Index: packages/collection/lib/src/functions.dart |
diff --git a/packages/collection/lib/src/functions.dart b/packages/collection/lib/src/functions.dart |
new file mode 100644 |
index 0000000000000000000000000000000000000000..933de82ebebae322907f1adb1a381b2acc2a91e5 |
--- /dev/null |
+++ b/packages/collection/lib/src/functions.dart |
@@ -0,0 +1,203 @@ |
+// Copyright (c) 2016, the Dart project authors. Please see the AUTHORS file |
+// for details. All rights reserved. Use of this source code is governed by a |
+// BSD-style license that can be found in the LICENSE file. |
+ |
+import 'dart:math' as math; |
+import 'dart:collection'; |
+ |
+import 'utils.dart'; |
+ |
+// TODO(nweiz): When sdk#26488 is fixed, use overloads to ensure that if [key] |
+// or [value] isn't passed, `K2`/`V2` defaults to `K1`/`V1`, respectively. |
+/// Creates a new map from [map] with new keys and values. |
+/// |
+/// The return values of [key] are used as the keys and the return values of |
+/// [value] are used as the values for the new map. |
+Map<K2, V2> mapMap<K1, V1, K2, V2>(Map<K1, V1> map, |
+ {K2 key(K1 key, V1 value), V2 value(K1 key, V1 value)}) { |
+ key ??= (mapKey, _) => mapKey as K2; |
+ value ??= (_, mapValue) => mapValue as V2; |
+ |
+ var result = <K2, V2>{}; |
+ map.forEach((mapKey, mapValue) { |
+ result[key(mapKey, mapValue)] = value(mapKey, mapValue); |
+ }); |
+ return result; |
+} |
+ |
+/// Returns a new map with all key/value pairs in both [map1] and [map2]. |
+/// |
+/// If there are keys that occur in both maps, the [value] function is used to |
+/// select the value that goes into the resulting map based on the two original |
+/// values. If [value] is omitted, the value from [map2] is used. |
+Map<K, V> mergeMaps<K, V>(Map<K, V> map1, Map<K, V> map2, |
+ {V value(V value1, V value2)}) { |
+ var result = new Map<K, V>.from(map1); |
+ if (value == null) return result..addAll(map2); |
+ |
+ map2.forEach((key, mapValue) { |
+ result[key] = |
+ result.containsKey(key) ? value(result[key], mapValue) : mapValue; |
+ }); |
+ return result; |
+} |
+ |
+/// Groups the elements in [values] by the value returned by [key]. |
+/// |
+/// Returns a map from keys computed by [key] to a list of all values for which |
+/// [key] returns that key. The values appear in the list in the same relative |
+/// order as in [values]. |
+Map<T, List<S>> groupBy<S, T>(Iterable<S> values, T key(S element)) { |
+ var map = <T, List<S>>{}; |
+ for (var element in values) { |
+ var list = map.putIfAbsent(key(element), () => []); |
+ list.add(element); |
+ } |
+ return map; |
+} |
+ |
+/// Returns the element of [values] for which [orderBy] returns the minimum |
+/// value. |
+/// |
+/// The values returned by [orderBy] are compared using the [compare] function. |
+/// If [compare] is omitted, values must implement [Comparable<T>] and they are |
+/// compared using their [Comparable.compareTo]. |
+S minBy<S, T>(Iterable<S> values, T orderBy(S element), |
+ {int compare(T value1, T value2)}) { |
+ compare ??= defaultCompare<T>(); |
+ |
+ S minValue; |
+ T minOrderBy; |
+ for (var element in values) { |
+ var elementOrderBy = orderBy(element); |
+ if (minOrderBy == null || compare(elementOrderBy, minOrderBy) < 0) { |
+ minValue = element; |
+ minOrderBy = elementOrderBy; |
+ } |
+ } |
+ return minValue; |
+} |
+ |
+/// Returns the element of [values] for which [orderBy] returns the maximum |
+/// value. |
+/// |
+/// The values returned by [orderBy] are compared using the [compare] function. |
+/// If [compare] is omitted, values must implement [Comparable<T>] and they are |
+/// compared using their [Comparable.compareTo]. |
+S maxBy<S, T>(Iterable<S> values, T orderBy(S element), |
+ {int compare(T value1, T value2)}) { |
+ compare ??= defaultCompare<T>(); |
+ |
+ S maxValue; |
+ T maxOrderBy; |
+ for (var element in values) { |
+ var elementOrderBy = orderBy(element); |
+ if (maxOrderBy == null || compare(elementOrderBy, maxOrderBy) > 0) { |
+ maxValue = element; |
+ maxOrderBy = elementOrderBy; |
+ } |
+ } |
+ return maxValue; |
+} |
+ |
+/// Returns the [transitive closure][] of [graph]. |
+/// |
+/// [transitive closure]: https://en.wikipedia.org/wiki/Transitive_closure |
+/// |
+/// Interprets [graph] as a directed graph with a vertex for each key and edges |
+/// from each key to the values that the key maps to. |
+/// |
+/// Assumes that every vertex in the graph has a key to represent it, even if |
+/// that vertex has no outgoing edges. This isn't checked, but if it's not |
+/// satisfied, the function may crash or provide unexpected output. For example, |
+/// `{"a": ["b"]}` is not valid, but `{"a": ["b"], "b": []}` is. |
+Map<T, Set<T>> transitiveClosure<T>(Map<T, Iterable<T>> graph) { |
+ // This uses [Warshall's algorithm][], modified not to add a vertex from each |
+ // node to itself. |
+ // |
+ // [Warshall's algorithm]: https://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm#Applications_and_generalizations. |
+ var result = <T, Set<T>>{}; |
+ graph.forEach((vertex, edges) { |
+ result[vertex] = new Set<T>.from(edges); |
+ }); |
+ |
+ // Lists are faster to iterate than maps, so we create a list since we're |
+ // iterating repeatedly. |
+ var keys = graph.keys.toList(); |
+ for (var vertex1 in keys) { |
+ for (var vertex2 in keys) { |
+ for (var vertex3 in keys) { |
+ if (result[vertex2].contains(vertex1) && |
+ result[vertex1].contains(vertex3)) { |
+ result[vertex2].add(vertex3); |
+ } |
+ } |
+ } |
+ } |
+ |
+ return result; |
+} |
+ |
+/// Returns the [strongly connected components][] of [graph], in topological |
+/// order. |
+/// |
+/// [strongly connected components]: https://en.wikipedia.org/wiki/Strongly_connected_component |
+/// |
+/// Interprets [graph] as a directed graph with a vertex for each key and edges |
+/// from each key to the values that the key maps to. |
+/// |
+/// Assumes that every vertex in the graph has a key to represent it, even if |
+/// that vertex has no outgoing edges. This isn't checked, but if it's not |
+/// satisfied, the function may crash or provide unexpected output. For example, |
+/// `{"a": ["b"]}` is not valid, but `{"a": ["b"], "b": []}` is. |
+List<Set<T>> stronglyConnectedComponents<T>(Map<T, Iterable<T>> graph) { |
+ // This uses [Tarjan's algorithm][]. |
+ // |
+ // [Tarjan's algorithm]: https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm |
+ var index = 0; |
+ var stack = <T>[]; |
+ var result = <Set<T>>[]; |
+ |
+ // The order of these doesn't matter, so we use un-linked implementations to |
+ // avoid unnecessary overhead. |
+ var indices = new HashMap<T, int>(); |
+ var lowLinks = new HashMap<T, int>(); |
+ var onStack = new HashSet<T>(); |
+ |
+ strongConnect(T vertex) { |
+ indices[vertex] = index; |
+ lowLinks[vertex] = index; |
+ index++; |
+ |
+ stack.add(vertex); |
+ onStack.add(vertex); |
+ |
+ for (var successor in graph[vertex]) { |
+ if (!indices.containsKey(successor)) { |
+ strongConnect(successor); |
+ lowLinks[vertex] = math.min(lowLinks[vertex], lowLinks[successor]); |
+ } else if (onStack.contains(successor)) { |
+ lowLinks[vertex] = math.min(lowLinks[vertex], lowLinks[successor]); |
+ } |
+ } |
+ |
+ if (lowLinks[vertex] == indices[vertex]) { |
+ var component = new Set<T>(); |
+ T neighbor; |
+ do { |
+ neighbor = stack.removeLast(); |
+ onStack.remove(neighbor); |
+ component.add(neighbor); |
+ } while (neighbor != vertex); |
+ result.add(component); |
+ } |
+ } |
+ |
+ for (var vertex in graph.keys) { |
+ if (!indices.containsKey(vertex)) strongConnect(vertex); |
+ } |
+ |
+ // Tarjan's algorithm produces a reverse-topological sort, so we reverse it to |
+ // get a normal topological sort. |
+ return result.reversed.toList(); |
+} |