OLD | NEW |
1 // Copyright 2013 the V8 project authors. All rights reserved. | 1 // Copyright 2013 the V8 project authors. All rights reserved. |
2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
4 | 4 |
5 #include <stdlib.h> | 5 #include <stdlib.h> |
6 #include <cmath> | 6 #include <cmath> |
7 #include <cstdarg> | 7 #include <cstdarg> |
8 #include "v8.h" | 8 #include "v8.h" |
9 | 9 |
10 #if V8_TARGET_ARCH_ARM64 | 10 #if V8_TARGET_ARCH_ARM64 |
(...skipping 805 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
816 } | 816 } |
817 } | 817 } |
818 if ((strcmp("csp", name) == 0) || (strcmp("wcsp", name) == 0)) { | 818 if ((strcmp("csp", name) == 0) || (strcmp("wcsp", name) == 0)) { |
819 return kSPRegInternalCode; | 819 return kSPRegInternalCode; |
820 } | 820 } |
821 return -1; | 821 return -1; |
822 } | 822 } |
823 | 823 |
824 | 824 |
825 // Helpers --------------------------------------------------------------------- | 825 // Helpers --------------------------------------------------------------------- |
826 template <typename T> | 826 int64_t Simulator::AddWithCarry(unsigned reg_size, |
827 T Simulator::AddWithCarry(bool set_flags, | 827 bool set_flags, |
828 T src1, | 828 int64_t src1, |
829 T src2, | 829 int64_t src2, |
830 T carry_in) { | 830 int64_t carry_in) { |
831 typedef typename make_unsigned<T>::type unsignedT; | |
832 ASSERT((carry_in == 0) || (carry_in == 1)); | 831 ASSERT((carry_in == 0) || (carry_in == 1)); |
| 832 ASSERT((reg_size == kXRegSizeInBits) || (reg_size == kWRegSizeInBits)); |
833 | 833 |
834 T signed_sum = src1 + src2 + carry_in; | 834 uint64_t u1, u2; |
835 T result = signed_sum; | 835 int64_t result; |
| 836 int64_t signed_sum = src1 + src2 + carry_in; |
836 | 837 |
837 bool N, Z, C, V; | 838 bool N, Z, C, V; |
838 unsignedT u1 = static_cast<unsignedT>(src1); | |
839 unsignedT u2 = static_cast<unsignedT>(src2); | |
840 | 839 |
841 // Compute the C flag by comparing the sum to the max unsigned integer. | 840 if (reg_size == kWRegSizeInBits) { |
842 C = ((std::numeric_limits<unsignedT>::max() - u1) < (u2 + carry_in)) || | 841 u1 = static_cast<uint64_t>(src1) & kWRegMask; |
843 ((std::numeric_limits<unsignedT>::max() - u1 - carry_in) < u2); | 842 u2 = static_cast<uint64_t>(src2) & kWRegMask; |
844 // Overflow iff the sign bit is the same for the two inputs and different | |
845 // for the result. | |
846 V = ((src1 ^ src2) >= 0) && ((src1 ^ result) < 0); | |
847 | 843 |
848 N = CalcNFlag(result); | 844 result = signed_sum & kWRegMask; |
| 845 // Compute the C flag by comparing the sum to the max unsigned integer. |
| 846 C = ((kWMaxUInt - u1) < (u2 + carry_in)) || |
| 847 ((kWMaxUInt - u1 - carry_in) < u2); |
| 848 // Overflow iff the sign bit is the same for the two inputs and different |
| 849 // for the result. |
| 850 int64_t s_src1 = src1 << (kXRegSizeInBits - kWRegSizeInBits); |
| 851 int64_t s_src2 = src2 << (kXRegSizeInBits - kWRegSizeInBits); |
| 852 int64_t s_result = result << (kXRegSizeInBits - kWRegSizeInBits); |
| 853 V = ((s_src1 ^ s_src2) >= 0) && ((s_src1 ^ s_result) < 0); |
| 854 |
| 855 } else { |
| 856 u1 = static_cast<uint64_t>(src1); |
| 857 u2 = static_cast<uint64_t>(src2); |
| 858 |
| 859 result = signed_sum; |
| 860 // Compute the C flag by comparing the sum to the max unsigned integer. |
| 861 C = ((kXMaxUInt - u1) < (u2 + carry_in)) || |
| 862 ((kXMaxUInt - u1 - carry_in) < u2); |
| 863 // Overflow iff the sign bit is the same for the two inputs and different |
| 864 // for the result. |
| 865 V = ((src1 ^ src2) >= 0) && ((src1 ^ result) < 0); |
| 866 } |
| 867 |
| 868 N = CalcNFlag(result, reg_size); |
849 Z = CalcZFlag(result); | 869 Z = CalcZFlag(result); |
850 | 870 |
851 if (set_flags) { | 871 if (set_flags) { |
852 nzcv().SetN(N); | 872 nzcv().SetN(N); |
853 nzcv().SetZ(Z); | 873 nzcv().SetZ(Z); |
854 nzcv().SetC(C); | 874 nzcv().SetC(C); |
855 nzcv().SetV(V); | 875 nzcv().SetV(V); |
856 } | 876 } |
857 return result; | 877 return result; |
858 } | 878 } |
859 | 879 |
860 | 880 |
861 template<typename T> | 881 int64_t Simulator::ShiftOperand(unsigned reg_size, |
862 void Simulator::AddSubWithCarry(Instruction* instr) { | 882 int64_t value, |
863 T op2 = reg<T>(instr->Rm()); | 883 Shift shift_type, |
864 T new_val; | 884 unsigned amount) { |
865 | |
866 if ((instr->Mask(AddSubOpMask) == SUB) || instr->Mask(AddSubOpMask) == SUBS) { | |
867 op2 = ~op2; | |
868 } | |
869 | |
870 new_val = AddWithCarry<T>(instr->FlagsUpdate(), | |
871 reg<T>(instr->Rn()), | |
872 op2, | |
873 nzcv().C()); | |
874 | |
875 set_reg<T>(instr->Rd(), new_val); | |
876 } | |
877 | |
878 template <typename T> | |
879 T Simulator::ShiftOperand(T value, Shift shift_type, unsigned amount) { | |
880 typedef typename make_unsigned<T>::type unsignedT; | |
881 | |
882 if (amount == 0) { | 885 if (amount == 0) { |
883 return value; | 886 return value; |
884 } | 887 } |
885 | 888 int64_t mask = reg_size == kXRegSizeInBits ? kXRegMask : kWRegMask; |
886 switch (shift_type) { | 889 switch (shift_type) { |
887 case LSL: | 890 case LSL: |
888 return value << amount; | 891 return (value << amount) & mask; |
889 case LSR: | 892 case LSR: |
890 return static_cast<unsignedT>(value) >> amount; | 893 return static_cast<uint64_t>(value) >> amount; |
891 case ASR: | 894 case ASR: { |
892 return value >> amount; | 895 // Shift used to restore the sign. |
893 case ROR: | 896 unsigned s_shift = kXRegSizeInBits - reg_size; |
894 return (static_cast<unsignedT>(value) >> amount) | | 897 // Value with its sign restored. |
895 ((value & ((1L << amount) - 1L)) << | 898 int64_t s_value = (value << s_shift) >> s_shift; |
896 (sizeof(unsignedT) * 8 - amount)); | 899 return (s_value >> amount) & mask; |
| 900 } |
| 901 case ROR: { |
| 902 if (reg_size == kWRegSizeInBits) { |
| 903 value &= kWRegMask; |
| 904 } |
| 905 return (static_cast<uint64_t>(value) >> amount) | |
| 906 ((value & ((1L << amount) - 1L)) << (reg_size - amount)); |
| 907 } |
897 default: | 908 default: |
898 UNIMPLEMENTED(); | 909 UNIMPLEMENTED(); |
899 return 0; | 910 return 0; |
900 } | 911 } |
901 } | 912 } |
902 | 913 |
903 | 914 |
904 template <typename T> | 915 int64_t Simulator::ExtendValue(unsigned reg_size, |
905 T Simulator::ExtendValue(T value, Extend extend_type, unsigned left_shift) { | 916 int64_t value, |
906 const unsigned kSignExtendBShift = (sizeof(T) - 1) * 8; | 917 Extend extend_type, |
907 const unsigned kSignExtendHShift = (sizeof(T) - 2) * 8; | 918 unsigned left_shift) { |
908 const unsigned kSignExtendWShift = (sizeof(T) - 4) * 8; | |
909 | |
910 switch (extend_type) { | 919 switch (extend_type) { |
911 case UXTB: | 920 case UXTB: |
912 value &= kByteMask; | 921 value &= kByteMask; |
913 break; | 922 break; |
914 case UXTH: | 923 case UXTH: |
915 value &= kHalfWordMask; | 924 value &= kHalfWordMask; |
916 break; | 925 break; |
917 case UXTW: | 926 case UXTW: |
918 value &= kWordMask; | 927 value &= kWordMask; |
919 break; | 928 break; |
920 case SXTB: | 929 case SXTB: |
921 value = (value << kSignExtendBShift) >> kSignExtendBShift; | 930 value = (value << 56) >> 56; |
922 break; | 931 break; |
923 case SXTH: | 932 case SXTH: |
924 value = (value << kSignExtendHShift) >> kSignExtendHShift; | 933 value = (value << 48) >> 48; |
925 break; | 934 break; |
926 case SXTW: | 935 case SXTW: |
927 value = (value << kSignExtendWShift) >> kSignExtendWShift; | 936 value = (value << 32) >> 32; |
928 break; | 937 break; |
929 case UXTX: | 938 case UXTX: |
930 case SXTX: | 939 case SXTX: |
931 break; | 940 break; |
932 default: | 941 default: |
933 UNREACHABLE(); | 942 UNREACHABLE(); |
934 } | 943 } |
935 return value << left_shift; | 944 int64_t mask = (reg_size == kXRegSizeInBits) ? kXRegMask : kWRegMask; |
| 945 return (value << left_shift) & mask; |
936 } | 946 } |
937 | 947 |
938 | 948 |
939 template <typename T> | |
940 void Simulator::Extract(Instruction* instr) { | |
941 unsigned lsb = instr->ImmS(); | |
942 T op2 = reg<T>(instr->Rm()); | |
943 T result = op2; | |
944 | |
945 if (lsb) { | |
946 T op1 = reg<T>(instr->Rn()); | |
947 result = op2 >> lsb | (op1 << ((sizeof(T) * 8) - lsb)); | |
948 } | |
949 set_reg<T>(instr->Rd(), result); | |
950 } | |
951 | |
952 | |
953 template<> double Simulator::FPDefaultNaN<double>() const { | 949 template<> double Simulator::FPDefaultNaN<double>() const { |
954 return kFP64DefaultNaN; | 950 return kFP64DefaultNaN; |
955 } | 951 } |
956 | 952 |
957 | 953 |
958 template<> float Simulator::FPDefaultNaN<float>() const { | 954 template<> float Simulator::FPDefaultNaN<float>() const { |
959 return kFP32DefaultNaN; | 955 return kFP32DefaultNaN; |
960 } | 956 } |
961 | 957 |
962 | 958 |
(...skipping 290 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
1253 case CBNZ_w: take_branch = (wreg(rt) != 0); break; | 1249 case CBNZ_w: take_branch = (wreg(rt) != 0); break; |
1254 case CBNZ_x: take_branch = (xreg(rt) != 0); break; | 1250 case CBNZ_x: take_branch = (xreg(rt) != 0); break; |
1255 default: UNIMPLEMENTED(); | 1251 default: UNIMPLEMENTED(); |
1256 } | 1252 } |
1257 if (take_branch) { | 1253 if (take_branch) { |
1258 set_pc(instr->ImmPCOffsetTarget()); | 1254 set_pc(instr->ImmPCOffsetTarget()); |
1259 } | 1255 } |
1260 } | 1256 } |
1261 | 1257 |
1262 | 1258 |
1263 template<typename T> | 1259 void Simulator::AddSubHelper(Instruction* instr, int64_t op2) { |
1264 void Simulator::AddSubHelper(Instruction* instr, T op2) { | 1260 unsigned reg_size = instr->SixtyFourBits() ? kXRegSizeInBits |
| 1261 : kWRegSizeInBits; |
1265 bool set_flags = instr->FlagsUpdate(); | 1262 bool set_flags = instr->FlagsUpdate(); |
1266 T new_val = 0; | 1263 int64_t new_val = 0; |
1267 Instr operation = instr->Mask(AddSubOpMask); | 1264 Instr operation = instr->Mask(AddSubOpMask); |
1268 | 1265 |
1269 switch (operation) { | 1266 switch (operation) { |
1270 case ADD: | 1267 case ADD: |
1271 case ADDS: { | 1268 case ADDS: { |
1272 new_val = AddWithCarry<T>(set_flags, | 1269 new_val = AddWithCarry(reg_size, |
1273 reg<T>(instr->Rn(), instr->RnMode()), | 1270 set_flags, |
1274 op2); | 1271 reg(reg_size, instr->Rn(), instr->RnMode()), |
| 1272 op2); |
1275 break; | 1273 break; |
1276 } | 1274 } |
1277 case SUB: | 1275 case SUB: |
1278 case SUBS: { | 1276 case SUBS: { |
1279 new_val = AddWithCarry<T>(set_flags, | 1277 new_val = AddWithCarry(reg_size, |
1280 reg<T>(instr->Rn(), instr->RnMode()), | 1278 set_flags, |
1281 ~op2, | 1279 reg(reg_size, instr->Rn(), instr->RnMode()), |
1282 1); | 1280 ~op2, |
| 1281 1); |
1283 break; | 1282 break; |
1284 } | 1283 } |
1285 default: UNREACHABLE(); | 1284 default: UNREACHABLE(); |
1286 } | 1285 } |
1287 | 1286 |
1288 set_reg<T>(instr->Rd(), new_val, instr->RdMode()); | 1287 set_reg(reg_size, instr->Rd(), new_val, instr->RdMode()); |
1289 } | 1288 } |
1290 | 1289 |
1291 | 1290 |
1292 void Simulator::VisitAddSubShifted(Instruction* instr) { | 1291 void Simulator::VisitAddSubShifted(Instruction* instr) { |
1293 Shift shift_type = static_cast<Shift>(instr->ShiftDP()); | 1292 unsigned reg_size = instr->SixtyFourBits() ? kXRegSizeInBits |
1294 unsigned shift_amount = instr->ImmDPShift(); | 1293 : kWRegSizeInBits; |
1295 | 1294 int64_t op2 = ShiftOperand(reg_size, |
1296 if (instr->SixtyFourBits()) { | 1295 reg(reg_size, instr->Rm()), |
1297 int64_t op2 = ShiftOperand(xreg(instr->Rm()), shift_type, shift_amount); | 1296 static_cast<Shift>(instr->ShiftDP()), |
1298 AddSubHelper(instr, op2); | 1297 instr->ImmDPShift()); |
1299 } else { | 1298 AddSubHelper(instr, op2); |
1300 int32_t op2 = ShiftOperand(wreg(instr->Rm()), shift_type, shift_amount); | |
1301 AddSubHelper(instr, op2); | |
1302 } | |
1303 } | 1299 } |
1304 | 1300 |
1305 | 1301 |
1306 void Simulator::VisitAddSubImmediate(Instruction* instr) { | 1302 void Simulator::VisitAddSubImmediate(Instruction* instr) { |
1307 int64_t op2 = instr->ImmAddSub() << ((instr->ShiftAddSub() == 1) ? 12 : 0); | 1303 int64_t op2 = instr->ImmAddSub() << ((instr->ShiftAddSub() == 1) ? 12 : 0); |
1308 if (instr->SixtyFourBits()) { | 1304 AddSubHelper(instr, op2); |
1309 AddSubHelper<int64_t>(instr, op2); | |
1310 } else { | |
1311 AddSubHelper<int32_t>(instr, op2); | |
1312 } | |
1313 } | 1305 } |
1314 | 1306 |
1315 | 1307 |
1316 void Simulator::VisitAddSubExtended(Instruction* instr) { | 1308 void Simulator::VisitAddSubExtended(Instruction* instr) { |
1317 Extend ext = static_cast<Extend>(instr->ExtendMode()); | 1309 unsigned reg_size = instr->SixtyFourBits() ? kXRegSizeInBits |
1318 unsigned left_shift = instr->ImmExtendShift(); | 1310 : kWRegSizeInBits; |
1319 if (instr->SixtyFourBits()) { | 1311 int64_t op2 = ExtendValue(reg_size, |
1320 int64_t op2 = ExtendValue(xreg(instr->Rm()), ext, left_shift); | 1312 reg(reg_size, instr->Rm()), |
1321 AddSubHelper(instr, op2); | 1313 static_cast<Extend>(instr->ExtendMode()), |
1322 } else { | 1314 instr->ImmExtendShift()); |
1323 int32_t op2 = ExtendValue(wreg(instr->Rm()), ext, left_shift); | 1315 AddSubHelper(instr, op2); |
1324 AddSubHelper(instr, op2); | |
1325 } | |
1326 } | 1316 } |
1327 | 1317 |
1328 | 1318 |
1329 void Simulator::VisitAddSubWithCarry(Instruction* instr) { | 1319 void Simulator::VisitAddSubWithCarry(Instruction* instr) { |
1330 if (instr->SixtyFourBits()) { | 1320 unsigned reg_size = instr->SixtyFourBits() ? kXRegSizeInBits |
1331 AddSubWithCarry<int64_t>(instr); | 1321 : kWRegSizeInBits; |
1332 } else { | 1322 int64_t op2 = reg(reg_size, instr->Rm()); |
1333 AddSubWithCarry<int32_t>(instr); | 1323 int64_t new_val; |
| 1324 |
| 1325 if ((instr->Mask(AddSubOpMask) == SUB) || instr->Mask(AddSubOpMask) == SUBS) { |
| 1326 op2 = ~op2; |
1334 } | 1327 } |
| 1328 |
| 1329 new_val = AddWithCarry(reg_size, |
| 1330 instr->FlagsUpdate(), |
| 1331 reg(reg_size, instr->Rn()), |
| 1332 op2, |
| 1333 nzcv().C()); |
| 1334 |
| 1335 set_reg(reg_size, instr->Rd(), new_val); |
1335 } | 1336 } |
1336 | 1337 |
1337 | 1338 |
1338 void Simulator::VisitLogicalShifted(Instruction* instr) { | 1339 void Simulator::VisitLogicalShifted(Instruction* instr) { |
| 1340 unsigned reg_size = instr->SixtyFourBits() ? kXRegSizeInBits |
| 1341 : kWRegSizeInBits; |
1339 Shift shift_type = static_cast<Shift>(instr->ShiftDP()); | 1342 Shift shift_type = static_cast<Shift>(instr->ShiftDP()); |
1340 unsigned shift_amount = instr->ImmDPShift(); | 1343 unsigned shift_amount = instr->ImmDPShift(); |
1341 | 1344 int64_t op2 = ShiftOperand(reg_size, reg(reg_size, instr->Rm()), shift_type, |
1342 if (instr->SixtyFourBits()) { | 1345 shift_amount); |
1343 int64_t op2 = ShiftOperand(xreg(instr->Rm()), shift_type, shift_amount); | 1346 if (instr->Mask(NOT) == NOT) { |
1344 op2 = (instr->Mask(NOT) == NOT) ? ~op2 : op2; | 1347 op2 = ~op2; |
1345 LogicalHelper<int64_t>(instr, op2); | |
1346 } else { | |
1347 int32_t op2 = ShiftOperand(wreg(instr->Rm()), shift_type, shift_amount); | |
1348 op2 = (instr->Mask(NOT) == NOT) ? ~op2 : op2; | |
1349 LogicalHelper<int32_t>(instr, op2); | |
1350 } | 1348 } |
| 1349 LogicalHelper(instr, op2); |
1351 } | 1350 } |
1352 | 1351 |
1353 | 1352 |
1354 void Simulator::VisitLogicalImmediate(Instruction* instr) { | 1353 void Simulator::VisitLogicalImmediate(Instruction* instr) { |
1355 if (instr->SixtyFourBits()) { | 1354 LogicalHelper(instr, instr->ImmLogical()); |
1356 LogicalHelper<int64_t>(instr, instr->ImmLogical()); | |
1357 } else { | |
1358 LogicalHelper<int32_t>(instr, instr->ImmLogical()); | |
1359 } | |
1360 } | 1355 } |
1361 | 1356 |
1362 | 1357 |
1363 template<typename T> | 1358 void Simulator::LogicalHelper(Instruction* instr, int64_t op2) { |
1364 void Simulator::LogicalHelper(Instruction* instr, T op2) { | 1359 unsigned reg_size = instr->SixtyFourBits() ? kXRegSizeInBits |
1365 T op1 = reg<T>(instr->Rn()); | 1360 : kWRegSizeInBits; |
1366 T result = 0; | 1361 int64_t op1 = reg(reg_size, instr->Rn()); |
| 1362 int64_t result = 0; |
1367 bool update_flags = false; | 1363 bool update_flags = false; |
1368 | 1364 |
1369 // Switch on the logical operation, stripping out the NOT bit, as it has a | 1365 // Switch on the logical operation, stripping out the NOT bit, as it has a |
1370 // different meaning for logical immediate instructions. | 1366 // different meaning for logical immediate instructions. |
1371 switch (instr->Mask(LogicalOpMask & ~NOT)) { | 1367 switch (instr->Mask(LogicalOpMask & ~NOT)) { |
1372 case ANDS: update_flags = true; // Fall through. | 1368 case ANDS: update_flags = true; // Fall through. |
1373 case AND: result = op1 & op2; break; | 1369 case AND: result = op1 & op2; break; |
1374 case ORR: result = op1 | op2; break; | 1370 case ORR: result = op1 | op2; break; |
1375 case EOR: result = op1 ^ op2; break; | 1371 case EOR: result = op1 ^ op2; break; |
1376 default: | 1372 default: |
1377 UNIMPLEMENTED(); | 1373 UNIMPLEMENTED(); |
1378 } | 1374 } |
1379 | 1375 |
1380 if (update_flags) { | 1376 if (update_flags) { |
1381 nzcv().SetN(CalcNFlag(result)); | 1377 nzcv().SetN(CalcNFlag(result, reg_size)); |
1382 nzcv().SetZ(CalcZFlag(result)); | 1378 nzcv().SetZ(CalcZFlag(result)); |
1383 nzcv().SetC(0); | 1379 nzcv().SetC(0); |
1384 nzcv().SetV(0); | 1380 nzcv().SetV(0); |
1385 } | 1381 } |
1386 | 1382 |
1387 set_reg<T>(instr->Rd(), result, instr->RdMode()); | 1383 set_reg(reg_size, instr->Rd(), result, instr->RdMode()); |
1388 } | 1384 } |
1389 | 1385 |
1390 | 1386 |
1391 void Simulator::VisitConditionalCompareRegister(Instruction* instr) { | 1387 void Simulator::VisitConditionalCompareRegister(Instruction* instr) { |
1392 if (instr->SixtyFourBits()) { | 1388 unsigned reg_size = instr->SixtyFourBits() ? kXRegSizeInBits |
1393 ConditionalCompareHelper(instr, xreg(instr->Rm())); | 1389 : kWRegSizeInBits; |
1394 } else { | 1390 ConditionalCompareHelper(instr, reg(reg_size, instr->Rm())); |
1395 ConditionalCompareHelper(instr, wreg(instr->Rm())); | |
1396 } | |
1397 } | 1391 } |
1398 | 1392 |
1399 | 1393 |
1400 void Simulator::VisitConditionalCompareImmediate(Instruction* instr) { | 1394 void Simulator::VisitConditionalCompareImmediate(Instruction* instr) { |
1401 if (instr->SixtyFourBits()) { | 1395 ConditionalCompareHelper(instr, instr->ImmCondCmp()); |
1402 ConditionalCompareHelper<int64_t>(instr, instr->ImmCondCmp()); | |
1403 } else { | |
1404 ConditionalCompareHelper<int32_t>(instr, instr->ImmCondCmp()); | |
1405 } | |
1406 } | 1396 } |
1407 | 1397 |
1408 | 1398 |
1409 template<typename T> | 1399 void Simulator::ConditionalCompareHelper(Instruction* instr, int64_t op2) { |
1410 void Simulator::ConditionalCompareHelper(Instruction* instr, T op2) { | 1400 unsigned reg_size = instr->SixtyFourBits() ? kXRegSizeInBits |
1411 T op1 = reg<T>(instr->Rn()); | 1401 : kWRegSizeInBits; |
| 1402 int64_t op1 = reg(reg_size, instr->Rn()); |
1412 | 1403 |
1413 if (ConditionPassed(static_cast<Condition>(instr->Condition()))) { | 1404 if (ConditionPassed(static_cast<Condition>(instr->Condition()))) { |
1414 // If the condition passes, set the status flags to the result of comparing | 1405 // If the condition passes, set the status flags to the result of comparing |
1415 // the operands. | 1406 // the operands. |
1416 if (instr->Mask(ConditionalCompareMask) == CCMP) { | 1407 if (instr->Mask(ConditionalCompareMask) == CCMP) { |
1417 AddWithCarry<T>(true, op1, ~op2, 1); | 1408 AddWithCarry(reg_size, true, op1, ~op2, 1); |
1418 } else { | 1409 } else { |
1419 ASSERT(instr->Mask(ConditionalCompareMask) == CCMN); | 1410 ASSERT(instr->Mask(ConditionalCompareMask) == CCMN); |
1420 AddWithCarry<T>(true, op1, op2, 0); | 1411 AddWithCarry(reg_size, true, op1, op2, 0); |
1421 } | 1412 } |
1422 } else { | 1413 } else { |
1423 // If the condition fails, set the status flags to the nzcv immediate. | 1414 // If the condition fails, set the status flags to the nzcv immediate. |
1424 nzcv().SetFlags(instr->Nzcv()); | 1415 nzcv().SetFlags(instr->Nzcv()); |
1425 } | 1416 } |
1426 } | 1417 } |
1427 | 1418 |
1428 | 1419 |
1429 void Simulator::VisitLoadStoreUnsignedOffset(Instruction* instr) { | 1420 void Simulator::VisitLoadStoreUnsignedOffset(Instruction* instr) { |
1430 int offset = instr->ImmLSUnsigned() << instr->SizeLS(); | 1421 int offset = instr->ImmLSUnsigned() << instr->SizeLS(); |
(...skipping 14 matching lines...) Expand all Loading... |
1445 void Simulator::VisitLoadStorePostIndex(Instruction* instr) { | 1436 void Simulator::VisitLoadStorePostIndex(Instruction* instr) { |
1446 LoadStoreHelper(instr, instr->ImmLS(), PostIndex); | 1437 LoadStoreHelper(instr, instr->ImmLS(), PostIndex); |
1447 } | 1438 } |
1448 | 1439 |
1449 | 1440 |
1450 void Simulator::VisitLoadStoreRegisterOffset(Instruction* instr) { | 1441 void Simulator::VisitLoadStoreRegisterOffset(Instruction* instr) { |
1451 Extend ext = static_cast<Extend>(instr->ExtendMode()); | 1442 Extend ext = static_cast<Extend>(instr->ExtendMode()); |
1452 ASSERT((ext == UXTW) || (ext == UXTX) || (ext == SXTW) || (ext == SXTX)); | 1443 ASSERT((ext == UXTW) || (ext == UXTX) || (ext == SXTW) || (ext == SXTX)); |
1453 unsigned shift_amount = instr->ImmShiftLS() * instr->SizeLS(); | 1444 unsigned shift_amount = instr->ImmShiftLS() * instr->SizeLS(); |
1454 | 1445 |
1455 int64_t offset = ExtendValue(xreg(instr->Rm()), ext, shift_amount); | 1446 int64_t offset = ExtendValue(kXRegSizeInBits, xreg(instr->Rm()), ext, |
| 1447 shift_amount); |
1456 LoadStoreHelper(instr, offset, Offset); | 1448 LoadStoreHelper(instr, offset, Offset); |
1457 } | 1449 } |
1458 | 1450 |
1459 | 1451 |
1460 void Simulator::LoadStoreHelper(Instruction* instr, | 1452 void Simulator::LoadStoreHelper(Instruction* instr, |
1461 int64_t offset, | 1453 int64_t offset, |
1462 AddrMode addrmode) { | 1454 AddrMode addrmode) { |
1463 unsigned srcdst = instr->Rt(); | 1455 unsigned srcdst = instr->Rt(); |
1464 unsigned addr_reg = instr->Rn(); | 1456 unsigned addr_reg = instr->Rn(); |
1465 uint8_t* address = LoadStoreAddress(addr_reg, offset, addrmode); | 1457 uint8_t* address = LoadStoreAddress(addr_reg, offset, addrmode); |
(...skipping 19 matching lines...) Expand all Loading... |
1485 switch (op) { | 1477 switch (op) { |
1486 case LDRB_w: | 1478 case LDRB_w: |
1487 case LDRH_w: | 1479 case LDRH_w: |
1488 case LDR_w: | 1480 case LDR_w: |
1489 case LDR_x: set_xreg(srcdst, MemoryRead(address, num_bytes)); break; | 1481 case LDR_x: set_xreg(srcdst, MemoryRead(address, num_bytes)); break; |
1490 case STRB_w: | 1482 case STRB_w: |
1491 case STRH_w: | 1483 case STRH_w: |
1492 case STR_w: | 1484 case STR_w: |
1493 case STR_x: MemoryWrite(address, xreg(srcdst), num_bytes); break; | 1485 case STR_x: MemoryWrite(address, xreg(srcdst), num_bytes); break; |
1494 case LDRSB_w: { | 1486 case LDRSB_w: { |
1495 set_wreg(srcdst, ExtendValue<int32_t>(MemoryRead8(address), SXTB)); | 1487 set_wreg(srcdst, |
| 1488 ExtendValue(kWRegSizeInBits, MemoryRead8(address), SXTB)); |
1496 break; | 1489 break; |
1497 } | 1490 } |
1498 case LDRSB_x: { | 1491 case LDRSB_x: { |
1499 set_xreg(srcdst, ExtendValue<int64_t>(MemoryRead8(address), SXTB)); | 1492 set_xreg(srcdst, |
| 1493 ExtendValue(kXRegSizeInBits, MemoryRead8(address), SXTB)); |
1500 break; | 1494 break; |
1501 } | 1495 } |
1502 case LDRSH_w: { | 1496 case LDRSH_w: { |
1503 set_wreg(srcdst, ExtendValue<int32_t>(MemoryRead16(address), SXTH)); | 1497 set_wreg(srcdst, |
| 1498 ExtendValue(kWRegSizeInBits, MemoryRead16(address), SXTH)); |
1504 break; | 1499 break; |
1505 } | 1500 } |
1506 case LDRSH_x: { | 1501 case LDRSH_x: { |
1507 set_xreg(srcdst, ExtendValue<int64_t>(MemoryRead16(address), SXTH)); | 1502 set_xreg(srcdst, |
| 1503 ExtendValue(kXRegSizeInBits, MemoryRead16(address), SXTH)); |
1508 break; | 1504 break; |
1509 } | 1505 } |
1510 case LDRSW_x: { | 1506 case LDRSW_x: { |
1511 set_xreg(srcdst, ExtendValue<int64_t>(MemoryRead32(address), SXTW)); | 1507 set_xreg(srcdst, |
| 1508 ExtendValue(kXRegSizeInBits, MemoryRead32(address), SXTW)); |
1512 break; | 1509 break; |
1513 } | 1510 } |
1514 case LDR_s: set_sreg(srcdst, MemoryReadFP32(address)); break; | 1511 case LDR_s: set_sreg(srcdst, MemoryReadFP32(address)); break; |
1515 case LDR_d: set_dreg(srcdst, MemoryReadFP64(address)); break; | 1512 case LDR_d: set_dreg(srcdst, MemoryReadFP64(address)); break; |
1516 case STR_s: MemoryWriteFP32(address, sreg(srcdst)); break; | 1513 case STR_s: MemoryWriteFP32(address, sreg(srcdst)); break; |
1517 case STR_d: MemoryWriteFP64(address, dreg(srcdst)); break; | 1514 case STR_d: MemoryWriteFP64(address, dreg(srcdst)); break; |
1518 default: UNIMPLEMENTED(); | 1515 default: UNIMPLEMENTED(); |
1519 } | 1516 } |
1520 | 1517 |
1521 // Handle the writeback for loads after the load to ensure safe pop | 1518 // Handle the writeback for loads after the load to ensure safe pop |
(...skipping 79 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
1601 set_xreg(rt, MemoryRead64(address)); | 1598 set_xreg(rt, MemoryRead64(address)); |
1602 set_xreg(rt2, MemoryRead64(address + kXRegSize)); | 1599 set_xreg(rt2, MemoryRead64(address + kXRegSize)); |
1603 break; | 1600 break; |
1604 } | 1601 } |
1605 case LDP_d: { | 1602 case LDP_d: { |
1606 set_dreg(rt, MemoryReadFP64(address)); | 1603 set_dreg(rt, MemoryReadFP64(address)); |
1607 set_dreg(rt2, MemoryReadFP64(address + kDRegSize)); | 1604 set_dreg(rt2, MemoryReadFP64(address + kDRegSize)); |
1608 break; | 1605 break; |
1609 } | 1606 } |
1610 case LDPSW_x: { | 1607 case LDPSW_x: { |
1611 set_xreg(rt, ExtendValue<int64_t>(MemoryRead32(address), SXTW)); | 1608 set_xreg(rt, ExtendValue(kXRegSizeInBits, MemoryRead32(address), SXTW)); |
1612 set_xreg(rt2, ExtendValue<int64_t>( | 1609 set_xreg(rt2, ExtendValue(kXRegSizeInBits, |
1613 MemoryRead32(address + kWRegSize), SXTW)); | 1610 MemoryRead32(address + kWRegSize), SXTW)); |
1614 break; | 1611 break; |
1615 } | 1612 } |
1616 case STP_w: { | 1613 case STP_w: { |
1617 MemoryWrite32(address, wreg(rt)); | 1614 MemoryWrite32(address, wreg(rt)); |
1618 MemoryWrite32(address + kWRegSize, wreg(rt2)); | 1615 MemoryWrite32(address + kWRegSize, wreg(rt2)); |
1619 break; | 1616 break; |
1620 } | 1617 } |
1621 case STP_s: { | 1618 case STP_s: { |
1622 MemoryWriteFP32(address, sreg(rt)); | 1619 MemoryWriteFP32(address, sreg(rt)); |
(...skipping 195 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
1818 default: | 1815 default: |
1819 UNREACHABLE(); | 1816 UNREACHABLE(); |
1820 } | 1817 } |
1821 | 1818 |
1822 // Update the destination register. | 1819 // Update the destination register. |
1823 set_xreg(instr->Rd(), new_xn_val); | 1820 set_xreg(instr->Rd(), new_xn_val); |
1824 } | 1821 } |
1825 | 1822 |
1826 | 1823 |
1827 void Simulator::VisitConditionalSelect(Instruction* instr) { | 1824 void Simulator::VisitConditionalSelect(Instruction* instr) { |
| 1825 uint64_t new_val = xreg(instr->Rn()); |
| 1826 |
1828 if (ConditionFailed(static_cast<Condition>(instr->Condition()))) { | 1827 if (ConditionFailed(static_cast<Condition>(instr->Condition()))) { |
1829 uint64_t new_val = xreg(instr->Rm()); | 1828 new_val = xreg(instr->Rm()); |
1830 switch (instr->Mask(ConditionalSelectMask)) { | 1829 switch (instr->Mask(ConditionalSelectMask)) { |
1831 case CSEL_w: set_wreg(instr->Rd(), new_val); break; | 1830 case CSEL_w: |
1832 case CSEL_x: set_xreg(instr->Rd(), new_val); break; | 1831 case CSEL_x: break; |
1833 case CSINC_w: set_wreg(instr->Rd(), new_val + 1); break; | 1832 case CSINC_w: |
1834 case CSINC_x: set_xreg(instr->Rd(), new_val + 1); break; | 1833 case CSINC_x: new_val++; break; |
1835 case CSINV_w: set_wreg(instr->Rd(), ~new_val); break; | 1834 case CSINV_w: |
1836 case CSINV_x: set_xreg(instr->Rd(), ~new_val); break; | 1835 case CSINV_x: new_val = ~new_val; break; |
1837 case CSNEG_w: set_wreg(instr->Rd(), -new_val); break; | 1836 case CSNEG_w: |
1838 case CSNEG_x: set_xreg(instr->Rd(), -new_val); break; | 1837 case CSNEG_x: new_val = -new_val; break; |
1839 default: UNIMPLEMENTED(); | 1838 default: UNIMPLEMENTED(); |
1840 } | 1839 } |
1841 } else { | |
1842 if (instr->SixtyFourBits()) { | |
1843 set_xreg(instr->Rd(), xreg(instr->Rn())); | |
1844 } else { | |
1845 set_wreg(instr->Rd(), wreg(instr->Rn())); | |
1846 } | |
1847 } | 1840 } |
| 1841 unsigned reg_size = instr->SixtyFourBits() ? kXRegSizeInBits |
| 1842 : kWRegSizeInBits; |
| 1843 set_reg(reg_size, instr->Rd(), new_val); |
1848 } | 1844 } |
1849 | 1845 |
1850 | 1846 |
1851 void Simulator::VisitDataProcessing1Source(Instruction* instr) { | 1847 void Simulator::VisitDataProcessing1Source(Instruction* instr) { |
1852 unsigned dst = instr->Rd(); | 1848 unsigned dst = instr->Rd(); |
1853 unsigned src = instr->Rn(); | 1849 unsigned src = instr->Rn(); |
1854 | 1850 |
1855 switch (instr->Mask(DataProcessing1SourceMask)) { | 1851 switch (instr->Mask(DataProcessing1SourceMask)) { |
1856 case RBIT_w: set_wreg(dst, ReverseBits(wreg(src), kWRegSizeInBits)); break; | 1852 case RBIT_w: set_wreg(dst, ReverseBits(wreg(src), kWRegSizeInBits)); break; |
1857 case RBIT_x: set_xreg(dst, ReverseBits(xreg(src), kXRegSizeInBits)); break; | 1853 case RBIT_x: set_xreg(dst, ReverseBits(xreg(src), kXRegSizeInBits)); break; |
(...skipping 50 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
1908 {0, 1, 2, 3, 4, 5, 6, 7} }; | 1904 {0, 1, 2, 3, 4, 5, 6, 7} }; |
1909 uint64_t result = 0; | 1905 uint64_t result = 0; |
1910 for (int i = 0; i < 8; i++) { | 1906 for (int i = 0; i < 8; i++) { |
1911 result <<= 8; | 1907 result <<= 8; |
1912 result |= bytes[permute_table[mode][i]]; | 1908 result |= bytes[permute_table[mode][i]]; |
1913 } | 1909 } |
1914 return result; | 1910 return result; |
1915 } | 1911 } |
1916 | 1912 |
1917 | 1913 |
1918 template <typename T> | 1914 void Simulator::VisitDataProcessing2Source(Instruction* instr) { |
1919 void Simulator::DataProcessing2Source(Instruction* instr) { | |
1920 Shift shift_op = NO_SHIFT; | 1915 Shift shift_op = NO_SHIFT; |
1921 T result = 0; | 1916 int64_t result = 0; |
1922 switch (instr->Mask(DataProcessing2SourceMask)) { | 1917 switch (instr->Mask(DataProcessing2SourceMask)) { |
1923 case SDIV_w: | 1918 case SDIV_w: { |
1924 case SDIV_x: { | 1919 int32_t rn = wreg(instr->Rn()); |
1925 T rn = reg<T>(instr->Rn()); | 1920 int32_t rm = wreg(instr->Rm()); |
1926 T rm = reg<T>(instr->Rm()); | 1921 if ((rn == kWMinInt) && (rm == -1)) { |
1927 if ((rn == std::numeric_limits<T>::min()) && (rm == -1)) { | 1922 result = kWMinInt; |
1928 result = std::numeric_limits<T>::min(); | |
1929 } else if (rm == 0) { | 1923 } else if (rm == 0) { |
1930 // Division by zero can be trapped, but not on A-class processors. | 1924 // Division by zero can be trapped, but not on A-class processors. |
1931 result = 0; | 1925 result = 0; |
| 1926 } else { |
| 1927 result = rn / rm; |
| 1928 } |
| 1929 break; |
| 1930 } |
| 1931 case SDIV_x: { |
| 1932 int64_t rn = xreg(instr->Rn()); |
| 1933 int64_t rm = xreg(instr->Rm()); |
| 1934 if ((rn == kXMinInt) && (rm == -1)) { |
| 1935 result = kXMinInt; |
| 1936 } else if (rm == 0) { |
| 1937 // Division by zero can be trapped, but not on A-class processors. |
| 1938 result = 0; |
1932 } else { | 1939 } else { |
1933 result = rn / rm; | 1940 result = rn / rm; |
1934 } | 1941 } |
1935 break; | 1942 break; |
1936 } | 1943 } |
1937 case UDIV_w: | 1944 case UDIV_w: { |
1938 case UDIV_x: { | 1945 uint32_t rn = static_cast<uint32_t>(wreg(instr->Rn())); |
1939 typedef typename make_unsigned<T>::type unsignedT; | 1946 uint32_t rm = static_cast<uint32_t>(wreg(instr->Rm())); |
1940 unsignedT rn = static_cast<unsignedT>(reg<T>(instr->Rn())); | |
1941 unsignedT rm = static_cast<unsignedT>(reg<T>(instr->Rm())); | |
1942 if (rm == 0) { | 1947 if (rm == 0) { |
1943 // Division by zero can be trapped, but not on A-class processors. | 1948 // Division by zero can be trapped, but not on A-class processors. |
1944 result = 0; | 1949 result = 0; |
| 1950 } else { |
| 1951 result = rn / rm; |
| 1952 } |
| 1953 break; |
| 1954 } |
| 1955 case UDIV_x: { |
| 1956 uint64_t rn = static_cast<uint64_t>(xreg(instr->Rn())); |
| 1957 uint64_t rm = static_cast<uint64_t>(xreg(instr->Rm())); |
| 1958 if (rm == 0) { |
| 1959 // Division by zero can be trapped, but not on A-class processors. |
| 1960 result = 0; |
1945 } else { | 1961 } else { |
1946 result = rn / rm; | 1962 result = rn / rm; |
1947 } | 1963 } |
1948 break; | 1964 break; |
1949 } | 1965 } |
1950 case LSLV_w: | 1966 case LSLV_w: |
1951 case LSLV_x: shift_op = LSL; break; | 1967 case LSLV_x: shift_op = LSL; break; |
1952 case LSRV_w: | 1968 case LSRV_w: |
1953 case LSRV_x: shift_op = LSR; break; | 1969 case LSRV_x: shift_op = LSR; break; |
1954 case ASRV_w: | 1970 case ASRV_w: |
1955 case ASRV_x: shift_op = ASR; break; | 1971 case ASRV_x: shift_op = ASR; break; |
1956 case RORV_w: | 1972 case RORV_w: |
1957 case RORV_x: shift_op = ROR; break; | 1973 case RORV_x: shift_op = ROR; break; |
1958 default: UNIMPLEMENTED(); | 1974 default: UNIMPLEMENTED(); |
1959 } | 1975 } |
1960 | 1976 |
| 1977 unsigned reg_size = instr->SixtyFourBits() ? kXRegSizeInBits |
| 1978 : kWRegSizeInBits; |
1961 if (shift_op != NO_SHIFT) { | 1979 if (shift_op != NO_SHIFT) { |
1962 // Shift distance encoded in the least-significant five/six bits of the | 1980 // Shift distance encoded in the least-significant five/six bits of the |
1963 // register. | 1981 // register. |
1964 unsigned shift = wreg(instr->Rm()); | 1982 int mask = (instr->SixtyFourBits() == 1) ? kShiftAmountXRegMask |
1965 if (sizeof(T) == kWRegSize) { | 1983 : kShiftAmountWRegMask; |
1966 shift &= kShiftAmountWRegMask; | 1984 unsigned shift = wreg(instr->Rm()) & mask; |
1967 } else { | 1985 result = ShiftOperand(reg_size, reg(reg_size, instr->Rn()), shift_op, |
1968 shift &= kShiftAmountXRegMask; | 1986 shift); |
1969 } | |
1970 result = ShiftOperand(reg<T>(instr->Rn()), shift_op, shift); | |
1971 } | 1987 } |
1972 set_reg<T>(instr->Rd(), result); | 1988 set_reg(reg_size, instr->Rd(), result); |
1973 } | 1989 } |
1974 | 1990 |
1975 | 1991 |
1976 void Simulator::VisitDataProcessing2Source(Instruction* instr) { | |
1977 if (instr->SixtyFourBits()) { | |
1978 DataProcessing2Source<int64_t>(instr); | |
1979 } else { | |
1980 DataProcessing2Source<int32_t>(instr); | |
1981 } | |
1982 } | |
1983 | |
1984 | |
1985 // The algorithm used is described in section 8.2 of | 1992 // The algorithm used is described in section 8.2 of |
1986 // Hacker's Delight, by Henry S. Warren, Jr. | 1993 // Hacker's Delight, by Henry S. Warren, Jr. |
1987 // It assumes that a right shift on a signed integer is an arithmetic shift. | 1994 // It assumes that a right shift on a signed integer is an arithmetic shift. |
1988 static int64_t MultiplyHighSigned(int64_t u, int64_t v) { | 1995 static int64_t MultiplyHighSigned(int64_t u, int64_t v) { |
1989 uint64_t u0, v0, w0; | 1996 uint64_t u0, v0, w0; |
1990 int64_t u1, v1, w1, w2, t; | 1997 int64_t u1, v1, w1, w2, t; |
1991 | 1998 |
1992 u0 = u & 0xffffffffL; | 1999 u0 = u & 0xffffffffL; |
1993 u1 = u >> 32; | 2000 u1 = u >> 32; |
1994 v0 = v & 0xffffffffL; | 2001 v0 = v & 0xffffffffL; |
1995 v1 = v >> 32; | 2002 v1 = v >> 32; |
1996 | 2003 |
1997 w0 = u0 * v0; | 2004 w0 = u0 * v0; |
1998 t = u1 * v0 + (w0 >> 32); | 2005 t = u1 * v0 + (w0 >> 32); |
1999 w1 = t & 0xffffffffL; | 2006 w1 = t & 0xffffffffL; |
2000 w2 = t >> 32; | 2007 w2 = t >> 32; |
2001 w1 = u0 * v1 + w1; | 2008 w1 = u0 * v1 + w1; |
2002 | 2009 |
2003 return u1 * v1 + w2 + (w1 >> 32); | 2010 return u1 * v1 + w2 + (w1 >> 32); |
2004 } | 2011 } |
2005 | 2012 |
2006 | 2013 |
2007 void Simulator::VisitDataProcessing3Source(Instruction* instr) { | 2014 void Simulator::VisitDataProcessing3Source(Instruction* instr) { |
| 2015 unsigned reg_size = instr->SixtyFourBits() ? kXRegSizeInBits |
| 2016 : kWRegSizeInBits; |
| 2017 |
2008 int64_t result = 0; | 2018 int64_t result = 0; |
2009 // Extract and sign- or zero-extend 32-bit arguments for widening operations. | 2019 // Extract and sign- or zero-extend 32-bit arguments for widening operations. |
2010 uint64_t rn_u32 = reg<uint32_t>(instr->Rn()); | 2020 uint64_t rn_u32 = reg<uint32_t>(instr->Rn()); |
2011 uint64_t rm_u32 = reg<uint32_t>(instr->Rm()); | 2021 uint64_t rm_u32 = reg<uint32_t>(instr->Rm()); |
2012 int64_t rn_s32 = reg<int32_t>(instr->Rn()); | 2022 int64_t rn_s32 = reg<int32_t>(instr->Rn()); |
2013 int64_t rm_s32 = reg<int32_t>(instr->Rm()); | 2023 int64_t rm_s32 = reg<int32_t>(instr->Rm()); |
2014 switch (instr->Mask(DataProcessing3SourceMask)) { | 2024 switch (instr->Mask(DataProcessing3SourceMask)) { |
2015 case MADD_w: | 2025 case MADD_w: |
2016 case MADD_x: | 2026 case MADD_x: |
2017 result = xreg(instr->Ra()) + (xreg(instr->Rn()) * xreg(instr->Rm())); | 2027 result = xreg(instr->Ra()) + (xreg(instr->Rn()) * xreg(instr->Rm())); |
2018 break; | 2028 break; |
2019 case MSUB_w: | 2029 case MSUB_w: |
2020 case MSUB_x: | 2030 case MSUB_x: |
2021 result = xreg(instr->Ra()) - (xreg(instr->Rn()) * xreg(instr->Rm())); | 2031 result = xreg(instr->Ra()) - (xreg(instr->Rn()) * xreg(instr->Rm())); |
2022 break; | 2032 break; |
2023 case SMADDL_x: result = xreg(instr->Ra()) + (rn_s32 * rm_s32); break; | 2033 case SMADDL_x: result = xreg(instr->Ra()) + (rn_s32 * rm_s32); break; |
2024 case SMSUBL_x: result = xreg(instr->Ra()) - (rn_s32 * rm_s32); break; | 2034 case SMSUBL_x: result = xreg(instr->Ra()) - (rn_s32 * rm_s32); break; |
2025 case UMADDL_x: result = xreg(instr->Ra()) + (rn_u32 * rm_u32); break; | 2035 case UMADDL_x: result = xreg(instr->Ra()) + (rn_u32 * rm_u32); break; |
2026 case UMSUBL_x: result = xreg(instr->Ra()) - (rn_u32 * rm_u32); break; | 2036 case UMSUBL_x: result = xreg(instr->Ra()) - (rn_u32 * rm_u32); break; |
2027 case SMULH_x: | 2037 case SMULH_x: |
2028 ASSERT(instr->Ra() == kZeroRegCode); | 2038 ASSERT(instr->Ra() == kZeroRegCode); |
2029 result = MultiplyHighSigned(xreg(instr->Rn()), xreg(instr->Rm())); | 2039 result = MultiplyHighSigned(xreg(instr->Rn()), xreg(instr->Rm())); |
2030 break; | 2040 break; |
2031 default: UNIMPLEMENTED(); | 2041 default: UNIMPLEMENTED(); |
2032 } | 2042 } |
2033 | 2043 set_reg(reg_size, instr->Rd(), result); |
2034 if (instr->SixtyFourBits()) { | |
2035 set_xreg(instr->Rd(), result); | |
2036 } else { | |
2037 set_wreg(instr->Rd(), result); | |
2038 } | |
2039 } | 2044 } |
2040 | 2045 |
2041 | 2046 |
2042 template <typename T> | 2047 void Simulator::VisitBitfield(Instruction* instr) { |
2043 void Simulator::BitfieldHelper(Instruction* instr) { | 2048 unsigned reg_size = instr->SixtyFourBits() ? kXRegSizeInBits |
2044 typedef typename make_unsigned<T>::type unsignedT; | 2049 : kWRegSizeInBits; |
2045 T reg_size = sizeof(T) * 8; | 2050 int64_t reg_mask = instr->SixtyFourBits() ? kXRegMask : kWRegMask; |
2046 T R = instr->ImmR(); | 2051 int64_t R = instr->ImmR(); |
2047 T S = instr->ImmS(); | 2052 int64_t S = instr->ImmS(); |
2048 T diff = S - R; | 2053 int64_t diff = S - R; |
2049 T mask; | 2054 int64_t mask; |
2050 if (diff >= 0) { | 2055 if (diff >= 0) { |
2051 mask = diff < reg_size - 1 ? (static_cast<T>(1) << (diff + 1)) - 1 | 2056 mask = diff < reg_size - 1 ? (1L << (diff + 1)) - 1 |
2052 : static_cast<T>(-1); | 2057 : reg_mask; |
2053 } else { | 2058 } else { |
2054 mask = ((1L << (S + 1)) - 1); | 2059 mask = ((1L << (S + 1)) - 1); |
2055 mask = (static_cast<uint64_t>(mask) >> R) | (mask << (reg_size - R)); | 2060 mask = (static_cast<uint64_t>(mask) >> R) | (mask << (reg_size - R)); |
2056 diff += reg_size; | 2061 diff += reg_size; |
2057 } | 2062 } |
2058 | 2063 |
2059 // inzero indicates if the extracted bitfield is inserted into the | 2064 // inzero indicates if the extracted bitfield is inserted into the |
2060 // destination register value or in zero. | 2065 // destination register value or in zero. |
2061 // If extend is true, extend the sign of the extracted bitfield. | 2066 // If extend is true, extend the sign of the extracted bitfield. |
2062 bool inzero = false; | 2067 bool inzero = false; |
2063 bool extend = false; | 2068 bool extend = false; |
2064 switch (instr->Mask(BitfieldMask)) { | 2069 switch (instr->Mask(BitfieldMask)) { |
2065 case BFM_x: | 2070 case BFM_x: |
2066 case BFM_w: | 2071 case BFM_w: |
2067 break; | 2072 break; |
2068 case SBFM_x: | 2073 case SBFM_x: |
2069 case SBFM_w: | 2074 case SBFM_w: |
2070 inzero = true; | 2075 inzero = true; |
2071 extend = true; | 2076 extend = true; |
2072 break; | 2077 break; |
2073 case UBFM_x: | 2078 case UBFM_x: |
2074 case UBFM_w: | 2079 case UBFM_w: |
2075 inzero = true; | 2080 inzero = true; |
2076 break; | 2081 break; |
2077 default: | 2082 default: |
2078 UNIMPLEMENTED(); | 2083 UNIMPLEMENTED(); |
2079 } | 2084 } |
2080 | 2085 |
2081 T dst = inzero ? 0 : reg<T>(instr->Rd()); | 2086 int64_t dst = inzero ? 0 : reg(reg_size, instr->Rd()); |
2082 T src = reg<T>(instr->Rn()); | 2087 int64_t src = reg(reg_size, instr->Rn()); |
2083 // Rotate source bitfield into place. | 2088 // Rotate source bitfield into place. |
2084 T result = (static_cast<unsignedT>(src) >> R) | (src << (reg_size - R)); | 2089 int64_t result = (static_cast<uint64_t>(src) >> R) | (src << (reg_size - R)); |
2085 // Determine the sign extension. | 2090 // Determine the sign extension. |
2086 T topbits_preshift = (static_cast<T>(1) << (reg_size - diff - 1)) - 1; | 2091 int64_t topbits_preshift = (1L << (reg_size - diff - 1)) - 1; |
2087 T signbits = (extend && ((src >> S) & 1) ? topbits_preshift : 0) | 2092 int64_t signbits = (extend && ((src >> S) & 1) ? topbits_preshift : 0) |
2088 << (diff + 1); | 2093 << (diff + 1); |
2089 | 2094 |
2090 // Merge sign extension, dest/zero and bitfield. | 2095 // Merge sign extension, dest/zero and bitfield. |
2091 result = signbits | (result & mask) | (dst & ~mask); | 2096 result = signbits | (result & mask) | (dst & ~mask); |
2092 | 2097 |
2093 set_reg<T>(instr->Rd(), result); | 2098 set_reg(reg_size, instr->Rd(), result); |
2094 } | |
2095 | |
2096 | |
2097 void Simulator::VisitBitfield(Instruction* instr) { | |
2098 if (instr->SixtyFourBits()) { | |
2099 BitfieldHelper<int64_t>(instr); | |
2100 } else { | |
2101 BitfieldHelper<int32_t>(instr); | |
2102 } | |
2103 } | 2099 } |
2104 | 2100 |
2105 | 2101 |
2106 void Simulator::VisitExtract(Instruction* instr) { | 2102 void Simulator::VisitExtract(Instruction* instr) { |
2107 if (instr->SixtyFourBits()) { | 2103 unsigned lsb = instr->ImmS(); |
2108 Extract<uint64_t>(instr); | 2104 unsigned reg_size = (instr->SixtyFourBits() == 1) ? kXRegSizeInBits |
2109 } else { | 2105 : kWRegSizeInBits; |
2110 Extract<uint32_t>(instr); | 2106 set_reg(reg_size, |
2111 } | 2107 instr->Rd(), |
| 2108 (static_cast<uint64_t>(reg(reg_size, instr->Rm())) >> lsb) | |
| 2109 (reg(reg_size, instr->Rn()) << (reg_size - lsb))); |
2112 } | 2110 } |
2113 | 2111 |
2114 | 2112 |
2115 void Simulator::VisitFPImmediate(Instruction* instr) { | 2113 void Simulator::VisitFPImmediate(Instruction* instr) { |
2116 AssertSupportedFPCR(); | 2114 AssertSupportedFPCR(); |
2117 | 2115 |
2118 unsigned dest = instr->Rd(); | 2116 unsigned dest = instr->Rd(); |
2119 switch (instr->Mask(FPImmediateMask)) { | 2117 switch (instr->Mask(FPImmediateMask)) { |
2120 case FMOV_s_imm: set_sreg(dest, instr->ImmFP32()); break; | 2118 case FMOV_s_imm: set_sreg(dest, instr->ImmFP32()); break; |
2121 case FMOV_d_imm: set_dreg(dest, instr->ImmFP64()); break; | 2119 case FMOV_d_imm: set_dreg(dest, instr->ImmFP64()); break; |
(...skipping 1604 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
3726 | 3724 |
3727 delete[] format; | 3725 delete[] format; |
3728 } | 3726 } |
3729 | 3727 |
3730 | 3728 |
3731 #endif // USE_SIMULATOR | 3729 #endif // USE_SIMULATOR |
3732 | 3730 |
3733 } } // namespace v8::internal | 3731 } } // namespace v8::internal |
3734 | 3732 |
3735 #endif // V8_TARGET_ARCH_ARM64 | 3733 #endif // V8_TARGET_ARCH_ARM64 |
OLD | NEW |