done, lock, f, arg); |
117 } | 109 } |
118 // Also known as a load-load/load-store barrier, this acquire barrier makes | 110 // Also known as a load-load/load-store barrier, this acquire barrier makes |
119 // sure that anything we read from memory---in particular, memory written by | 111 // sure that anything we read from memory---in particular, memory written by |
120 // calling f(arg)---is at least as current as the value we read from done. | 112 // calling f(arg)---is at least as current as the value we read from done. |
121 // | 113 // |
122 // In version control terms, this is a lot like saying "sync up to the | 114 // In version control terms, this is a lot like saying "sync up to the |
123 // commit where we wrote done = true". | 115 // commit where we wrote done = true". |
124 // | 116 // |
125 // The release barrier in sk_once_slow guaranteed that done = true | 117 // The release barrier in sk_once_slow guaranteed that done = true |
126 // happens after f(arg), so by syncing to done = true here we're | 118 // happens after f(arg), so by syncing to done = true here we're |
127 // forcing ourselves to also wait until the effects of f(arg) are readble. | 119 // forcing ourselves to also wait until the effects of f(arg) are readble. |
128 SkAssertResult(sk_acquire_load(done)); | 120 SkAssertResult(sk_acquire_load(done)); |
129 } | 121 } |
130 | 122 |
131 template <typename Func, typename Arg> | 123 template <typename Arg> |
132 inline void SkOnce(SkOnceFlag* once, Func f, Arg arg, void(*atExit)()) { | 124 inline void SkOnce(SkOnceFlag* once, void (*f)(Arg), Arg arg) { |
133 return SkOnce(&once->done, &once->lock, f, arg, atExit); | 125 return SkOnce(once->mutableDone(), once, f, arg); |
134 } | 126 } |
135 | 127 |
136 #undef SK_ANNOTATE_BENIGN_RACE | 128 // Calls its argument. |
129 // This lets us use functions that take no arguments with SkOnce methods above. | |
130 // (We pass _this_ as the function and the no-arg function as its argument. Cut e eh?) | |
131 static void no_arg_adaptor(void (*f)()) { | |
bungeman-skia
2014/05/30 21:13:18
Can the name be hidden so that 'no_arg_adaptor' do
mtklein
2014/06/02 16:11:39
Done.
| |
132 f(); | |
133 } | |
134 | |
135 inline void SkOnce(SkOnceFlag* once, void (*func)()) { | |
136 return SkOnce(once, no_arg_adaptor, func); | |
137 } | |
138 | |
139 template <typename Lock> | |
140 inline void SkOnce(bool* done, Lock* lock, void (*func)()) { | |
141 return SkOnce(done, lock, no_arg_adaptor, func); | |
142 } | |
137 | 143 |
138 #endif // SkOnce_DEFINED | 144 #endif // SkOnce_DEFINED |
OLD | NEW |