Chromium Code Reviews| OLD | NEW |
|---|---|
| (Empty) | |
| 1 // Copyright 2017 The Chromium Authors. All rights reserved. | |
| 2 // Use of this source code is governed by a BSD-style license that can be | |
| 3 // found in the LICENSE file. | |
| 4 | |
| 5 #ifndef CHROME_INSTALLER_ZUCCHINI_SUFFIX_ARRAY_H_ | |
| 6 #define CHROME_INSTALLER_ZUCCHINI_SUFFIX_ARRAY_H_ | |
| 7 | |
| 8 #include <algorithm> | |
| 9 #include <cassert> | |
| 10 #include <iterator> | |
| 11 #include <numeric> | |
| 12 #include <vector> | |
| 13 | |
| 14 namespace zucchini { | |
| 15 | |
| 16 // A functor class that implements the naive suffix sorting algorithm | |
| 17 // that uses std::sort with lexicographical compare. | |
| 18 // This is only meant as reference of the interface. | |
| 19 class NaiveSuffixSort { | |
| 20 public: | |
| 21 // |str| must be a random access input range. | |
|
etiennep1
2017/06/30 17:18:17
Split argument description and type requirements.
| |
| 22 // Characters found in |str| must be in the range [0, |max_key|) | |
|
huangs
2017/06/30 04:57:32
NIT: |max_key| is a misnomer, since it's not a "ma
etiennep1
2017/06/30 17:18:17
Agreed
| |
| 23 // |suffix_array| is a random access mutable range containing the result. | |
| 24 template <class InputRng, class KeyType, class SAIt> | |
| 25 void operator()(const InputRng& str, | |
| 26 KeyType max_key, | |
| 27 SAIt suffix_array) const { | |
| 28 using size_type = typename SAIt::value_type; | |
| 29 | |
| 30 size_type n = str.end() - str.begin(); | |
|
huangs
2017/06/30 04:57:32
std::end(str) - std::begin(str)? Same below.
Als
etiennep1
2017/06/30 17:18:17
Done.
| |
| 31 | |
| 32 // |suffix_array| is first filled with ordered indices of |str|. | |
| 33 // Those indices are then sorted with lexicographical comparisons in |str|. | |
| 34 std::iota(suffix_array, suffix_array + n, 0); | |
| 35 std::sort(suffix_array, suffix_array + n, [&str](size_type i, size_type j) { | |
|
huangs
2017/06/30 04:57:32
Note that you're using lambda with capture here. S
etiennep1
2017/06/30 17:18:17
I disagree.
From the link:
"Be careful with defaul
| |
| 36 return std::lexicographical_compare(std::begin(str) + i, std::end(str), | |
| 37 std::begin(str) + j, std::end(str)); | |
| 38 }); | |
| 39 } | |
| 40 }; | |
| 41 | |
| 42 // A functor class that implements suffix array induced sorting (SA-IS) | |
| 43 // algorithm with linear time and memory complexity, | |
| 44 // see http://ieeexplore.ieee.org/abstract/document/5582081/ | |
| 45 class Sais { | |
| 46 public: | |
| 47 // |str| must be a random access input range. | |
| 48 // Characters found in |str| must be in the range [0, |max_key|) | |
| 49 // |suffix_array| is a random access mutable range containing the result. | |
|
huangs
2017/06/30 04:57:32
Mention that |suffix_array| should have length at
etiennep1
2017/06/30 17:18:17
Done. Same for NaiveSuffixSort.
| |
| 50 template <class InputRng, class KeyType, class SAIt> | |
| 51 void operator()(const InputRng& str, | |
| 52 KeyType max_key, | |
| 53 SAIt suffix_array) const { | |
| 54 using value_type = typename InputRng::value_type; | |
| 55 using size_type = typename SAIt::value_type; | |
| 56 | |
| 57 static_assert(std::is_unsigned<value_type>::value, | |
| 58 "Sais only supports input string with unsigned values"); | |
| 59 | |
| 60 size_type n = static_cast<size_type>(str.end() - str.begin()); | |
| 61 | |
| 62 Implementation<size_type, typename std::make_unsigned<KeyType>::type>:: | |
|
huangs
2017/06/30 04:57:32
Do we need std::make_unsigned<>? We used static_as
etiennep1
2017/06/30 17:18:18
We don't. That comes from an failed attempt to sup
| |
| 63 SuffixSort(std::begin(str), n, max_key, suffix_array); | |
| 64 } | |
| 65 | |
| 66 // Given the string S of length n. We assume S is terminated by a unique | |
| 67 // sentinel $, which is considered as the smallest character. This sentinel | |
| 68 // does not exist in memory and is only treated implicitly. We denote | |
| 69 // suf(S,i) the suffix formed by S[i, n). | |
|
huangs
2017/06/30 04:57:32
NIT: suf(S,i) has inconsistent spacing with later
etiennep1
2017/06/30 17:18:17
Done.
| |
| 70 | |
| 71 // A suffix suf(S, i) is said to be S-type or L-type, | |
| 72 // if suf(S, i) < suf(S, i+1) or suf(S, i) > suf(S, i+1), respectively. | |
| 73 enum SLType : bool { SType, LType }; | |
| 74 | |
| 75 // A character S[i] is said to be S-type or L-type if the suffix suf(S, i) is | |
| 76 // S-type or L-type, respectively. | |
| 77 | |
| 78 // A character S[i], i is called LMS (leftmost S-type), if S[i] is S-type and | |
| 79 // S[i-1] is L-type. A suffix suf(S, i) is called LMS, if S[i] is an LMS | |
| 80 // character. | |
| 81 | |
| 82 // An LMS-substring is a substring S[i..j) with both S[i] and S[j], being LMS | |
|
huangs
2017/06/30 04:57:32
S[i..j): Inconsistent notatoin with S[i,n) above.
etiennep1
2017/06/30 17:18:17
Done.
| |
| 83 // characters, and there is no other LMS character in the substring, or the | |
| 84 // sentinel itself | |
| 85 | |
| 86 template <class SizeType, class KeyType> | |
| 87 struct Implementation { | |
| 88 static_assert(std::is_unsigned<SizeType>::value, | |
| 89 "SizeType must be unsigned"); | |
| 90 static_assert(std::is_unsigned<KeyType>::value, "KeyType must be unsigned"); | |
| 91 using size_type = SizeType; | |
| 92 using key_type = KeyType; | |
| 93 | |
| 94 using iterator = typename std::vector<size_type>::iterator; | |
| 95 using const_iterator = typename std::vector<size_type>::const_iterator; | |
| 96 | |
| 97 // Partition every suffix based on SL-type. | |
| 98 template <class StrIt> | |
| 99 static size_type BuildSLPartition( | |
| 100 StrIt str, | |
| 101 size_type length, | |
| 102 key_type max_key, | |
| 103 std::vector<SLType>::reverse_iterator sl_partition) { | |
| 104 // We will count LMS suffixes (S to L-type or last S-type) | |
| 105 size_type lms_count = 0; | |
| 106 | |
| 107 // |previous_type| is initialized to L-type to avoid counting an extra | |
| 108 // LMS suffix at the end | |
| 109 SLType previous_type = LType; | |
| 110 | |
| 111 key_type previous_key = max_key; // initialized to dummy, impossible key | |
| 112 | |
| 113 // We're travelling backward to determine the partition, | |
| 114 // as if we prepend one character at a time to the string, ex: | |
| 115 // b$ is L-type because b > $ | |
| 116 // ab$ is S-type because a < b, implying ab$ < b$ | |
| 117 // bab$ is L-type because b > a, implying bab$ > ab$ | |
| 118 // bbab$ is L-type, because bab$ was also L-type, implying bbab$ > bab$ | |
| 119 for (auto str_it = std::reverse_iterator<StrIt>(str + length); | |
| 120 str_it != std::reverse_iterator<StrIt>(str); | |
| 121 ++str_it, ++sl_partition) { | |
| 122 key_type current_key = *str_it; | |
| 123 | |
| 124 if (current_key > previous_key || previous_key == max_key) { | |
| 125 // S[i] > S[i + 1] or S[i] is last character | |
| 126 *sl_partition = LType; | |
| 127 if (previous_type == SType) | |
| 128 // suf(S, i) is L-type and suf(S, i + 1) is S-type, | |
| 129 // therefore, suf(S, i+1) was a LMS suffix. | |
| 130 ++lms_count; | |
| 131 | |
| 132 previous_type = LType; // for next round | |
| 133 } else if (current_key < previous_key) { | |
| 134 // S[i] < S[i + 1] | |
| 135 *sl_partition = SType; | |
| 136 previous_type = SType; // for next round | |
| 137 } else { | |
| 138 // S[i] == S[i + 1] | |
| 139 // The next character that differs determines the SL-type, | |
| 140 // so we reuse the last seen type. | |
| 141 *sl_partition = previous_type; | |
| 142 } | |
| 143 previous_key = current_key; // for next round | |
| 144 } | |
| 145 | |
| 146 return lms_count; | |
| 147 } | |
| 148 | |
| 149 // Find indices of LMS suffixes and write result to |lms_indices|. | |
| 150 static void FindLmsSuffixes(const std::vector<SLType>& sl_partition, | |
| 151 iterator lms_indices) { | |
| 152 // |previous_type| is initialized to S-type to avoid counting an extra | |
| 153 // LMS suffix at the beginning | |
| 154 SLType previous_type = SType; | |
| 155 size_type j = 0; | |
|
huangs
2017/06/30 04:57:32
Do we need |j|? Can we just omit it, and have
*
etiennep1
2017/06/30 17:18:17
Good point.
| |
| 156 for (size_type i = 0; i < sl_partition.size(); ++i) { | |
| 157 if (sl_partition[i] == SType && previous_type == LType) | |
| 158 lms_indices[j++] = i; | |
| 159 previous_type = sl_partition[i]; | |
| 160 } | |
| 161 } | |
| 162 | |
| 163 template <class StrIt> | |
| 164 static std::vector<size_type> MakeBucketCount(StrIt str, | |
| 165 size_type length, | |
| 166 key_type max_key) { | |
| 167 // Occurence of every unique character is counted in |buckets| | |
|
huangs
2017/06/30 04:57:32
Typo: Occurrence.
etiennep1
2017/06/30 17:18:18
Done.
| |
| 168 std::vector<size_type> buckets(static_cast<size_type>(max_key)); | |
| 169 | |
| 170 for (auto it = str; it != str + length; ++it) | |
| 171 ++buckets[*it]; | |
| 172 return buckets; | |
| 173 } | |
| 174 | |
| 175 // Apply induced sort from |lms_indices| to |suffix_array| associated with | |
| 176 // the string |str|. | |
| 177 template <class StrIt, class SAIt> | |
| 178 static void InducedSort(StrIt str, | |
| 179 size_type length, | |
| 180 const std::vector<SLType>& sl_partition, | |
| 181 const std::vector<size_type>& lms_substrings, | |
| 182 const std::vector<size_type>& buckets, | |
| 183 SAIt suffix_array) { | |
| 184 // All indices are first marked as unset with 0. | |
| 185 std::fill(suffix_array, suffix_array + length, 0); | |
| 186 | |
| 187 // Used to mark bucket boundaries (head or end) as indices in str. | |
| 188 std::vector<size_type> bucket_bounds(buckets.size()); | |
| 189 | |
| 190 // Step 1 | |
| 191 // for each leftmost S-type suffix suf(S, i) found in |lms_indices| | |
|
huangs
2017/06/30 04:57:33
NIT: Replace "leftmost S-type" with LMS, since we'
etiennep1
2017/06/30 17:18:17
Done.
| |
| 192 // scanned backward, place suf(S, i) at the end of the corresponding | |
| 193 // bucket and forward the bucket end to the left. | |
| 194 | |
| 195 // By corresponding bucket for suf(S, i), we mean the bucket associated | |
| 196 // with the character S(i). | |
| 197 | |
| 198 // find the end of each bucket | |
| 199 bucket_bounds[0] = buckets[0]; | |
|
huangs
2017/06/30 04:57:32
Use std::partial_sum() for this?
etiennep1
2017/06/30 17:18:17
Done.
| |
| 200 for (key_type i = 1; i < buckets.size(); ++i) | |
| 201 bucket_bounds[i] = bucket_bounds[i - 1] + buckets[i]; | |
| 202 | |
| 203 for (auto it = lms_substrings.crbegin(); it != lms_substrings.crend(); | |
| 204 ++it) { | |
| 205 key_type key = str[*it]; | |
| 206 suffix_array[--bucket_bounds[key]] = *it; | |
| 207 } | |
| 208 | |
| 209 // Step 2 | |
| 210 // for each modified suf(S, i), scanned forward, for which | |
| 211 // suf(S, SA(i) - 1) is L-type, place suf(S, SA(i) - 1) to the current | |
| 212 // head of the corresponding bucket and forward the bucket head to the | |
| 213 // right. | |
| 214 | |
| 215 // find the head of each bucket | |
| 216 bucket_bounds[0] = 0; | |
|
huangs
2017/06/30 04:57:33
Is this step needed? I'd think that after the prev
etiennep1
2017/06/30 17:18:17
This step is needed, yes.
| |
| 217 for (key_type i = 1; i < buckets.size(); ++i) | |
| 218 bucket_bounds[i] = bucket_bounds[i - 1] + buckets[i - 1]; | |
| 219 | |
| 220 // from Step 1, the sentinel $, which we treat implicitely, would have | |
| 221 // been place at the beginning of |suffix_array| since $ is always | |
|
huangs
2017/06/30 04:57:32
NIT: s/place/placed/
etiennep1
2017/06/30 17:18:17
Done.
| |
| 222 // considered as the smallest character. We then have to deal with the | |
| 223 // previous (last) suffix. | |
| 224 if (sl_partition[length - 1] == LType) { | |
| 225 key_type key = str[length - 1]; | |
| 226 suffix_array[bucket_bounds[key]++] = length - 1; | |
| 227 } | |
| 228 for (auto it = suffix_array; it != suffix_array + length; ++it) { | |
| 229 size_type suffix_index = *it; | |
| 230 | |
| 231 // While the original algorithm marks unset suffixes with -1, | |
| 232 // we found that marking them with 0 is also possible, since suf(S, 0) | |
| 233 // has no previous suffix, and also more convenient because we are | |
| 234 // working with unsigned integers. | |
| 235 if (suffix_index > 0 && sl_partition[--suffix_index] == LType) { | |
| 236 key_type key = str[suffix_index]; | |
| 237 suffix_array[bucket_bounds[key]++] = suffix_index; | |
| 238 } | |
| 239 } | |
| 240 | |
| 241 // Step 3 | |
| 242 // for each modified suf(S, i), scanned backward, for which | |
| 243 // suf(S, SA(i) - 1) is S-type, place suf(S, SA(i) - 1) to the current | |
| 244 // end of the corresponding bucket and forward the bucket head to the | |
| 245 // left. | |
| 246 | |
| 247 // find the end of each bucket | |
| 248 bucket_bounds[0] = buckets[0]; | |
| 249 for (size_type i = 1; i < buckets.size(); ++i) | |
| 250 bucket_bounds[i] = bucket_bounds[i - 1] + buckets[i]; | |
| 251 | |
| 252 for (auto it = std::reverse_iterator<SAIt>(suffix_array + length); | |
| 253 it != std::reverse_iterator<SAIt>(suffix_array); ++it) { | |
| 254 size_type suffix_index = *it; | |
| 255 if (suffix_index > 0 && sl_partition[--suffix_index] == SType) { | |
| 256 key_type key = str[suffix_index]; | |
| 257 suffix_array[--bucket_bounds[key]] = suffix_index; | |
| 258 } | |
| 259 } | |
| 260 // Deals with the last suffix, because of the sentinel. | |
| 261 if (sl_partition[length - 1] == SType) { | |
| 262 key_type key = str[length - 1]; | |
| 263 suffix_array[--bucket_bounds[key]] = length - 1; | |
| 264 } | |
| 265 } | |
| 266 | |
| 267 // Given a string S starting at |str| with length |length|, an array | |
| 268 // starting at |substring_array| containing ordered LMS terminated substring | |
| 269 // indices of S and an SL-Type partition |sl_partition| of S, assigns a | |
| 270 // unique label to every unique LMS substring. The sorted labels for all LMS | |
| 271 // substrings are written to |lms_str|, while the indices of LMS suffixes | |
| 272 // are written to |lms_indices|. In addition, returns the total number of | |
| 273 // unique labels. | |
| 274 template <class StrIt, class SAIt> | |
| 275 static size_type LabelLmsSubstrings(StrIt str, | |
| 276 size_type length, | |
| 277 const std::vector<SLType>& sl_partition, | |
| 278 SAIt suffix_array, | |
| 279 iterator lms_indices, | |
| 280 iterator lms_str) { | |
| 281 // Labelling starts at 0 | |
| 282 size_type label = 0; | |
| 283 | |
| 284 // |previous_lms| is initialized to 0 to indicate it is unset. | |
| 285 // Note that suf(S, 0) is never a LMS suffix. | |
| 286 // Substrings will be visited in relative order. | |
| 287 size_type previous_lms = 0; | |
| 288 for (auto it = suffix_array; it != suffix_array + length; ++it) { | |
| 289 if (*it > 0 && sl_partition[*it] == SType && | |
| 290 sl_partition[*it - 1] == LType) { | |
| 291 // suf(S, *it) is a LMS suffix | |
| 292 | |
| 293 size_type current_lms = *it; | |
| 294 if (previous_lms != 0) { | |
| 295 // There was a previous LMS suffix | |
| 296 // Check if the current LMS substring is equal to the previous one | |
| 297 SLType current_lms_type = SType, previous_lms_type = SType; | |
| 298 for (size_type k = 0;; ++k) { | |
| 299 // |current_lms_end| and |previous_lms_end| denote weither we have | |
| 300 // reached the end of the current and previous LMS substring, | |
| 301 // respectively | |
| 302 bool current_lms_end = false, previous_lms_end = false; | |
| 303 | |
| 304 // Check both previous and current substrings end ie | |
| 305 // Note: it is more convenient to check if suf(S, current_lms + k) | |
| 306 // is an LMS suffix than to retrieve it from lms_indices. | |
| 307 if (current_lms + k >= length || | |
| 308 (current_lms_type == LType && | |
| 309 sl_partition[current_lms + k] == SType)) { | |
| 310 current_lms_end = true; | |
| 311 } | |
| 312 if (previous_lms + k >= length || | |
| 313 (previous_lms_type == LType && | |
| 314 sl_partition[previous_lms + k] == SType)) { | |
| 315 previous_lms_end = true; | |
| 316 } | |
| 317 | |
| 318 if (current_lms_end && previous_lms_end) { | |
| 319 break; | |
| 320 } else if (current_lms_end != previous_lms_end || | |
| 321 str[current_lms + k] != str[previous_lms + k]) { | |
| 322 // previous and current substrings differ, | |
| 323 ++label; // use a new label | |
| 324 break; | |
| 325 } | |
| 326 | |
| 327 current_lms_type = sl_partition[current_lms + k]; | |
| 328 previous_lms_type = sl_partition[previous_lms + k]; | |
| 329 } | |
| 330 } | |
| 331 *lms_indices++ = *it; | |
| 332 *lms_str++ = label; | |
| 333 previous_lms = current_lms; | |
| 334 } | |
| 335 } | |
| 336 | |
| 337 return ++label; | |
| 338 } | |
| 339 | |
| 340 // Implementation of the SA-IS algorithm. |str| must be a random access | |
| 341 // iterator pointing at the beginning of S with length |length|. The result | |
| 342 // is writtend in |suffix_array|, a random access iterator. | |
| 343 template <class StrIt, class SAIt> | |
| 344 static void SuffixSort(StrIt str, | |
| 345 size_type length, | |
| 346 key_type max_key, | |
| 347 SAIt suffix_array) { | |
| 348 if (length == 1) | |
| 349 *suffix_array = 0; | |
| 350 if (length < 2) | |
| 351 return; | |
| 352 | |
| 353 std::vector<SLType> sl_partition(length); | |
| 354 size_type lms_count = | |
| 355 BuildSLPartition(str, length, max_key, sl_partition.rbegin()); | |
| 356 std::vector<size_type> lms_indices(lms_count); | |
| 357 FindLmsSuffixes(sl_partition, lms_indices.begin()); | |
| 358 std::vector<size_type> buckets = MakeBucketCount(str, length, max_key); | |
| 359 | |
| 360 if (lms_indices.size() > 1) { | |
| 361 // Given |lms_indices| in order of apparition, induce LMS substrings | |
|
huangs
2017/06/30 04:57:32
"apparition" means "ghost"? 2 more instances below
etiennep1
2017/06/30 17:18:17
Wrong translation, meant appearance
| |
| 362 // relative order and write result to |suffix_array|. | |
| 363 InducedSort(str, length, sl_partition, lms_indices, buckets, | |
| 364 suffix_array); | |
| 365 std::vector<size_type> lms_str(lms_indices.size()); | |
| 366 | |
| 367 // Given LMS substrings in relative order found in |suffix_array|, | |
| 368 // map LMS substrings to unique labels to form a new string, |lms_str|. | |
| 369 size_type label_count = | |
| 370 LabelLmsSubstrings(str, length, sl_partition, suffix_array, | |
| 371 lms_indices.begin(), lms_str.begin()); | |
| 372 | |
| 373 if (label_count < lms_str.size()) { | |
| 374 // Reorder |lms_str| to have LMS suffixes in order of apparition. | |
| 375 for (size_type i = 0; i < lms_indices.size(); ++i) | |
| 376 suffix_array[lms_indices[i]] = lms_str[i]; | |
| 377 | |
| 378 SLType previous_type = SType; | |
| 379 for (size_type i = 0, j = 0; i < sl_partition.size(); ++i) { | |
| 380 if (sl_partition[i] == SType && previous_type == LType) { | |
| 381 lms_str[j] = suffix_array[i]; | |
| 382 lms_indices[j++] = i; | |
| 383 } | |
| 384 previous_type = sl_partition[i]; | |
| 385 } | |
| 386 | |
| 387 // Recursively apply SuffixSort on |lms_str|, which is | |
| 388 // formed from labeled LMS suffixes in order of apparition. | |
| 389 // |lms_str| is at most half the length of |str|. | |
| 390 Implementation<size_type, size_type>::SuffixSort( | |
| 391 lms_str.begin(), static_cast<size_type>(lms_str.size()), | |
| 392 label_count, suffix_array); | |
| 393 | |
| 394 // Map LMS labels back to indices in |str| and | |
| 395 // write result to |lms_indices|. | |
| 396 // We're using |suffix_array| as a temporary buffer. | |
| 397 for (size_type i = 0; i < lms_indices.size(); ++i) | |
| 398 suffix_array[i] = lms_indices[suffix_array[i]]; | |
| 399 for (size_type i = 0; i < lms_indices.size(); ++i) | |
| 400 lms_indices[i] = suffix_array[i]; | |
| 401 | |
| 402 // At this point, |lms_indices| contains sorted LMS suffixes of |str|. | |
| 403 } | |
| 404 } | |
| 405 // Given |lms_indices| where LMS suffixes are sorted, | |
| 406 // induce the full order of suffixes in |str| | |
| 407 InducedSort(str, length, sl_partition, lms_indices, buckets, | |
| 408 suffix_array); | |
| 409 } | |
| 410 }; | |
| 411 }; | |
| 412 | |
| 413 // Generates a suffix array from |str|, a random access input range from which | |
| 414 // suffixes are sorted, using the functor |algorithm| which provides an | |
| 415 // interface equivalent to NaiveSuffixSort. Characters found in |str| are | |
| 416 // assumed to be in range [0, |max_key|). Returns the suffix array as a vector. | |
| 417 template <class Algorithm, class StrRng, class KeyType> | |
| 418 std::vector<typename StrRng::size_type> MakeSuffixArray(const StrRng& str, | |
| 419 KeyType max_key) { | |
| 420 Algorithm sort; | |
| 421 std::vector<typename StrRng::size_type> suffix_array(str.end() - str.begin()); | |
| 422 sort(str, max_key, suffix_array.begin()); | |
| 423 return suffix_array; | |
| 424 } | |
| 425 | |
| 426 // Lexicographical lower bound of |str2| in the suffix array of |str1| using | |
| 427 // binary search. |str1_first| is a random access iterator pointing to the | |
| 428 // beginning of |str1|. |str2_first| and |str2_last| are forward iterators | |
| 429 // pointing to the beginning and end of |str2|, respectively. | |
| 430 template <class SARng, class StrIt1, class StrIt2> | |
| 431 auto SearchSuffixArray(const SARng& suffix_array, | |
| 432 StrIt1 str1_first, | |
| 433 StrIt2 str2_first, | |
| 434 StrIt2 str2_last) -> decltype(std::begin(suffix_array)) { | |
| 435 using size_type = typename SARng::value_type; | |
| 436 | |
| 437 size_t n = std::end(suffix_array) - std::begin(suffix_array); | |
| 438 auto it = std::lower_bound( | |
| 439 std::begin(suffix_array), std::end(suffix_array), str2_first, | |
| 440 [str1_first, str2_last, n](size_type a, StrIt2 b) { | |
| 441 return std::lexicographical_compare(str1_first + a, str1_first + n, b, | |
| 442 str2_last); | |
| 443 }); | |
| 444 return it; | |
| 445 } | |
| 446 | |
| 447 } // namespace zucchini | |
| 448 | |
| 449 #endif // CHROME_INSTALLER_ZUCCHINI_SUFFIX_ARRAY_H_ | |
| OLD | NEW |