Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(179)

Side by Side Diff: chrome/installer/zucchini/suffix_array.h

Issue 2963463002: [Zucchini] Generic suffix array algorithms. (Closed)
Patch Set: Rebase Created 3 years, 5 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « chrome/installer/zucchini/BUILD.gn ('k') | chrome/installer/zucchini/suffix_array_unittest.cc » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 // Copyright 2017 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifndef CHROME_INSTALLER_ZUCCHINI_SUFFIX_ARRAY_H_
6 #define CHROME_INSTALLER_ZUCCHINI_SUFFIX_ARRAY_H_
7
8 #include <algorithm>
9 #include <cassert>
10 #include <iterator>
11 #include <numeric>
12 #include <vector>
13
14 #include "base/logging.h"
15
16 namespace zucchini {
17
18 // A functor class that implements the naive suffix sorting algorithm that uses
19 // std::sort with lexicographical compare. This is only meant as reference of
20 // the interface.
21 class NaiveSuffixSort {
22 public:
23 // Type requirements:
24 // |InputRng| is an input random access range.
25 // |KeyType| is an unsigned integer type.
26 // |SAIt| is a random access iterator with mutable references.
27 template <class InputRng, class KeyType, class SAIt>
28 // |str| is the input string on which suffix sort is applied.
29 // Characters found in |str| must be in the range [0, |key_bound|)
30 // |suffix_array| is the beginning of the destination range, which is at least
31 // as large as |str|.
32 void operator()(const InputRng& str,
33 KeyType key_bound,
34 SAIt suffix_array) const {
35 using size_type = typename SAIt::value_type;
36
37 size_type n = static_cast<size_type>(std::end(str) - std::begin(str));
38
39 // |suffix_array| is first filled with ordered indices of |str|.
40 // Those indices are then sorted with lexicographical comparisons in |str|.
41 std::iota(suffix_array, suffix_array + n, 0);
42 std::sort(suffix_array, suffix_array + n, [&str](size_type i, size_type j) {
43 return std::lexicographical_compare(std::begin(str) + i, std::end(str),
44 std::begin(str) + j, std::end(str));
45 });
46 }
47 };
48
49 // A functor class that implements suffix array induced sorting (SA-IS)
50 // algorithm with linear time and memory complexity,
51 // see http://ieeexplore.ieee.org/abstract/document/5582081/
52 class Sais {
grt (UTC plus 2) 2017/07/24 09:09:42 "Names should be descriptive; avoid abbreviation."
etiennep1 2017/07/27 17:26:02 Done.
53 public:
54 // Type requirements:
55 // |InputRng| is an input random access range.
56 // |KeyType| is an unsigned integer type.
57 // |SAIt| is a random access iterator with mutable values.
58 template <class InputRng, class KeyType, class SAIt>
59 // |str| is the input string on which suffix sort is applied.
60 // Characters found in |str| must be in the range [0, |key_bound|)
61 // |suffix_array| is the beginning of the destination range, which is at least
62 // as large as |str|.
63 void operator()(const InputRng& str,
64 KeyType key_bound,
65 SAIt suffix_array) const {
66 using value_type = typename InputRng::value_type;
67 using size_type = typename SAIt::value_type;
68
69 static_assert(std::is_unsigned<value_type>::value,
70 "Sais only supports input string with unsigned values");
71 static_assert(std::is_unsigned<KeyType>::value, "KeyType must be unsigned");
72
73 size_type n = static_cast<size_type>(std::end(str) - std::begin(str));
74
75 Implementation<size_type, KeyType>::SuffixSort(std::begin(str), n,
76 key_bound, suffix_array);
77 }
78
79 // Given string S of length n. We assume S is terminated by a unique sentinel
80 // $, which is considered as the smallest character. This sentinel does not
81 // exist in memory and is only treated implicitly, hence |n| does not count
82 // the sentinel in this implementation. We denote suf(S,i) the suffix formed
83 // by S[i..n).
84
85 // A suffix suf(S,i) is said to be S-type or L-type, if suf(S,i) < suf(S,i+1)
86 // or suf(S,i) > suf(S,i+1), respectively.
87 enum SLType : bool { SType, LType };
88
89 // A character S[i] is said to be S-type or L-type if the suffix suf(S,i) is
90 // S-type or L-type, respectively.
91
92 // A character S[i] is called LMS (leftmost S-type), if S[i] is S-type and
93 // S[i-1] is L-type. A suffix suf(S,i) is called LMS, if S[i] is an LMS
94 // character.
95
96 // A substring S[i..j) is an LMS-substring if
97 // (1) S[i] is LMS, S[j] is LMS or the sentinel $, and S[i..j) has no other
98 // LMS characters, or
99 // (2) S[i..j) is the sentinel $.
100
101 template <class SizeType, class KeyType>
102 struct Implementation {
grt (UTC plus 2) 2017/07/24 09:09:42 should this be in a private: section of Sais?
etiennep1 2017/07/27 17:26:02 It would make sense to have this private, but it i
103 static_assert(std::is_unsigned<SizeType>::value,
104 "SizeType must be unsigned");
105 static_assert(std::is_unsigned<KeyType>::value, "KeyType must be unsigned");
106 using size_type = SizeType;
107 using key_type = KeyType;
108
109 using iterator = typename std::vector<size_type>::iterator;
110 using const_iterator = typename std::vector<size_type>::const_iterator;
111
112 // Partition every suffix based on SL-type. Returns the number of LMS
113 // suffixes.
114 template <class StrIt>
115 static size_type BuildSLPartition(
116 StrIt str,
117 size_type length,
118 key_type key_bound,
119 std::vector<SLType>::reverse_iterator sl_partition_it) {
120 // We will count LMS suffixes (S to L-type or last S-type).
121 size_type lms_count = 0;
122
123 // |previous_type| is initialized to L-type to avoid counting an extra
124 // LMS suffix at the end
125 SLType previous_type = LType;
126
127 // Initialized to dummy, impossible key.
128 key_type previous_key = key_bound;
129
130 // We're travelling backward to determine the partition,
131 // as if we prepend one character at a time to the string, ex:
132 // b$ is L-type because b > $.
133 // ab$ is S-type because a < b, implying ab$ < b$.
134 // bab$ is L-type because b > a, implying bab$ > ab$.
135 // bbab$ is L-type, because bab$ was also L-type, implying bbab$ > bab$.
136 for (auto str_it = std::reverse_iterator<StrIt>(str + length);
137 str_it != std::reverse_iterator<StrIt>(str);
138 ++str_it, ++sl_partition_it) {
139 key_type current_key = *str_it;
140
141 if (current_key > previous_key || previous_key == key_bound) {
142 // S[i] > S[i + 1] or S[i] is last character.
143 if (previous_type == SType)
144 // suf(S,i) is L-type and suf(S,i + 1) is S-type, therefore,
145 // suf(S,i+1) was a LMS suffix.
146 ++lms_count;
147
148 previous_type = LType; // For next round.
149 } else if (current_key < previous_key) {
150 // S[i] < S[i + 1]
151 previous_type = SType; // For next round.
152 }
153 // Else, S[i] == S[i + 1]:
154 // The next character that differs determines the SL-type,
155 // so we reuse the last seen type.
156
157 *sl_partition_it = previous_type;
158 previous_key = current_key; // For next round.
159 }
160
161 return lms_count;
162 }
163
164 // Find indices of LMS suffixes and write result to |lms_indices|.
165 static void FindLmsSuffixes(const std::vector<SLType>& sl_partition,
166 iterator lms_indices) {
167 // |previous_type| is initialized to S-type to avoid counting an extra
168 // LMS suffix at the beginning
169 SLType previous_type = SType;
170 for (size_type i = 0; i < sl_partition.size(); ++i) {
171 if (sl_partition[i] == SType && previous_type == LType)
172 *lms_indices++ = i;
173 previous_type = sl_partition[i];
174 }
175 }
176
177 template <class StrIt>
178 static std::vector<size_type> MakeBucketCount(StrIt str,
179 size_type length,
180 key_type key_bound) {
181 // Occurrence of every unique character is counted in |buckets|
182 std::vector<size_type> buckets(static_cast<size_type>(key_bound));
183
184 for (auto it = str; it != str + length; ++it)
185 ++buckets[*it];
186 return buckets;
187 }
188
189 // Apply induced sort from |lms_indices| to |suffix_array| associated with
190 // the string |str|.
191 template <class StrIt, class SAIt>
192 static void InducedSort(StrIt str,
193 size_type length,
194 const std::vector<SLType>& sl_partition,
195 const std::vector<size_type>& lms_indices,
196 const std::vector<size_type>& buckets,
197 SAIt suffix_array) {
198 // All indices are first marked as unset with the illegal value |length|.
199 std::fill(suffix_array, suffix_array + length, length);
200
201 // Used to mark bucket boundaries (head or end) as indices in str.
202 DCHECK(!buckets.empty());
203 std::vector<size_type> bucket_bounds(buckets.size());
204
205 // Step 1: Assign indices for LMS suffixes, populating the end of
206 // respective buckets but keeping relative order.
207
208 // Find the end of each bucket and write it to |bucket_bounds|.
209 std::partial_sum(buckets.begin(), buckets.end(), bucket_bounds.begin());
210
211 // Process each |lms_indices| backward, and assign them to the end of
212 // their respective buckets, so relative order is preserved.
213 for (auto it = lms_indices.crbegin(); it != lms_indices.crend(); ++it) {
214 key_type key = str[*it];
215 suffix_array[--bucket_bounds[key]] = *it;
216 }
217
218 // Step 2
219 // Scan forward |suffix_array|; for each modified suf(S,i) for which
220 // suf(S,SA(i) - 1) is L-type, place suf(S,SA(i) - 1) to the current
221 // head of the corresponding bucket and forward the bucket head to the
222 // right.
223
224 // Find the head of each bucket and write it to |bucket_bounds|. Since
225 // only LMS suffixes where inserted in |suffix_array| during Step 1,
226 // |bucket_bounds| does not contains the head of each bucket and needs to
227 // be updated.
228 bucket_bounds[0] = 0;
229 std::partial_sum(buckets.begin(), buckets.end() - 1,
230 bucket_bounds.begin() + 1);
231
232 // From Step 1, the sentinel $, which we treat implicitly, would have
233 // been placed at the beginning of |suffix_array|, since $ is always
234 // considered as the smallest character. We then have to deal with the
235 // previous (last) suffix.
236 if (sl_partition[length - 1] == LType) {
237 key_type key = str[length - 1];
238 suffix_array[bucket_bounds[key]++] = length - 1;
239 }
240 for (auto it = suffix_array; it != suffix_array + length; ++it) {
241 size_type suffix_index = *it;
242
243 // While the original algorithm marks unset suffixes with -1,
244 // we found that marking them with |length| is also possible and more
245 // convenient because we are working with unsigned integers.
246 if (suffix_index != length && suffix_index > 0 &&
247 sl_partition[--suffix_index] == LType) {
248 key_type key = str[suffix_index];
249 suffix_array[bucket_bounds[key]++] = suffix_index;
250 }
251 }
252
253 // Step 3
254 // Scan backward |suffix_array|; for each modified suf(S, i) for which
255 // suf(S,SA(i) - 1) is S-type, place suf(S,SA(i) - 1) to the current
256 // end of the corresponding bucket and forward the bucket head to the
257 // left.
258
259 // Find the end of each bucket and write it to |bucket_bounds|. Since
260 // only L-type suffixes where inserted in |suffix_array| during Step 2,
261 // |bucket_bounds| does not contain the end of each bucket and needs to
262 // be updated.
263 std::partial_sum(buckets.begin(), buckets.end(), bucket_bounds.begin());
264
265 for (auto it = std::reverse_iterator<SAIt>(suffix_array + length);
266 it != std::reverse_iterator<SAIt>(suffix_array); ++it) {
267 size_type suffix_index = *it;
268 if (suffix_index != length && suffix_index > 0 &&
269 sl_partition[--suffix_index] == SType) {
270 key_type key = str[suffix_index];
271 suffix_array[--bucket_bounds[key]] = suffix_index;
272 }
273 }
274 // Deals with the last suffix, because of the sentinel.
275 if (sl_partition[length - 1] == SType) {
276 key_type key = str[length - 1];
277 suffix_array[--bucket_bounds[key]] = length - 1;
278 }
279 }
280
281 // Given a string S starting at |str| with length |length|, an array
282 // starting at |substring_array| containing lexicographically ordered LMS
283 // terminated substring indices of S and an SL-Type partition |sl_partition|
284 // of S, assigns a unique label to every unique LMS substring. The sorted
285 // labels for all LMS substrings are written to |lms_str|, while the indices
286 // of LMS suffixes are written to |lms_indices|. In addition, returns the
287 // total number of unique labels.
288 template <class StrIt, class SAIt>
289 static size_type LabelLmsSubstrings(StrIt str,
290 size_type length,
291 const std::vector<SLType>& sl_partition,
292 SAIt suffix_array,
293 iterator lms_indices,
294 iterator lms_str) {
295 // Labelling starts at 0.
296 size_type label = 0;
297
298 // |previous_lms| is initialized to 0 to indicate it is unset.
299 // Note that suf(S,0) is never a LMS suffix. Substrings will be visited in
300 // lexicographical order.
301 size_type previous_lms = 0;
302 for (auto it = suffix_array; it != suffix_array + length; ++it) {
303 if (*it > 0 && sl_partition[*it] == SType &&
304 sl_partition[*it - 1] == LType) {
305 // suf(S, *it) is a LMS suffix.
306
307 size_type current_lms = *it;
308 if (previous_lms != 0) {
309 // There was a previous LMS suffix. Check if the current LMS
310 // substring is equal to the previous one.
311 SLType current_lms_type = SType;
312 SLType previous_lms_type = SType;
313 for (size_type k = 0;; ++k) {
314 // |current_lms_end| and |previous_lms_end| denote whether we have
315 // reached the end of the current and previous LMS substring,
316 // respectively
317 bool current_lms_end = false;
318 bool previous_lms_end = false;
319
320 // Check for both previous and current substring ends.
321 // Note that it is more convenient to check if
322 // suf(S,current_lms + k) is an LMS suffix than to retrieve it
323 // from lms_indices.
324 if (current_lms + k >= length ||
325 (current_lms_type == LType &&
326 sl_partition[current_lms + k] == SType)) {
327 current_lms_end = true;
328 }
329 if (previous_lms + k >= length ||
330 (previous_lms_type == LType &&
331 sl_partition[previous_lms + k] == SType)) {
332 previous_lms_end = true;
333 }
334
335 if (current_lms_end && previous_lms_end) {
336 break; // Previous and current substrings are identical.
337 } else if (current_lms_end != previous_lms_end ||
338 str[current_lms + k] != str[previous_lms + k]) {
339 // Previous and current substrings differ, a new label is used.
340 ++label;
341 break;
342 }
343
344 current_lms_type = sl_partition[current_lms + k];
345 previous_lms_type = sl_partition[previous_lms + k];
346 }
347 }
348 *lms_indices++ = *it;
349 *lms_str++ = label;
350 previous_lms = current_lms;
351 }
352 }
353
354 return label + 1;
355 }
356
357 // Implementation of the SA-IS algorithm. |str| must be a random access
358 // iterator pointing at the beginning of S with length |length|. The result
359 // is writtend in |suffix_array|, a random access iterator.
360 template <class StrIt, class SAIt>
361 static void SuffixSort(StrIt str,
362 size_type length,
363 key_type key_bound,
364 SAIt suffix_array) {
365 if (length == 1)
366 *suffix_array = 0;
367 if (length < 2)
368 return;
369
370 std::vector<SLType> sl_partition(length);
371 size_type lms_count =
372 BuildSLPartition(str, length, key_bound, sl_partition.rbegin());
373 std::vector<size_type> lms_indices(lms_count);
374 FindLmsSuffixes(sl_partition, lms_indices.begin());
375 std::vector<size_type> buckets = MakeBucketCount(str, length, key_bound);
376
377 if (lms_indices.size() > 1) {
378 // Given |lms_indices| in the same order they appear in |str|, induce
379 // LMS substrings relative order and write result to |suffix_array|.
380 InducedSort(str, length, sl_partition, lms_indices, buckets,
381 suffix_array);
382 std::vector<size_type> lms_str(lms_indices.size());
383
384 // Given LMS substrings in relative order found in |suffix_array|,
385 // map LMS substrings to unique labels to form a new string, |lms_str|.
386 size_type label_count =
387 LabelLmsSubstrings(str, length, sl_partition, suffix_array,
388 lms_indices.begin(), lms_str.begin());
389
390 if (label_count < lms_str.size()) {
391 // Reorder |lms_str| to have LMS suffixes in the same order they
392 // appear in |str|.
393 for (size_type i = 0; i < lms_indices.size(); ++i)
394 suffix_array[lms_indices[i]] = lms_str[i];
395
396 SLType previous_type = SType;
397 for (size_type i = 0, j = 0; i < sl_partition.size(); ++i) {
398 if (sl_partition[i] == SType && previous_type == LType) {
399 lms_str[j] = suffix_array[i];
400 lms_indices[j++] = i;
401 }
402 previous_type = sl_partition[i];
403 }
404
405 // Recursively apply SuffixSort on |lms_str|, which is formed from
406 // labeled LMS suffixes in the same order they appear in |str|.
407 // Note that |KeyType| will be size_type because |lms_str| contains
408 // indices. |lms_str| is at most half the length of |str|.
409 Implementation<size_type, size_type>::SuffixSort(
410 lms_str.begin(), static_cast<size_type>(lms_str.size()),
411 label_count, suffix_array);
412
413 // Map LMS labels back to indices in |str| and write result to
414 // |lms_indices|. We're using |suffix_array| as a temporary buffer.
415 for (size_type i = 0; i < lms_indices.size(); ++i)
416 suffix_array[i] = lms_indices[suffix_array[i]];
417 std::copy_n(suffix_array, lms_indices.size(), lms_indices.begin());
418
419 // At this point, |lms_indices| contains sorted LMS suffixes of |str|.
420 }
421 }
422 // Given |lms_indices| where LMS suffixes are sorted, induce the full
423 // order of suffixes in |str|.
424 InducedSort(str, length, sl_partition, lms_indices, buckets,
425 suffix_array);
426 }
427 };
grt (UTC plus 2) 2017/07/24 09:09:42 ? private: DISALLOW_IMPLICIT_CONSTRUCTORS(I
etiennep1 2017/07/27 17:26:02 Done.
428 };
429
430 // Generates a sorted suffix array for the input string |str| using the functor
431 // |Algorithm| which provides an interface equivalent to NaiveSuffixSort.
432 /// Characters found in |str| are assumed to be in range [0, |key_bound|).
433 // Returns the suffix array as a vector.
434 // |StrRng| is an input random access range.
435 // |KeyType| is an unsigned integer type.
436 template <class Algorithm, class StrRng, class KeyType>
437 std::vector<typename StrRng::size_type> MakeSuffixArray(const StrRng& str,
438 KeyType key_bound) {
439 Algorithm sort;
440 std::vector<typename StrRng::size_type> suffix_array(str.end() - str.begin());
441 sort(str, key_bound, suffix_array.begin());
442 return suffix_array;
443 }
444
445 // Type requirements:
446 // |SARng| is an input random access range.
447 // |StrIt1| is a random access iterator.
448 // |StrIt2| is a forward iterator.
449 template <class SARng, class StrIt1, class StrIt2>
450 // Lexicographical lower bound using binary search for
451 // [|str2_first|, |str2_last|) in the suffix array |suffix_array| of a string
452 // starting at |str1_first|. This does not necessarily return the index of
453 // the longest matching substring.
454 auto SuffixLowerBound(const SARng& suffix_array,
455 StrIt1 str1_first,
456 StrIt2 str2_first,
457 StrIt2 str2_last) -> decltype(std::begin(suffix_array)) {
458 using size_type = typename SARng::value_type;
459
460 size_t n = std::end(suffix_array) - std::begin(suffix_array);
461 auto it = std::lower_bound(
462 std::begin(suffix_array), std::end(suffix_array), str2_first,
463 [str1_first, str2_last, n](size_type a, StrIt2 b) {
464 return std::lexicographical_compare(str1_first + a, str1_first + n, b,
465 str2_last);
466 });
467 return it;
468 }
469
470 } // namespace zucchini
471
472 #endif // CHROME_INSTALLER_ZUCCHINI_SUFFIX_ARRAY_H_
OLDNEW
« no previous file with comments | « chrome/installer/zucchini/BUILD.gn ('k') | chrome/installer/zucchini/suffix_array_unittest.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698