| OLD | NEW |
| (Empty) |
| 1 // Copyright (c) 2015, the Dart project authors. Please see the AUTHORS file | |
| 2 // for details. All rights reserved. Use of this source code is governed by a | |
| 3 // BSD-style license that can be found in the LICENSE file. | |
| 4 | |
| 5 import "package:expect/expect.dart"; | |
| 6 | |
| 7 import "dart:math" show pow; | |
| 8 | |
| 9 var smallNumber = 1234567890; // is 31-bit integer. | |
| 10 var mediumNumber = 1234567890123456; // is 53-bit integer | |
| 11 var bigNumber = 590295810358705600000; // is > 64-bit integer, exact as double. | |
| 12 | |
| 13 testModPow() { | |
| 14 test(x, e, m, expectedResult) { | |
| 15 // Check that expected result is correct, using an unoptimized version. | |
| 16 assert(() { | |
| 17 if (1 is double) return true; // Don't have bignums. | |
| 18 slowModPow(x, e, m) { | |
| 19 var r = 1; | |
| 20 while (e > 0) { | |
| 21 if (e.isOdd) r = (r * x) % m; | |
| 22 e >>= 1; | |
| 23 x = (x * x) % m; | |
| 24 } | |
| 25 return r; | |
| 26 } | |
| 27 | |
| 28 return slowModPow(x, e, m) == expectedResult; | |
| 29 }); | |
| 30 var result = x.modPow(e, m); | |
| 31 Expect.equals(expectedResult, result, "$x.modPow($e, $m)"); | |
| 32 } | |
| 33 | |
| 34 test(10, 20, 1, 0); | |
| 35 test(1234567890, 1000000001, 19, 11); | |
| 36 test(1234567890, 19, 1000000001, 122998977); | |
| 37 test(19, 1234567890, 1000000001, 619059596); | |
| 38 test(19, 1000000001, 1234567890, 84910879); | |
| 39 test(1000000001, 19, 1234567890, 872984351); | |
| 40 test(1000000001, 1234567890, 19, 0); | |
| 41 test(12345678901234567890, 10000000000000000001, 19, 2); | |
| 42 test(12345678901234567890, 19, 10000000000000000001, 3239137215315834625); | |
| 43 test(19, 12345678901234567890, 10000000000000000001, 4544207837373941034); | |
| 44 test(19, 10000000000000000001, 12345678901234567890, 11135411705397624859); | |
| 45 test(10000000000000000001, 19, 12345678901234567890, 2034013733189773841); | |
| 46 test(10000000000000000001, 12345678901234567890, 19, 1); | |
| 47 test(12345678901234567890, 19, 10000000000000000001, 3239137215315834625); | |
| 48 test(12345678901234567890, 10000000000000000001, 19, 2); | |
| 49 test(123456789012345678901234567890, 123456789012345678901234567891, | |
| 50 123456789012345678901234567899, 116401406051033429924651549616); | |
| 51 test(123456789012345678901234567890, 123456789012345678901234567899, | |
| 52 123456789012345678901234567891, 123456789012345678901234567890); | |
| 53 test(123456789012345678901234567899, 123456789012345678901234567890, | |
| 54 123456789012345678901234567891, 35088523091000351053091545070); | |
| 55 test(123456789012345678901234567899, 123456789012345678901234567891, | |
| 56 123456789012345678901234567890, 18310047270234132455316941949); | |
| 57 test(123456789012345678901234567891, 123456789012345678901234567899, | |
| 58 123456789012345678901234567890, 1); | |
| 59 test(123456789012345678901234567891, 123456789012345678901234567890, | |
| 60 123456789012345678901234567899, 40128068573873018143207285483); | |
| 61 } | |
| 62 | |
| 63 testModInverse() { | |
| 64 test(x, m, expectedResult) { | |
| 65 //print("$x op $m == $expectedResult"); | |
| 66 // Check that expectedResult is an inverse. | |
| 67 assert(expectedResult < m); | |
| 68 // The 1 % m handles the m = 1 special case. | |
| 69 // This test may overflow if we don't have bignums, so only run on VM. | |
| 70 assert(1 is double || (((x % m) * expectedResult) - 1) % m == 0); | |
| 71 | |
| 72 var result = x.modInverse(m); | |
| 73 Expect.equals(expectedResult, result, "$x modinv $m"); | |
| 74 | |
| 75 if (x > m) { | |
| 76 x = x % m; | |
| 77 var result = x.modInverse(m); | |
| 78 Expect.equals(expectedResult, result, "$x modinv $m"); | |
| 79 } | |
| 80 } | |
| 81 | |
| 82 testThrows(x, m) { | |
| 83 // Throws if not co-prime, which is a symmetric property. | |
| 84 Expect.throws(() => x.modInverse(m), null, "$x modinv $m"); | |
| 85 Expect.throws(() => m.modInverse(x), null, "$m modinv $x"); | |
| 86 } | |
| 87 | |
| 88 test(1, 1, 0); | |
| 89 | |
| 90 testThrows(0, 1000000001); | |
| 91 testThrows(2, 4); | |
| 92 testThrows(99, 9); | |
| 93 testThrows(19, 1000000001); | |
| 94 testThrows(123456789012345678901234567890, 123456789012345678901234567899); | |
| 95 | |
| 96 // Co-prime numbers | |
| 97 test(1234567890, 19, 11); | |
| 98 test(1234567890, 1000000001, 189108911); | |
| 99 test(19, 1234567890, 519818059); | |
| 100 test(1000000001, 1234567890, 1001100101); | |
| 101 | |
| 102 test(12345, 12346, 12345); | |
| 103 test(12345, 12346, 12345); | |
| 104 | |
| 105 test(smallNumber, 137, 42); | |
| 106 test(137, smallNumber, 856087223); | |
| 107 test(mediumNumber, 137, 77); | |
| 108 test(137, mediumNumber, 540686667207353); | |
| 109 test(bigNumber, 137, 128); // //# bignum: ok | |
| 110 // Bigger numbers as modulo is tested in big_integer_arith_vm_test.dart. | |
| 111 // Big doubles are not co-prime, so there is nothing to test for dart2js. | |
| 112 } | |
| 113 | |
| 114 testGcd() { | |
| 115 // Call testFunc with all combinations and orders of plus/minus | |
| 116 // value and other. | |
| 117 callCombos(value, other, testFunc) { | |
| 118 testFunc(value, other); | |
| 119 testFunc(value, -other); | |
| 120 testFunc(-value, other); | |
| 121 testFunc(-value, -other); | |
| 122 if (value == other) return; | |
| 123 testFunc(other, value); | |
| 124 testFunc(other, -value); | |
| 125 testFunc(-other, value); | |
| 126 testFunc(-other, -value); | |
| 127 } | |
| 128 | |
| 129 // Test that gcd of value and other (non-negative) is expectedResult. | |
| 130 // Tests all combinations of positive and negative values and order of | |
| 131 // operands, so use positive values and order is not important. | |
| 132 test(value, other, expectedResult) { | |
| 133 // Check for bug in test. | |
| 134 assert(expectedResult == 0 || value % expectedResult == 0); | |
| 135 assert(expectedResult == 0 || other % expectedResult == 0); | |
| 136 callCombos(value, other, (a, b) { | |
| 137 var result = a.gcd(b); | |
| 138 | |
| 139 /// Check that the result is a divisor. | |
| 140 Expect.equals(0, result == 0 ? a : a % result, "$result | $a"); | |
| 141 Expect.equals(0, result == 0 ? b : b % result, "$result | $b"); | |
| 142 // Check for bug in test. If assert fails, the expected value is too low, | |
| 143 // and the gcd call has found a greater common divisor. | |
| 144 assert(result >= expectedResult); | |
| 145 Expect.equals(expectedResult, result, "$a.gcd($b)"); | |
| 146 }); | |
| 147 } | |
| 148 | |
| 149 // Test that gcd of value and other (non-negative) throws. | |
| 150 testThrows(value, other) { | |
| 151 callCombos(value, other, (a, b) { | |
| 152 Expect.throws(() => a.gcd(b), null, "$a.gcd($b)"); | |
| 153 }); | |
| 154 } | |
| 155 | |
| 156 testThrows(2.5, 5); // Not a method on double. | |
| 157 testThrows(5, 2.5); // Not accepting non-int arguments. | |
| 158 | |
| 159 // Format: | |
| 160 // test(value1, value2, expectedResult); | |
| 161 test(1, 1, 1); // both are 1 | |
| 162 test(1, 2, 1); // one is 1 | |
| 163 test(3, 5, 1); // coprime. | |
| 164 test(37, 37, 37); // Same larger prime. | |
| 165 | |
| 166 test(9999, 7272, 909); // Larger numbers | |
| 167 | |
| 168 test(0, 1000, 1000); // One operand is zero. | |
| 169 test(0, 0, 0); // Both operands are zero. | |
| 170 | |
| 171 // Multiplying both operands by a number multiplies result by same number. | |
| 172 test(693, 609, 21); | |
| 173 test(693 << 5, 609 << 5, 21 << 5); | |
| 174 test(693 * 937, 609 * 937, 21 * 937); | |
| 175 test(693 * pow(2, 32), 609 * pow(2, 32), 21 * pow(2, 32)); | |
| 176 test(693 * pow(2, 52), 609 * pow(2, 52), 21 * pow(2, 52)); | |
| 177 test(693 * pow(2, 53), 609 * pow(2, 53), 21 * pow(2, 53)); // Regression. | |
| 178 test(693 * pow(2, 99), 609 * pow(2, 99), 21 * pow(2, 99)); | |
| 179 | |
| 180 test(1234567890, 19, 1); | |
| 181 test(1234567890, 1000000001, 1); | |
| 182 test(19, 1000000001, 19); | |
| 183 | |
| 184 test(0x3FFFFFFF, 0x3FFFFFFF, 0x3FFFFFFF); | |
| 185 test(0x3FFFFFFF, 0x40000000, 1); | |
| 186 | |
| 187 test(pow(2, 54), pow(2, 53), pow(2, 53)); | |
| 188 | |
| 189 test((pow(2, 52) - 1) * pow(2, 14), (pow(2, 26) - 1) * pow(2, 22), | |
| 190 (pow(2, 26) - 1) * pow(2, 14)); | |
| 191 } | |
| 192 | |
| 193 main() { | |
| 194 testModPow(); // //# modPow: ok | |
| 195 testModInverse(); | |
| 196 testGcd(); | |
| 197 } | |
| OLD | NEW |