Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(110)

Side by Side Diff: packages/analyzer/lib/src/task/strong_mode.dart

Issue 2990843002: Removed fixed dependencies (Closed)
Patch Set: Created 3 years, 4 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
1 // Copyright (c) 2015, the Dart project authors. Please see the AUTHORS file 1 // Copyright (c) 2015, the Dart project authors. Please see the AUTHORS file
2 // for details. All rights reserved. Use of this source code is governed by a 2 // for details. All rights reserved. Use of this source code is governed by a
3 // BSD-style license that can be found in the LICENSE file. 3 // BSD-style license that can be found in the LICENSE file.
4 4
5 library analyzer.src.task.strong_mode; 5 library analyzer.src.task.strong_mode;
6 6
7 import 'dart:collection'; 7 import 'dart:collection';
8 8
9 import 'package:analyzer/src/generated/ast.dart'; 9 import 'package:analyzer/dart/ast/ast.dart';
10 import 'package:analyzer/src/generated/element.dart'; 10 import 'package:analyzer/dart/ast/visitor.dart';
11 import 'package:analyzer/src/generated/resolver.dart'; 11 import 'package:analyzer/dart/element/element.dart';
12 import 'package:analyzer/dart/element/type.dart';
13 import 'package:analyzer/src/dart/element/element.dart';
14 import 'package:analyzer/src/dart/element/type.dart';
15 import 'package:analyzer/src/dart/resolver/inheritance_manager.dart';
16 import 'package:analyzer/src/generated/resolver.dart'
17 show TypeProvider, InheritanceManager;
18 import 'package:analyzer/src/generated/type_system.dart';
12 import 'package:analyzer/src/generated/utilities_dart.dart'; 19 import 'package:analyzer/src/generated/utilities_dart.dart';
13 20
14 /** 21 /**
15 * Set the type of the sole parameter of the given [element] to the given [type] . 22 * Sets the type of the field. This is stored in the field itself, and the
23 * synthetic getter/setter types.
16 */ 24 */
17 void setParameterType(PropertyAccessorElement element, DartType type) { 25 void setFieldType(VariableElement field, DartType newType) {
18 if (element is PropertyAccessorElementImpl) { 26 (field as VariableElementImpl).type = newType;
19 ParameterElement parameter = _getParameter(element); 27 if (field.initializer != null) {
20 if (parameter is ParameterElementImpl) { 28 (field.initializer as ExecutableElementImpl).returnType = newType;
21 //
22 // Update the type of the parameter.
23 //
24 parameter.type = type;
25 //
26 // Update the type of the setter to reflect the new parameter type.
27 //
28 FunctionType functionType = element.type;
29 if (functionType is FunctionTypeImpl) {
30 element.type =
31 new FunctionTypeImpl(element, functionType.prunedTypedefs)
32 ..typeArguments = functionType.typeArguments;
33 } else {
34 assert(false);
35 }
36 } else {
37 assert(false);
38 }
39 } else {
40 throw new StateError('element is an instance of ${element.runtimeType}');
41 assert(false);
42 } 29 }
43 } 30 }
44 31
45 /**
46 * Set the return type of the given [element] to the given [type].
47 */
48 void setReturnType(ExecutableElement element, DartType type) {
49 if (element is ExecutableElementImpl) {
50 //
51 // Update the return type of the element, which is stored in two places:
52 // directly in the element and indirectly in the type of the element.
53 //
54 element.returnType = type;
55 FunctionType functionType = element.type;
56 if (functionType is FunctionTypeImpl) {
57 element.type = new FunctionTypeImpl(element, functionType.prunedTypedefs)
58 ..typeArguments = functionType.typeArguments;
59 } else {
60 assert(false);
61 }
62 } else {
63 assert(false);
64 }
65 }
66
67 /** 32 /**
68 * Return the element for the single parameter of the given [setter], or `null` 33 * Return the element for the single parameter of the given [setter], or `null`
69 * if the executable element is not a setter or does not have a single 34 * if the executable element is not a setter or does not have a single
70 * parameter. 35 * parameter.
71 */ 36 */
72 ParameterElement _getParameter(ExecutableElement setter) { 37 ParameterElement _getParameter(ExecutableElement setter) {
73 if (setter is PropertyAccessorElement && setter.isSetter) { 38 if (setter is PropertyAccessorElement && setter.isSetter) {
74 List<ParameterElement> parameters = setter.parameters; 39 List<ParameterElement> parameters = setter.parameters;
75 if (parameters.length == 1) { 40 if (parameters.length == 1) {
76 return parameters[0]; 41 return parameters[0];
77 } 42 }
78 } 43 }
79 return null; 44 return null;
80 } 45 }
81 46
82 /** 47 /**
83 * A function that returns `true` if the given [variable] passes the filter. 48 * A function that returns `true` if the given [element] passes the filter.
84 */ 49 */
85 typedef bool VariableFilter(VariableElement element); 50 typedef bool VariableFilter(VariableElement element);
86 51
87 /** 52 /**
88 * An object used to infer the type of instance fields and the return types of 53 * An object used to infer the type of instance fields and the return types of
89 * instance methods within a single compilation unit. 54 * instance methods within a single compilation unit.
90 */ 55 */
91 class InstanceMemberInferrer { 56 class InstanceMemberInferrer {
92 /** 57 /**
93 * The type provider used to look up types. 58 * The type provider used to look up types.
94 */ 59 */
95 final TypeProvider typeProvider; 60 final TypeProvider typeProvider;
96 61
97 /** 62 /**
98 * The type system used to compute the least upper bound of types. 63 * The type system used to compute the least upper bound of types.
99 */ 64 */
100 TypeSystem typeSystem; 65 TypeSystem typeSystem;
101 66
102 /** 67 /**
103 * The inheritance manager used to find overridden method. 68 * The inheritance manager used to find overridden method.
104 */ 69 */
105 InheritanceManager inheritanceManager; 70 final InheritanceManager inheritanceManager;
106 71
107 /** 72 /**
108 * The classes that have been visited while attempting to infer the types of 73 * The classes that have been visited while attempting to infer the types of
109 * instance members of some base class. 74 * instance members of some base class.
110 */ 75 */
111 HashSet<ClassElementImpl> elementsBeingInferred = 76 HashSet<ClassElementImpl> elementsBeingInferred =
112 new HashSet<ClassElementImpl>(); 77 new HashSet<ClassElementImpl>();
113 78
114 /** 79 /**
115 * Initialize a newly create inferrer. 80 * Initialize a newly create inferrer.
116 */ 81 */
117 InstanceMemberInferrer(this.typeProvider, {TypeSystem typeSystem}) 82 InstanceMemberInferrer(this.typeProvider, this.inheritanceManager,
83 {TypeSystem typeSystem})
118 : typeSystem = (typeSystem != null) ? typeSystem : new TypeSystemImpl(); 84 : typeSystem = (typeSystem != null) ? typeSystem : new TypeSystemImpl();
119 85
120 /** 86 /**
121 * Infer type information for all of the instance members in the given 87 * Infer type information for all of the instance members in the given
122 * compilation [unit]. 88 * compilation [unit].
123 */ 89 */
124 void inferCompilationUnit(CompilationUnitElement unit) { 90 void inferCompilationUnit(CompilationUnitElement unit) {
125 inheritanceManager = new InheritanceManager(unit.library);
126 unit.types.forEach((ClassElement classElement) { 91 unit.types.forEach((ClassElement classElement) {
127 try { 92 try {
128 _inferClass(classElement); 93 _inferClass(classElement);
129 } on _CycleException { 94 } on _CycleException {
130 // This is a short circuit return to prevent types that inherit from 95 // This is a short circuit return to prevent types that inherit from
131 // types containing a circular reference from being inferred. 96 // types containing a circular reference from being inferred.
132 } 97 }
133 }); 98 });
134 } 99 }
135 100
136 /** 101 /**
102 * Return `true` if the list of [elements] contains only methods.
103 */
104 bool _allSameElementKind(
105 ExecutableElement element, List<ExecutableElement> elements) {
106 return elements.every((e) => e.kind == element.kind);
107 }
108
109 /**
137 * Compute the best type for the [parameter] at the given [index] that must be 110 * Compute the best type for the [parameter] at the given [index] that must be
138 * compatible with the types of the corresponding parameters of the given 111 * compatible with the types of the corresponding parameters of the given
139 * [overriddenMethods]. 112 * [overriddenMethods].
140 * 113 *
141 * At the moment, this method will only return a type other than 'dynamic' if 114 * At the moment, this method will only return a type other than 'dynamic' if
142 * the types of all of the parameters are the same. In the future we might 115 * the types of all of the parameters are the same. In the future we might
143 * want to be smarter about it, such as by returning the least upper bound of 116 * want to be smarter about it, such as by returning the least upper bound of
144 * the parameter types. 117 * the parameter types.
145 */ 118 */
146 DartType _computeParameterType(ParameterElement parameter, int index, 119 DartType _computeParameterType(ParameterElement parameter, int index,
147 List<ExecutableElement> overriddenMethods) { 120 List<FunctionType> overriddenTypes) {
148 DartType parameterType = null; 121 DartType parameterType = null;
149 int length = overriddenMethods.length; 122 int length = overriddenTypes.length;
150 for (int i = 0; i < length; i++) { 123 for (int i = 0; i < length; i++) {
151 DartType type = _getTypeOfCorrespondingParameter( 124 ParameterElement matchingParam = _getCorrespondingParameter(
152 parameter, index, overriddenMethods[i]); 125 parameter, index, overriddenTypes[i].parameters);
126 var type = matchingParam?.type ?? typeProvider.dynamicType;
153 if (parameterType == null) { 127 if (parameterType == null) {
154 parameterType = type; 128 parameterType = type;
155 } else if (parameterType != type) { 129 } else if (parameterType != type) {
156 return typeProvider.dynamicType; 130 return typeProvider.dynamicType;
157 } 131 }
158 } 132 }
159 return parameterType == null ? typeProvider.dynamicType : parameterType; 133 return parameterType ?? typeProvider.dynamicType;
160 } 134 }
161 135
162 /** 136 /**
163 * Compute the best return type for a method that must be compatible with the 137 * Compute the best return type for a method that must be compatible with the
164 * return types of each of the given [overriddenMethods]. 138 * return types of each of the given [overriddenReturnTypes].
165 * 139 *
166 * At the moment, this method will only return a type other than 'dynamic' if 140 * At the moment, this method will only return a type other than 'dynamic' if
167 * the return types of all of the methods are the same. In the future we might 141 * the return types of all of the methods are the same. In the future we might
168 * want to be smarter about it. 142 * want to be smarter about it.
169 */ 143 */
170 DartType _computeReturnType(List<ExecutableElement> overriddenMethods) { 144 DartType _computeReturnType(Iterable<DartType> overriddenReturnTypes) {
171 DartType returnType = null; 145 DartType returnType = null;
172 int length = overriddenMethods.length; 146 for (DartType type in overriddenReturnTypes) {
173 for (int i = 0; i < length; i++) { 147 if (type == null) {
174 DartType type = _getReturnType(overriddenMethods[i]); 148 type = typeProvider.dynamicType;
149 }
175 if (returnType == null) { 150 if (returnType == null) {
176 returnType = type; 151 returnType = type;
177 } else if (returnType != type) { 152 } else if (returnType != type) {
178 return typeProvider.dynamicType; 153 return typeProvider.dynamicType;
179 } 154 }
180 } 155 }
181 return returnType == null ? typeProvider.dynamicType : returnType; 156 return returnType ?? typeProvider.dynamicType;
182 }
183
184 DartType _getReturnType(ExecutableElement element) {
185 DartType returnType = element.returnType;
186 if (returnType == null) {
187 return typeProvider.dynamicType;
188 }
189 return returnType;
190 } 157 }
191 158
192 /** 159 /**
193 * Given a [method], return the type of the parameter in the method that 160 * Given a method, return the parameter in the method that corresponds to the
194 * corresponds to the given [parameter]. If the parameter is positional, then 161 * given [parameter]. If the parameter is positional, then
195 * it appears at the given [index] in its enclosing element's list of 162 * it appears at the given [index] in its enclosing element's list of
196 * parameters. 163 * parameters.
197 */ 164 */
198 DartType _getTypeOfCorrespondingParameter( 165 ParameterElement _getCorrespondingParameter(ParameterElement parameter,
199 ParameterElement parameter, int index, ExecutableElement method) { 166 int index, List<ParameterElement> methodParameters) {
200 // 167 //
201 // Find the corresponding parameter. 168 // Find the corresponding parameter.
202 // 169 //
203 List<ParameterElement> methodParameters = method.parameters;
204 ParameterElement matchingParameter = null;
205 if (parameter.parameterKind == ParameterKind.NAMED) { 170 if (parameter.parameterKind == ParameterKind.NAMED) {
206 // 171 //
207 // If we're looking for a named parameter, only a named parameter with 172 // If we're looking for a named parameter, only a named parameter with
208 // the same name will be matched. 173 // the same name will be matched.
209 // 174 //
210 matchingParameter = methodParameters.lastWhere( 175 return methodParameters.lastWhere(
211 (ParameterElement methodParameter) => 176 (ParameterElement methodParameter) =>
212 methodParameter.parameterKind == ParameterKind.NAMED && 177 methodParameter.parameterKind == ParameterKind.NAMED &&
213 methodParameter.name == parameter.name, 178 methodParameter.name == parameter.name,
214 orElse: () => null); 179 orElse: () => null);
215 } else { 180 }
216 // 181 //
217 // If we're looking for a positional parameter we ignore the difference 182 // If we're looking for a positional parameter we ignore the difference
218 // between required and optional parameters. 183 // between required and optional parameters.
219 // 184 //
220 if (index < methodParameters.length) { 185 if (index < methodParameters.length) {
221 matchingParameter = methodParameters[index]; 186 var matchingParameter = methodParameters[index];
222 if (matchingParameter.parameterKind == ParameterKind.NAMED) { 187 if (matchingParameter.parameterKind != ParameterKind.NAMED) {
223 matchingParameter = null; 188 return matchingParameter;
224 }
225 } 189 }
226 } 190 }
227 // 191 return null;
228 // Then return the type of the parameter.
229 //
230 return matchingParameter == null
231 ? typeProvider.dynamicType
232 : matchingParameter.type;
233 } 192 }
234 193
235 /** 194 /**
236 * Infer type information for all of the instance members in the given 195 * Infer type information for all of the instance members in the given
237 * [classElement]. 196 * [classElement].
238 */ 197 */
239 void _inferClass(ClassElement classElement) { 198 void _inferClass(ClassElement classElement) {
240 if (classElement is ClassElementImpl) { 199 if (classElement is ClassElementImpl) {
241 if (classElement.hasBeenInferred) { 200 if (classElement.hasBeenInferred) {
242 return; 201 return;
(...skipping 25 matching lines...) Expand all
268 // field types are inferred. 227 // field types are inferred.
269 // 228 //
270 classElement.constructors.forEach(_inferConstructorFieldFormals); 229 classElement.constructors.forEach(_inferConstructorFieldFormals);
271 classElement.hasBeenInferred = true; 230 classElement.hasBeenInferred = true;
272 } finally { 231 } finally {
273 elementsBeingInferred.remove(classElement); 232 elementsBeingInferred.remove(classElement);
274 } 233 }
275 } 234 }
276 } 235 }
277 236
237 void _inferConstructorFieldFormals(ConstructorElement element) {
238 for (ParameterElement p in element.parameters) {
239 if (p is FieldFormalParameterElement) {
240 _inferFieldFormalParameter(p);
241 }
242 }
243 }
244
245 /**
246 * If the given [element] represents a non-synthetic instance method,
247 * getter or setter, infer the return type and any parameter type(s) where
248 * they were not provided.
249 */
250 void _inferExecutable(ExecutableElement element) {
251 if (element.isSynthetic || element.isStatic) {
252 return;
253 }
254 List<ExecutableElement> overriddenMethods = inheritanceManager
255 .lookupOverrides(element.enclosingElement, element.name);
256 if (overriddenMethods.isEmpty ||
257 !_allSameElementKind(element, overriddenMethods)) {
258 return;
259 }
260
261 //
262 // Overridden methods must have the same number of generic type parameters
263 // as this method, or none.
264 //
265 // If we do have generic type parameters on the element we're inferring,
266 // we must express its parameter and return types in terms of its own
267 // parameters. For example, given `m<T>(t)` overriding `m<S>(S s)` we
268 // should infer this as `m<T>(T t)`.
269 //
270 List<DartType> typeFormals =
271 TypeParameterTypeImpl.getTypes(element.type.typeFormals);
272
273 List<FunctionType> overriddenTypes = new List<FunctionType>();
274 for (ExecutableElement overriddenMethod in overriddenMethods) {
275 FunctionType overriddenType = overriddenMethod.type;
276 if (overriddenType == null) {
277 // TODO(brianwilkerson) I think the overridden method should always have
278 // a type, but there appears to be a bug that causes it to sometimes be
279 // null, we guard against that case by not performing inference.
280 return;
281 }
282 if (overriddenType.typeFormals.isNotEmpty) {
283 if (overriddenType.typeFormals.length != typeFormals.length) {
284 return;
285 }
286 overriddenType = overriddenType.instantiate(typeFormals);
287 }
288 overriddenTypes.add(overriddenType);
289 }
290
291 //
292 // Infer the return type.
293 //
294 if (element.hasImplicitReturnType) {
295 (element as ExecutableElementImpl).returnType =
296 _computeReturnType(overriddenTypes.map((t) => t.returnType));
297 if (element is PropertyAccessorElement) {
298 _updateSyntheticVariableType(element);
299 }
300 }
301 //
302 // Infer the parameter types.
303 //
304 List<ParameterElement> parameters = element.parameters;
305 int length = parameters.length;
306 for (int i = 0; i < length; ++i) {
307 ParameterElement parameter = parameters[i];
308 if (parameter is ParameterElementImpl) {
309 _inferParameterCovariance(parameter, i, overriddenTypes);
310
311 if (parameter.hasImplicitType) {
312 parameter.type = _computeParameterType(parameter, i, overriddenTypes);
313 if (element is PropertyAccessorElement) {
314 _updateSyntheticVariableType(element);
315 }
316 }
317 }
318 }
319 }
320
278 /** 321 /**
279 * If the given [fieldElement] represents a non-synthetic instance field for 322 * If the given [fieldElement] represents a non-synthetic instance field for
280 * which no type was provided, infer the type of the field. 323 * which no type was provided, infer the type of the field.
281 */ 324 */
282 void _inferField(FieldElement fieldElement) { 325 void _inferField(FieldElement fieldElement) {
283 if (!fieldElement.isSynthetic && 326 if (fieldElement.isSynthetic || fieldElement.isStatic) {
284 !fieldElement.isStatic && 327 return;
285 fieldElement.hasImplicitType) { 328 }
329 List<ExecutableElement> overriddenSetters =
330 inheritanceManager.lookupOverrides(
331 fieldElement.enclosingElement, fieldElement.name + '=');
332 var setter = fieldElement.setter;
333 if (setter != null && overriddenSetters.isNotEmpty) {
334 _inferParameterCovariance(
335 setter.parameters[0], 0, overriddenSetters.map((s) => s.type));
336 }
337
338 if (fieldElement.hasImplicitType) {
286 // 339 //
287 // First look for overridden getters with the same name as the field. 340 // First look for overridden getters with the same name as the field.
288 // 341 //
289 List<ExecutableElement> overriddenGetters = inheritanceManager 342 List<ExecutableElement> overriddenGetters = inheritanceManager
290 .lookupOverrides(fieldElement.enclosingElement, fieldElement.name); 343 .lookupOverrides(fieldElement.enclosingElement, fieldElement.name);
291 DartType newType = null; 344 DartType newType = null;
292 if (overriddenGetters.isNotEmpty && _onlyGetters(overriddenGetters)) { 345 if (overriddenGetters.isNotEmpty && _onlyGetters(overriddenGetters)) {
293 newType = _computeReturnType(overriddenGetters); 346 newType =
294 List<ExecutableElement> overriddenSetters = inheritanceManager 347 _computeReturnType(overriddenGetters.map((e) => e.returnType));
295 .lookupOverrides( 348
296 fieldElement.enclosingElement, fieldElement.name + '=');
297 if (!_isCompatible(newType, overriddenSetters)) { 349 if (!_isCompatible(newType, overriddenSetters)) {
298 newType = null; 350 newType = null;
299 } 351 }
300 } 352 }
301 // 353 //
302 // If there is no overridden getter or if the overridden getter's type is 354 // If there is no overridden getter or if the overridden getter's type is
303 // dynamic, then we can infer the type from the initialization expression 355 // dynamic, then we can infer the type from the initialization expression
304 // without breaking subtype rules. We could potentially infer a consistent 356 // without breaking subtype rules. We could potentially infer a consistent
305 // return type even if the overridden getter's type was not dynamic, but 357 // return type even if the overridden getter's type was not dynamic, but
306 // choose not to for simplicity. The field is required to be final to 358 // choose not to for simplicity. The field is required to be final to
307 // prevent choosing a type that is inconsistent with assignments we cannot 359 // prevent choosing a type that is inconsistent with assignments we cannot
308 // analyze. 360 // analyze.
309 // 361 //
310 if (newType == null || newType.isDynamic) { 362 if (newType == null || newType.isDynamic) {
311 if (fieldElement.initializer != null && 363 if (fieldElement.initializer != null &&
312 (fieldElement.isFinal || overriddenGetters.isEmpty)) { 364 (fieldElement.isFinal || overriddenGetters.isEmpty)) {
313 newType = fieldElement.initializer.returnType; 365 newType = fieldElement.initializer.returnType;
314 } 366 }
315 } 367 }
316 if (newType == null || newType.isBottom) { 368 if (newType == null || newType.isBottom) {
317 newType = typeProvider.dynamicType; 369 newType = typeProvider.dynamicType;
318 } 370 }
319 (fieldElement as FieldElementImpl).type = newType; 371 setFieldType(fieldElement, newType);
320 setReturnType(fieldElement.getter, newType); 372 }
321 if (!fieldElement.isFinal && !fieldElement.isConst) { 373 }
322 setParameterType(fieldElement.setter, newType); 374
323 } 375 void _inferFieldFormalParameter(FieldFormalParameterElement element) {
376 FieldElement field = element.field;
377 if (field != null && element.hasImplicitType) {
378 (element as FieldFormalParameterElementImpl).type = field.type;
324 } 379 }
325 } 380 }
326 381
327 /** 382 /**
328 * If the given [element] represents a non-synthetic instance method, 383 * If a parameter is covariant, any parameters that override it are too.
329 * getter or setter, infer the return type and any parameter type(s) where
330 * they were not provided.
331 */ 384 */
332 void _inferExecutable(ExecutableElement element) { 385 void _inferParameterCovariance(ParameterElementImpl parameter, int index,
333 if (element.isSynthetic || element.isStatic) { 386 Iterable<FunctionType> overriddenTypes) {
334 return; 387 parameter.inheritsCovariant = overriddenTypes.any((f) {
335 } 388 var param = _getCorrespondingParameter(parameter, index, f.parameters);
336 List<ExecutableElement> overriddenMethods = null; 389 return param != null && param.isCovariant;
337 // 390 });
338 // Infer the return type.
339 //
340 if (element.hasImplicitReturnType) {
341 overriddenMethods = inheritanceManager.lookupOverrides(
342 element.enclosingElement, element.name);
343 if (overriddenMethods.isEmpty ||
344 !_allSameElementKind(element, overriddenMethods)) {
345 return;
346 }
347 setReturnType(element, _computeReturnType(overriddenMethods));
348 if (element is PropertyAccessorElement) {
349 _updateSyntheticVariableType(element);
350 }
351 }
352 //
353 // Infer the parameter types.
354 //
355 List<ParameterElement> parameters = element.parameters;
356 int length = parameters.length;
357 for (int i = 0; i < length; ++i) {
358 ParameterElement parameter = parameters[i];
359 if (parameter is ParameterElementImpl && parameter.hasImplicitType) {
360 if (overriddenMethods == null) {
361 overriddenMethods = inheritanceManager.lookupOverrides(
362 element.enclosingElement, element.name);
363 }
364 if (overriddenMethods.isEmpty ||
365 !_allSameElementKind(element, overriddenMethods)) {
366 return;
367 }
368 parameter.type = _computeParameterType(parameter, i, overriddenMethods);
369 if (element is PropertyAccessorElement) {
370 _updateSyntheticVariableType(element);
371 }
372 }
373 }
374 } 391 }
375 392
376 /** 393 /**
377 * If the given [element] is a non-synthetic getter or setter, update its
378 * synthetic variable's type to match the getter's return type, or if no
379 * corresponding getter exists, use the setter's parameter type.
380 *
381 * In general, the type of the synthetic variable should not be used, because
382 * getters and setters are independent methods. But this logic matches what
383 * `TypeResolverVisitor.visitMethodDeclaration` would fill in there.
384 */
385 void _updateSyntheticVariableType(PropertyAccessorElement element) {
386 assert(!element.isSynthetic);
387 PropertyAccessorElement getter = element;
388 if (element.isSetter) {
389 // See if we can find any getter.
390 getter = element.correspondingGetter;
391 }
392 DartType newType;
393 if (getter != null) {
394 newType = getter.returnType;
395 } else if (element.isSetter && element.parameters.isNotEmpty) {
396 newType = element.parameters[0].type;
397 }
398 if (newType != null) {
399 (element.variable as VariableElementImpl).type = newType;
400 }
401 }
402
403 /**
404 * Infer type information for all of the instance members in the given 394 * Infer type information for all of the instance members in the given
405 * interface [type]. 395 * interface [type].
406 */ 396 */
407 void _inferType(InterfaceType type) { 397 void _inferType(InterfaceType type) {
408 if (type != null) { 398 if (type != null) {
409 ClassElement element = type.element; 399 ClassElement element = type.element;
410 if (element != null) { 400 if (element != null) {
411 _inferClass(element); 401 _inferClass(element);
412 } 402 }
413 } 403 }
(...skipping 19 matching lines...) Expand all
433 bool _onlyGetters(List<ExecutableElement> elements) { 423 bool _onlyGetters(List<ExecutableElement> elements) {
434 for (ExecutableElement element in elements) { 424 for (ExecutableElement element in elements) {
435 if (!(element is PropertyAccessorElement && element.isGetter)) { 425 if (!(element is PropertyAccessorElement && element.isGetter)) {
436 return false; 426 return false;
437 } 427 }
438 } 428 }
439 return true; 429 return true;
440 } 430 }
441 431
442 /** 432 /**
443 * Return `true` if the list of [elements] contains only methods. 433 * If the given [element] is a non-synthetic getter or setter, update its
434 * synthetic variable's type to match the getter's return type, or if no
435 * corresponding getter exists, use the setter's parameter type.
436 *
437 * In general, the type of the synthetic variable should not be used, because
438 * getters and setters are independent methods. But this logic matches what
439 * `TypeResolverVisitor.visitMethodDeclaration` would fill in there.
444 */ 440 */
445 bool _allSameElementKind( 441 void _updateSyntheticVariableType(PropertyAccessorElement element) {
446 ExecutableElement element, List<ExecutableElement> elements) { 442 assert(!element.isSynthetic);
447 return elements.every((e) => e.kind == element.kind); 443 PropertyAccessorElement getter = element;
448 } 444 if (element.isSetter) {
449 445 // See if we can find any getter.
450 void _inferConstructorFieldFormals(ConstructorElement element) { 446 getter = element.correspondingGetter;
451 for (ParameterElement p in element.parameters) {
452 if (p is FieldFormalParameterElement) {
453 _inferFieldFormalParameter(p);
454 }
455 } 447 }
456 } 448 DartType newType;
457 449 if (getter != null) {
458 void _inferFieldFormalParameter(FieldFormalParameterElement element) { 450 newType = getter.returnType;
459 FieldElement field = element.field; 451 } else if (element.isSetter && element.parameters.isNotEmpty) {
460 if (field != null && element.hasImplicitType) { 452 newType = element.parameters[0].type;
461 (element as FieldFormalParameterElementImpl).type = field.type; 453 }
454 if (newType != null) {
455 (element.variable as VariableElementImpl).type = newType;
462 } 456 }
463 } 457 }
464 } 458 }
465 459
466 /** 460 /**
467 * A visitor that will gather all of the variables referenced within a given 461 * A visitor that will gather all of the variables referenced within a given
468 * AST structure. The collection can be restricted to contain only those 462 * AST structure. The collection can be restricted to contain only those
469 * variables that pass a specified filter. 463 * variables that pass a specified filter.
470 */ 464 */
471 class VariableGatherer extends RecursiveAstVisitor { 465 class VariableGatherer extends RecursiveAstVisitor {
(...skipping 10 matching lines...) Expand all
482 476
483 /** 477 /**
484 * Initialize a newly created gatherer to gather all of the variables that 478 * Initialize a newly created gatherer to gather all of the variables that
485 * pass the given [filter] (or all variables if no filter is provided). 479 * pass the given [filter] (or all variables if no filter is provided).
486 */ 480 */
487 VariableGatherer([this.filter = null]); 481 VariableGatherer([this.filter = null]);
488 482
489 @override 483 @override
490 void visitSimpleIdentifier(SimpleIdentifier node) { 484 void visitSimpleIdentifier(SimpleIdentifier node) {
491 if (!node.inDeclarationContext()) { 485 if (!node.inDeclarationContext()) {
492 Element element = node.staticElement; 486 Element nonAccessor(Element element) {
493 if (element is PropertyAccessorElement && element.isSynthetic) { 487 if (element is PropertyAccessorElement && element.isSynthetic) {
494 element = (element as PropertyAccessorElement).variable; 488 return element.variable;
489 }
490 return element;
495 } 491 }
492
493 Element element = nonAccessor(node.staticElement);
496 if (element is VariableElement && (filter == null || filter(element))) { 494 if (element is VariableElement && (filter == null || filter(element))) {
497 results.add(element); 495 results.add(element);
498 } 496 }
499 } 497 }
500 } 498 }
501 } 499 }
502 500
503 /** 501 /**
504 * A class of exception that is not used anywhere else. 502 * A class of exception that is not used anywhere else.
505 */ 503 */
506 class _CycleException implements Exception {} 504 class _CycleException implements Exception {}
OLDNEW
« no previous file with comments | « packages/analyzer/lib/src/task/strong/rules.dart ('k') | packages/analyzer/lib/src/task/yaml.dart » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698