Index: src/IceRegAlloc.cpp |
diff --git a/src/IceRegAlloc.cpp b/src/IceRegAlloc.cpp |
new file mode 100644 |
index 0000000000000000000000000000000000000000..7de3d2ba2dfb5d467b367774998fdfe4cafb8cc9 |
--- /dev/null |
+++ b/src/IceRegAlloc.cpp |
@@ -0,0 +1,460 @@ |
+//===- subzero/src/IceRegAlloc.cpp - Linear-scan implementation -----------===// |
+// |
+// The Subzero Code Generator |
+// |
+// This file is distributed under the University of Illinois Open Source |
+// License. See LICENSE.TXT for details. |
+// |
+//===----------------------------------------------------------------------===// |
+// |
+// This file implements the LinearScan class, which performs the |
+// linear-scan register allocation after liveness analysis has been |
+// performed. |
+// |
+//===----------------------------------------------------------------------===// |
+ |
+#include "IceCfg.h" |
+#include "IceInst.h" |
+#include "IceOperand.h" |
+#include "IceRegAlloc.h" |
+#include "IceTargetLowering.h" |
+ |
+namespace Ice { |
+ |
+// Implements the linear-scan algorithm. Based on "Linear Scan |
+// Register Allocation in the Context of SSA Form and Register |
+// Constraints" by Hanspeter Mössenböck and Michael Pfeiffer, |
+// ftp://ftp.ssw.uni-linz.ac.at/pub/Papers/Moe02.PDF . This |
+// implementation is modified to take affinity into account and allow |
+// two interfering variables to share the same register in certain |
+// cases. |
+// |
+// Requires running Cfg::liveness(Liveness_RangesFull) in |
+// preparation. Results are assigned to Variable::RegNum for each |
+// Variable. |
+void LinearScan::scan(const llvm::SmallBitVector &RegMaskFull) { |
+ if (!RegMaskFull.any()) |
jvoung (off chromium)
2014/05/28 17:48:15
Should the RegMaskFull ever be completely 0? I'm
Jim Stichnoth
2014/05/29 01:39:46
It's only called once from TargetLowering::regAllo
|
+ return; |
+ Unhandled.clear(); |
+ Handled.clear(); |
+ Inactive.clear(); |
+ Active.clear(); |
+ Ostream &Str = Func->getContext()->getStrDump(); |
+ Func->setCurrentNode(NULL); |
+ |
+ // Gather the live ranges of all variables and add them to the |
+ // Unhandled set. TODO: Unhandled is a set<> which is based on a |
+ // balanced binary tree, so inserting live ranges for N variables is |
+ // O(N log N) complexity. N may be proportional to the number of |
+ // instructions, thanks to temporary generation during lowering. As |
+ // a result, it may be useful to design a better data structure for |
+ // storing Func->getVariables(). |
+ const VarList &Vars = Func->getVariables(); |
+ for (VarList::const_iterator I = Vars.begin(), E = Vars.end(); I != E; ++I) { |
+ Variable *Var = *I; |
+ // Explicitly don't consider zero-weight variables, which are |
+ // meant to be spill slots. |
+ if (Var->getWeight() == RegWeight::Zero) |
+ continue; |
+ // Don't bother if the variable has a null live range, which means |
+ // it was never referenced. |
+ if (Var->getLiveRange().isEmpty()) |
+ continue; |
+ Unhandled.insert(LiveRangeWrapper(Var)); |
+ if (Var->hasReg()) { |
+ Var->setRegNumTmp(Var->getRegNum()); |
+ Var->setLiveRangeInfiniteWeight(); |
+ } |
+ } |
+ |
+ // RegUses[I] is the number of live ranges (variables) that register |
+ // I is currently assigned to. It can be greater than 1 as a result |
+ // of Variable::AllowRegisterOverlap. |
+ std::vector<int> RegUses(RegMaskFull.size()); |
+ // Unhandled is already set to all ranges in increasing order of |
+ // start points. |
+ assert(Active.empty()); |
+ assert(Inactive.empty()); |
+ assert(Handled.empty()); |
+ UnorderedRanges::iterator Next; |
+ |
+ while (!Unhandled.empty()) { |
+ LiveRangeWrapper Cur = *Unhandled.begin(); |
+ Unhandled.erase(Unhandled.begin()); |
+ if (Func->getContext()->isVerbose(IceV_LinearScan)) { |
+ Str << "\nConsidering "; |
+ Cur.dump(Func); |
+ Str << "\n"; |
+ } |
+ const llvm::SmallBitVector RegMask = |
+ RegMaskFull & |
+ Func->getTarget()->getRegisterSetForType(Cur.Var->getType()); |
+ |
+ // Check for precolored ranges. If Cur is precolored, it |
+ // definitely gets that register. Previously processed live |
+ // ranges would have avoided that register due to it being |
+ // precolored. Future processed live ranges won't evict that |
+ // register because the live range has infinite weight. |
+ if (Cur.Var->hasReg()) { |
+ int32_t RegNum = Cur.Var->getRegNum(); |
+ Cur.Var->setRegNumTmp(RegNum); |
jvoung (off chromium)
2014/05/28 17:48:15
Already set above in line 65 (didn't actually read
Jim Stichnoth
2014/05/29 01:39:46
You're right. I changed it to an assert just to b
|
+ if (Func->getContext()->isVerbose(IceV_LinearScan)) { |
+ Str << "Precoloring "; |
+ Cur.dump(Func); |
+ Str << "\n"; |
+ } |
+ Active.push_back(Cur); |
+ assert(RegUses[RegNum] >= 0); |
+ ++RegUses[RegNum]; |
+ continue; |
+ } |
+ |
+ // Check for active ranges that have expired or become inactive. |
+ for (UnorderedRanges::iterator I = Active.begin(), E = Active.end(); I != E; |
+ I = Next) { |
+ Next = I; |
+ ++Next; |
+ LiveRangeWrapper Item = *I; |
+ bool Moved = false; |
+ if (Item.endsBefore(Cur)) { |
+ // Move Item from Active to Handled list. |
+ if (Func->getContext()->isVerbose(IceV_LinearScan)) { |
+ Str << "Expiring "; |
+ Item.dump(Func); |
+ Str << "\n"; |
+ } |
+ Active.erase(I); |
+ Handled.push_back(Item); |
+ Moved = true; |
+ } else if (!Item.overlaps(Cur)) { |
+ // Move Item from Active to Inactive list. |
+ if (Func->getContext()->isVerbose(IceV_LinearScan)) { |
+ Str << "Inactivating "; |
+ Item.dump(Func); |
+ Str << "\n"; |
+ } |
+ Active.erase(I); |
+ Inactive.push_back(Item); |
+ Moved = true; |
+ } |
+ if (Moved) { |
+ // Decrement Item from RegUses[]. |
+ assert(Item.Var->hasRegTmp()); |
+ int32_t RegNum = Item.Var->getRegNumTmp(); |
+ --RegUses[RegNum]; |
+ assert(RegUses[RegNum] >= 0); |
+ } |
+ } |
+ |
+ // Check for inactive ranges that have expired or reactivated. |
+ for (UnorderedRanges::iterator I = Inactive.begin(), E = Inactive.end(); |
+ I != E; I = Next) { |
+ Next = I; |
+ ++Next; |
+ LiveRangeWrapper Item = *I; |
+ if (Item.endsBefore(Cur)) { |
+ // Move Item from Inactive to Handled list. |
+ if (Func->getContext()->isVerbose(IceV_LinearScan)) { |
+ Str << "Expiring "; |
+ Item.dump(Func); |
+ Str << "\n"; |
+ } |
+ Inactive.erase(I); |
+ Handled.push_back(Item); |
+ } else if (Item.overlaps(Cur)) { |
+ // Move Item from Inactive to Active list. |
+ if (Func->getContext()->isVerbose(IceV_LinearScan)) { |
+ Str << "Reactivating "; |
+ Item.dump(Func); |
+ Str << "\n"; |
+ } |
+ Inactive.erase(I); |
+ Active.push_back(Item); |
+ // Increment Item in RegUses[]. |
+ assert(Item.Var->hasRegTmp()); |
+ int32_t RegNum = Item.Var->getRegNumTmp(); |
+ assert(RegUses[RegNum] >= 0); |
+ ++RegUses[RegNum]; |
+ } |
+ } |
+ |
+ // Calculate available registers into Free[]. |
+ llvm::SmallBitVector Free = RegMask; |
+ for (SizeT i = 0; i < RegMask.size(); ++i) { |
+ if (RegUses[i] > 0) |
+ Free[i] = false; |
+ } |
+ |
+ // Remove registers from the Free[] list where an Inactive range |
+ // overlaps with the current range. |
+ for (UnorderedRanges::const_iterator I = Inactive.begin(), |
+ E = Inactive.end(); |
+ I != E; ++I) { |
+ LiveRangeWrapper Item = *I; |
+ if (Item.overlaps(Cur)) { |
+ int32_t RegNum = Item.Var->getRegNumTmp(); |
+ // Don't assert(Free[RegNum]) because in theory (though |
+ // probably never in practice) there could be two inactive |
+ // variables that were allowed marked with |
+ // AllowRegisterOverlap. |
+ Free[RegNum] = false; |
+ } |
+ } |
+ |
+ // Remove registers from the Free[] list where an Unhandled range |
+ // overlaps with the current range and is precolored. |
+ // Cur.endsBefore(*I) is an early exit check that turns a |
+ // guaranteed O(N^2) algorithm into expected linear complexity. |
+ for (OrderedRanges::const_iterator I = Unhandled.begin(), |
+ E = Unhandled.end(); |
+ I != E && !Cur.endsBefore(*I); ++I) { |
+ LiveRangeWrapper Item = *I; |
+ if (Item.Var->hasReg() && Item.overlaps(Cur)) { |
+ Free[Item.Var->getRegNum()] = false; // Note: getRegNum not getRegNumTmp |
+ } |
+ } |
+ |
+ // Print info about physical register availability. |
+ if (Func->getContext()->isVerbose(IceV_LinearScan)) { |
+ for (SizeT i = 0; i < RegMask.size(); ++i) { |
+ if (RegMask[i]) { |
+ Str << Func->getTarget()->getRegName(i, IceType_i32) |
+ << "(U=" << RegUses[i] << ",F=" << Free[i] << ") "; |
+ } |
+ } |
+ Str << "\n"; |
+ } |
+ |
+ Variable *Prefer = Cur.Var->getPreferredRegister(); |
+ int32_t PreferReg = Prefer && Prefer->hasRegTmp() ? Prefer->getRegNumTmp() |
+ : Variable::NoRegister; |
+ if (PreferReg != Variable::NoRegister && |
+ (Cur.Var->getRegisterOverlap() || Free[PreferReg])) { |
+ // First choice: a preferred register that is either free or is |
+ // allowed to overlap with its linked variable. |
+ Cur.Var->setRegNumTmp(PreferReg); |
+ if (Func->getContext()->isVerbose(IceV_LinearScan)) { |
+ Str << "Preferring "; |
+ Cur.dump(Func); |
+ Str << "\n"; |
+ } |
+ assert(RegUses[PreferReg] >= 0); |
+ ++RegUses[PreferReg]; |
+ Active.push_back(Cur); |
+ } else if (Free.any()) { |
+ // Second choice: any free register. TODO: After explicit |
+ // affinity is considered, is there a strategy better than just |
+ // picking the lowest-numbered available register? |
+ int32_t RegNum = Free.find_first(); |
+ Cur.Var->setRegNumTmp(RegNum); |
+ if (Func->getContext()->isVerbose(IceV_LinearScan)) { |
+ Str << "Allocating "; |
+ Cur.dump(Func); |
+ Str << "\n"; |
+ } |
+ assert(RegUses[RegNum] >= 0); |
+ ++RegUses[RegNum]; |
+ Active.push_back(Cur); |
+ } else { |
+ // Fallback: there are no free registers, so we look for the |
+ // lowest-weight register and see if Cur has higher weight. |
+ std::vector<RegWeight> Weights(RegMask.size()); |
+ // Check Active ranges. |
+ for (UnorderedRanges::const_iterator I = Active.begin(), E = Active.end(); |
+ I != E; ++I) { |
+ LiveRangeWrapper Item = *I; |
+ assert(Item.overlaps(Cur)); |
+ int32_t RegNum = Item.Var->getRegNumTmp(); |
+ assert(Item.Var->hasRegTmp()); |
+ Weights[RegNum].addWeight(Item.range().getWeight()); |
+ } |
+ // Same as above, but check Inactive ranges instead of Active. |
+ for (UnorderedRanges::const_iterator I = Inactive.begin(), |
+ E = Inactive.end(); |
+ I != E; ++I) { |
+ LiveRangeWrapper Item = *I; |
+ int32_t RegNum = Item.Var->getRegNumTmp(); |
+ assert(Item.Var->hasRegTmp()); |
+ Weights[RegNum].addWeight(Item.range().getWeight()); |
+ } |
+ // Check Unhandled ranges that overlap Cur and are precolored. |
+ // Cur.endsBefore(*I) is an early exit check that turns a |
+ // guaranteed O(N^2) algorithm into expected linear complexity. |
+ for (OrderedRanges::const_iterator I = Unhandled.begin(), |
+ E = Unhandled.end(); |
+ I != E && !Cur.endsBefore(*I); ++I) { |
+ LiveRangeWrapper Item = *I; |
+ int32_t RegNum = Item.Var->getRegNumTmp(); |
+ if (RegNum < 0) |
+ continue; |
+ if (Item.overlaps(Cur)) |
+ Weights[RegNum].setWeight(RegWeight::Inf); |
+ } |
+ |
+ // All the weights are now calculated. Find the register with |
+ // smallest weight. |
+ int32_t MinWeightIndex = RegMask.find_first(); |
+ // MinWeightIndex must be valid because of the initial |
+ // RegMask.any() test. |
+ assert(MinWeightIndex >= 0); |
+ for (SizeT i = MinWeightIndex + 1; i < Weights.size(); ++i) { |
+ if (RegMask[i] && Weights[i] < Weights[MinWeightIndex]) |
+ MinWeightIndex = i; |
+ } |
+ |
+ if (Cur.range().getWeight() <= Weights[MinWeightIndex]) { |
+ // Cur doesn't have priority over any other live ranges, so |
+ // don't allocate any register to it, and move it to the |
+ // Handled state. |
+ Handled.push_back(Cur); |
+ if (Cur.range().getWeight().isInf()) { |
+ Func->setError("Unable to find a physical register for an " |
+ "infinite-weight live range"); |
+ } |
+ } else { |
+ // Evict all live ranges in Active that register number |
+ // MinWeightIndex is assigned to. |
+ for (UnorderedRanges::iterator I = Active.begin(), E = Active.end(); |
+ I != E; I = Next) { |
+ Next = I; |
+ ++Next; |
+ LiveRangeWrapper Item = *I; |
+ if (Item.Var->getRegNumTmp() == MinWeightIndex) { |
+ if (Func->getContext()->isVerbose(IceV_LinearScan)) { |
+ Str << "Evicting "; |
+ Item.dump(Func); |
+ Str << "\n"; |
+ } |
+ --RegUses[MinWeightIndex]; |
+ assert(RegUses[MinWeightIndex] >= 0); |
+ Item.Var->setRegNumTmp(-1); |
+ Active.erase(I); |
+ Handled.push_back(Item); |
+ } |
+ } |
+ // Do the same for Inactive. |
+ for (UnorderedRanges::iterator I = Inactive.begin(), E = Inactive.end(); |
+ I != E; I = Next) { |
+ Next = I; |
+ ++Next; |
+ LiveRangeWrapper Item = *I; |
+ if (Item.Var->getRegNumTmp() == MinWeightIndex) { |
+ if (Func->getContext()->isVerbose(IceV_LinearScan)) { |
+ Str << "Evicting "; |
+ Item.dump(Func); |
+ Str << "\n"; |
+ } |
+ Item.Var->setRegNumTmp(-1); |
+ Inactive.erase(I); |
+ Handled.push_back(Item); |
+ } |
+ } |
+ // Assign the register to Cur. |
+ Cur.Var->setRegNumTmp(MinWeightIndex); |
+ ++RegUses[MinWeightIndex]; |
+ assert(RegUses[MinWeightIndex] >= 0); |
+ Active.push_back(Cur); |
+ if (Func->getContext()->isVerbose(IceV_LinearScan)) { |
+ Str << "Allocating "; |
+ Cur.dump(Func); |
+ Str << "\n"; |
+ } |
+ } |
+ } |
+ dump(Func); |
+ } |
+ // Move anything Active or Inactive to Handled for easier handling. |
+ for (UnorderedRanges::iterator I = Active.begin(), E = Active.end(); I != E; |
+ I = Next) { |
+ Next = I; |
+ ++Next; |
+ Handled.push_back(*I); |
+ Active.erase(I); |
+ } |
+ for (UnorderedRanges::iterator I = Inactive.begin(), E = Inactive.end(); |
+ I != E; I = Next) { |
+ Next = I; |
+ ++Next; |
+ Handled.push_back(*I); |
+ Inactive.erase(I); |
+ } |
+ dump(Func); |
+ |
+ // Finish up by assigning RegNumTmp->RegNum for each Variable. |
+ for (UnorderedRanges::const_iterator I = Handled.begin(), E = Handled.end(); |
+ I != E; ++I) { |
+ LiveRangeWrapper Item = *I; |
+ int32_t RegNum = Item.Var->getRegNumTmp(); |
+ if (Func->getContext()->isVerbose(IceV_LinearScan)) { |
+ if (!Item.Var->hasRegTmp()) { |
+ Str << "Not assigning "; |
+ Item.Var->dump(Func); |
+ Str << "\n"; |
+ } else { |
+ Str << (RegNum == Item.Var->getRegNum() ? "Reassigning " : "Assigning ") |
+ << Func->getTarget()->getRegName(RegNum, IceType_i32) << "(r" |
+ << RegNum << ") to "; |
+ Item.Var->dump(Func); |
+ Str << "\n"; |
+ } |
+ } |
+ Item.Var->setRegNum(Item.Var->getRegNumTmp()); |
+ } |
+ |
+ // TODO: Consider running register allocation one more time, with |
+ // infinite registers, for two reasons. First, evicted live ranges |
+ // get a second chance for a register. Second, it allows coalescing |
+ // of stack slots. If there is no time budget for the second |
+ // register allocation run, each unallocated variable just gets its |
+ // own slot. |
+ // |
+ // Another idea for coalescing stack slots is to initialize the |
+ // Unhandled list with just the unallocated variables, saving time |
+ // but not offering second-chance opportunities. |
+} |
+ |
+// ======================== Dump routines ======================== // |
+ |
+void LiveRangeWrapper::dump(const Cfg *Func) const { |
+ Ostream &Str = Func->getContext()->getStrDump(); |
+ const static size_t BufLen = 30; |
+ char buf[BufLen]; |
+ snprintf(buf, BufLen, "%2d", Var->getRegNumTmp()); |
+ Str << "R=" << buf << " V="; |
+ Var->dump(Func); |
+ Str << " Range=" << range(); |
+} |
+ |
+void LinearScan::dump(Cfg *Func) const { |
+ Ostream &Str = Func->getContext()->getStrDump(); |
+ if (!Func->getContext()->isVerbose(IceV_LinearScan)) |
+ return; |
+ Func->setCurrentNode(NULL); |
+ Str << "**** Current regalloc state:\n"; |
+ Str << "++++++ Handled:\n"; |
+ for (UnorderedRanges::const_iterator I = Handled.begin(), E = Handled.end(); |
+ I != E; ++I) { |
+ I->dump(Func); |
+ Str << "\n"; |
+ } |
+ Str << "++++++ Unhandled:\n"; |
+ for (OrderedRanges::const_iterator I = Unhandled.begin(), E = Unhandled.end(); |
+ I != E; ++I) { |
+ I->dump(Func); |
+ Str << "\n"; |
+ } |
+ Str << "++++++ Active:\n"; |
+ for (UnorderedRanges::const_iterator I = Active.begin(), E = Active.end(); |
+ I != E; ++I) { |
+ I->dump(Func); |
+ Str << "\n"; |
+ } |
+ Str << "++++++ Inactive:\n"; |
+ for (UnorderedRanges::const_iterator I = Inactive.begin(), E = Inactive.end(); |
+ I != E; ++I) { |
+ I->dump(Func); |
+ Str << "\n"; |
+ } |
+} |
+ |
+} // end of namespace Ice |