Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(406)

Side by Side Diff: chrome/installer/zucchini/suffix_array.h

Issue 2963463002: [Zucchini] Generic suffix array algorithms. (Closed)
Patch Set: Make gcc happy Created 3 years, 5 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 // Copyright 2017 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifndef CHROME_INSTALLER_ZUCCHINI_SUFFIX_ARRAY_H_
6 #define CHROME_INSTALLER_ZUCCHINI_SUFFIX_ARRAY_H_
7
8 #include <algorithm>
9 #include <cassert>
10 #include <iterator>
11 #include <numeric>
12 #include <vector>
13
14 namespace zucchini {
15
16 // A functor class that implements the naive suffix sorting algorithm
17 // that uses std::sort with lexicographical compare.
18 // This is only meant as reference of the interface.
19 class NaiveSuffixSort {
20 public:
21 // |str| must be a random access input range.
22 // Characters found in |str| must be in the range [0, |max_key|)
23 // |suffix_array| is a random access mutable range containing the result.
24 template <class InputRng, class KeyType, class SAIt>
25 void operator()(const InputRng& str,
26 KeyType max_key,
27 SAIt suffix_array) const {
28 using size_type = typename SAIt::value_type;
29
30 size_type n = str.end() - str.begin();
31
32 // |suffix_array| is first filled with ordered indices of |str|.
33 // Those indices are then sorted with lexicographical comparisons in |str|.
34 std::iota(suffix_array, suffix_array + n, 0);
35 std::sort(suffix_array, suffix_array + n, [&str](size_type i, size_type j) {
36 return std::lexicographical_compare(std::begin(str) + i, std::end(str),
37 std::begin(str) + j, std::end(str));
38 });
39 }
40 };
41
42 // A functor class that implements suffix array induced sorting (SA-IS)
43 // algorithm with linear time and memory complexity,
44 // see http://ieeexplore.ieee.org/abstract/document/5582081/
45 class Sais {
46 public:
47 // |str| must be a random access input range.
48 // Characters found in |str| must be in the range [0, |max_key|)
49 // |suffix_array| is a random access mutable range containing the result.
50 template <class InputRng, class KeyType, class SAIt>
51 void operator()(const InputRng& str,
52 KeyType max_key,
53 SAIt suffix_array) const {
54 using value_type = typename InputRng::value_type;
55 using size_type = typename SAIt::value_type;
56
57 static_assert(std::is_unsigned<value_type>::value,
58 "Sais only supports input string with unsigned values");
59
60 size_type n = static_cast<size_type>(str.end() - str.begin());
61
62 Implementation<size_type, typename std::make_unsigned<KeyType>::type>::
63 SuffixSort(std::begin(str), n, max_key, suffix_array);
64 }
65
66 // Given the string S of length n.
67 // We assume S is terminated by a unique sentinel $, which is considered as
68 // the smallest character.
69 // This sentinel does not exist in memory and is only treated implicitely.
huangs 2017/06/27 20:31:21 Unwrap comments to fit. TYPO: implicitly Period
etiennep1 2017/06/28 19:26:08 Done.
70 // We denote suf(S, i) the suffix formed by S[i, n)
71
72 // A suffix suf(S, i) is said to be S-type or L-type,
73 // if suf(S, i) < suf(S, i+1) or suf(S, i) > suf(S, i+1), respectively.
74 enum SLType : bool { SType, LType };
75
76 // A character S[i] is said to be S-type or L-type if the suffix suf(S, i) is
77 // S-type or L-type, respectively.
78
79 // A character S[i], i is called LMS (leftmost S-type),
80 // if S[i] is S-type and S[i-1] is L-type.
81 // A suffix suf(S, i) is called LMS, if S[i] is an LMS character.
82
83 // An LMS-substring is a substring S[i..j) with both S[i] and S[j],
84 // being LMS characters, and there is no other LMS character in the substring,
85 // or the sentinel itself
86
87 template <class SizeType, class KeyType>
88 struct Implementation {
89 static_assert(std::is_unsigned<SizeType>::value,
90 "SizeType must be unsigned");
91 static_assert(std::is_unsigned<KeyType>::value, "KeyType must be unsigned");
92 using size_type = SizeType;
93 using key_type = KeyType;
94
95 using iterator = typename std::vector<size_type>::iterator;
96 using const_iterator = typename std::vector<size_type>::const_iterator;
97
98 // Partition every suffix based on SL-type.
99 template <class StrIt>
100 static size_type BuildSLPartition(
101 StrIt str,
102 size_type length,
103 key_type max_key,
104 std::vector<SLType>::reverse_iterator sl_partition) {
105 // We will count LMS suffixes (S to L-type or last S-type)
106 size_type lms_count = 0;
107
108 // |previous_type| is initialized to L-type to avoid counting an extra
109 // LMS suffix at the end
110 SLType previous_type = LType;
111
112 key_type previous_key = max_key; // initialized to dummy, impossible key
113
114 // We're travelling backward to determine the partition,
115 // as if we prepend one character at a time to the string, ex:
116 // b$ is L-type because b > $
117 // ab$ is S-type because a < b, implying ab$ < b$
118 // bab$ is L-type because b > a, implying bab$ > ab$
119 // bbab$ is L-type, because bab$ was also L-type, implying bbab$ > bab$
120 for (auto str_it = std::reverse_iterator<StrIt>(str + length);
121 str_it != std::reverse_iterator<StrIt>(str);
122 ++str_it, ++sl_partition) {
123 key_type current_key = *str_it;
124
125 if (current_key > previous_key || previous_key == max_key) {
126 // S[i] > S[i + 1] or S[i] is last character
127 *sl_partition = LType;
128 if (previous_type == SType)
129 // suf(S, i) is L-type and suf(S, i + 1) is S-type,
130 // therefore, suf(S, i+1) was a LMS suffix.
131 ++lms_count;
132
133 previous_type = LType; // for next round
134 } else if (current_key < previous_key) {
135 // S[i] < S[i + 1]
136 *sl_partition = SType;
137 previous_type = SType; // for next round
138 } else {
139 // S[i] == S[i + 1]
140 // The next character that differs determines the SL-type,
141 // so we reuse the last seen type.
142 *sl_partition = previous_type;
143 }
144 previous_key = current_key; // for next round
145 }
146
147 return lms_count;
148 }
149
150 // Find indices of LMS suffixes and write result to |lms_indices|.
151 static void FindLmsSuffixes(const std::vector<SLType>& sl_partition,
152 iterator lms_indices) {
153 // |previous_type| is initialized to S-type to avoid counting an extra
154 // LMS suffix at the beginning
155 SLType previous_type = SType;
156 size_type j = 0;
157 for (size_type i = 0; i < sl_partition.size(); ++i) {
158 if (sl_partition[i] == SType && previous_type == LType)
159 lms_indices[j++] = i;
160 previous_type = sl_partition[i];
161 }
162 }
163
164 template <class StrIt>
165 static std::vector<size_type> MakeBucketCount(StrIt str,
166 size_type length,
167 key_type max_key) {
168 // Occurence of every unique character is counted in |buckets|
169 std::vector<size_type> buckets(static_cast<size_type>(max_key));
170
171 for (auto it = str; it != str + length; ++it)
172 ++buckets[*it];
173 return buckets;
174 }
175
176 // Apply induced sort from |lms_indices| to |suffix_array| associated with
177 // the string |str|.
178 template <class StrIt, class SAIt>
179 static void InducedSort(StrIt str,
180 size_type length,
181 const std::vector<SLType>& sl_partition,
182 const std::vector<size_type>& lms_substrings,
183 const std::vector<size_type>& buckets,
184 SAIt suffix_array) {
185 // All indices are first marked as unset with 0.
186 std::fill(suffix_array, suffix_array + length, 0);
187
188 // Used to mark bucket boundaries (head or end) as indices in str.
189 std::vector<size_type> bucket_bounds(buckets.size());
190
191 // Step 1
192 // for each leftmost S-type suffix suf(S, i) found in |lms_indices|
193 // scanned backward, place suf(S, i) at the end of the corresponding
194 // bucket and forward the bucket end to the left.
195
196 // By corresponding bucket for suf(S, i), we mean the bucket associated
197 // with the character S(i).
198
199 // find the end of each bucket
200 bucket_bounds[0] = buckets[0];
201 for (key_type i = 1; i < buckets.size(); ++i)
202 bucket_bounds[i] = bucket_bounds[i - 1] + buckets[i];
203
204 for (auto it = lms_substrings.crbegin(); it != lms_substrings.crend();
205 ++it) {
206 key_type key = str[*it];
207 suffix_array[--bucket_bounds[key]] = *it;
208 }
209
210 // Step 2
211 // for each modified suf(S, i), scanned forward, for which
212 // suf(S, SA(i) - 1) is L-type,
213 // place suf(S, SA(i) - 1) to the current head of the corresponding
214 // bucket and forward the bucket head to the right.
215
216 // find the head of each bucket
217 bucket_bounds[0] = 0;
218 for (key_type i = 1; i < buckets.size(); ++i)
219 bucket_bounds[i] = bucket_bounds[i - 1] + buckets[i - 1];
220
221 // from Step 1, the sentinel $, which we treat implicitely, would have
222 // been place at the beginning of |suffix_array| since $ is always
223 // considered as the smallest character.
224 // We then have to deal with the previous (last) suffix.
225 if (sl_partition[length - 1] == LType) {
226 key_type key = str[length - 1];
227 suffix_array[bucket_bounds[key]++] = length - 1;
228 }
229 for (auto it = suffix_array; it != suffix_array + length; ++it) {
230 size_type suffix_index = *it;
231
232 // While the original algorithm marks unset suffixes with -1,
233 // we found that marking them with 0 is also possible, since suf(S, 0)
234 // has no previous suffix, and also more convenient because we are
235 // working with unsigned integers.
236 if (suffix_index > 0 && sl_partition[--suffix_index] == LType) {
237 key_type key = str[suffix_index];
238 suffix_array[bucket_bounds[key]++] = suffix_index;
239 }
240 }
241
242 // Step 3
243 // for each modified suf(S, i), scanned backward, for which
244 // suf(S, SA(i) - 1) is S-type,
245 // place suf(S, SA(i) - 1) to the current end of the corresponding
246 // bucket and forward the bucket head to the left.
247
248 // find the end of each bucket
249 bucket_bounds[0] = buckets[0];
250 for (size_type i = 1; i < buckets.size(); ++i)
251 bucket_bounds[i] = bucket_bounds[i - 1] + buckets[i];
252
253 for (auto it = std::reverse_iterator<SAIt>(suffix_array + length);
254 it != std::reverse_iterator<SAIt>(suffix_array); ++it) {
255 size_type suffix_index = *it;
256 if (suffix_index > 0 && sl_partition[--suffix_index] == SType) {
257 key_type key = str[suffix_index];
258 suffix_array[--bucket_bounds[key]] = suffix_index;
259 }
260 }
261 // Deals with the last suffix, because of the sentinel.
262 if (sl_partition[length - 1] == SType) {
263 key_type key = str[length - 1];
264 suffix_array[--bucket_bounds[key]] = length - 1;
265 }
266 }
267
268 // Given a string S starting at |str| with length |length|,
269 // an array starting at |substring_array| containing ordered LMS terminated
270 // substring indices of S and an SL-Type partition |sl_partition| of S,
271 // assigns a unique label to every unique LMS substring.
272 // The sorted labels for all LMS substrings are written to |lms_str|,
273 // while the indices of LMS suffixes are written to |lms_indices|.
274 // In addition, returns the total number of unique labels.
275 template <class StrIt, class SAIt>
276 static size_type LabelLmsSubstrings(StrIt str,
277 size_type length,
278 const std::vector<SLType>& sl_partition,
279 SAIt suffix_array,
280 iterator lms_indices,
281 iterator lms_str) {
282 // Labelling starts at 0
283 size_type label = 0;
284
285 // |previous_lms| is initialized to 0 to indicate it is unset.
286 // Note that suf(S, 0) is never a LMS suffix.
287 // Substrings will be visited in relative order
288 size_type previous_lms = 0;
289 for (auto it = suffix_array; it != suffix_array + length; ++it) {
290 if (*it > 0 && sl_partition[*it] == SType &&
291 sl_partition[*it - 1] == LType) {
292 // suf(S, *it) is a LMS suffix
293
294 size_type current_lms = *it;
295 if (previous_lms != 0) {
296 // There was a previous LMS suffix
297 // Check if the current LMS substring is equal to the previous one
298 SLType current_lms_type = SType, previous_lms_type = SType;
299 for (size_type k = 0;; ++k) {
300 // |current_lms_end| and |previous_lms_end| denote weither we have
301 // reached the end of the current and previous LMS substring,
302 // respectively
303 bool current_lms_end = false, previous_lms_end = false;
304
305 // Check both previous and current substrings end ie
306 // Note: it is more convenient to check if suf(S, current_lms + k)
307 // is an LMS suffix than to retrieve it from lms_indices.
308 if (current_lms + k >= length ||
309 (current_lms_type == LType &&
310 sl_partition[current_lms + k] == SType)) {
311 current_lms_end = true;
312 }
313 if (previous_lms + k >= length ||
314 (previous_lms_type == LType &&
315 sl_partition[previous_lms + k] == SType)) {
316 previous_lms_end = true;
317 }
318
319 if (current_lms_end && previous_lms_end) {
320 break;
321 } else if (current_lms_end != previous_lms_end ||
322 str[current_lms + k] != str[previous_lms + k]) {
323 // previous and current substrings differ,
324 ++label; // use a new label
325 break;
326 }
327
328 current_lms_type = sl_partition[current_lms + k];
329 previous_lms_type = sl_partition[previous_lms + k];
330 }
331 }
332 *lms_indices++ = *it;
333 *lms_str++ = label;
334 previous_lms = current_lms;
335 }
336 }
337
338 return ++label;
339 }
340
341 // Implementation of the SA-IS algorithm.
342 // |str| must be a random access iterator pointing at the beginning of S
343 // with length |length|.
344 // The result is writtend in |suffix_array|, a random access iterator.
345 template <class StrIt, class SAIt>
346 static void SuffixSort(StrIt str,
347 size_type length,
348 key_type max_key,
349 SAIt suffix_array) {
350 if (length < 2)
huangs 2017/06/27 20:31:21 Should |suffix_array| be assigned [0] for the case
etiennep1 2017/06/28 19:26:09 That sounds like a good idea
351 return;
352
353 std::vector<SLType> sl_partition(length);
354 size_type lms_count =
355 BuildSLPartition(str, length, max_key, sl_partition.rbegin());
356 std::vector<size_type> lms_indices(lms_count);
357 FindLmsSuffixes(sl_partition, lms_indices.begin());
358 std::vector<size_type> buckets = MakeBucketCount(str, length, max_key);
359
360 if (lms_indices.size() > 1) {
361 // Given |lms_indices| in order of apparition, induce LMS substrings
362 // relative order and write result to |suffix_array|.
363 InducedSort(str, length, sl_partition, lms_indices, buckets,
364 suffix_array);
365 std::vector<size_type> lms_str(lms_indices.size());
366
367 // Given LMS substrings in relative order found in |suffix_array|,
368 // map LMS substrings to unique labels to form a new string, |lms_str|.
369 size_type label_count =
370 LabelLmsSubstrings(str, length, sl_partition, suffix_array,
371 lms_indices.begin(), lms_str.begin());
372
373 if (label_count < lms_str.size()) {
374 // Reorder |lms_str| to have LMS suffixes in order of apparition.
375 for (size_type i = 0; i < lms_indices.size(); ++i)
376 suffix_array[lms_indices[i]] = lms_str[i];
377
378 SLType previous_type = SType;
379 for (size_type i = 0, j = 0; i < sl_partition.size(); ++i) {
380 if (sl_partition[i] == SType && previous_type == LType) {
381 lms_str[j] = suffix_array[i];
382 lms_indices[j++] = i;
383 }
384 previous_type = sl_partition[i];
385 }
386
387 // Recursively apply SuffixSort on |lms_str|, which is
388 // formed from labeled LMS suffixes in order of apparition.
389 // |lms_str| is at most half the length of |str|.
390 Implementation<size_type, size_type>::SuffixSort(
391 lms_str.begin(), static_cast<size_type>(lms_str.size()),
392 label_count, suffix_array);
393
394 // Map LMS labels back to indices in |str| and
395 // write result to |lms_indices|.
396 // We're using |suffix_array| as a temporary buffer.
397 for (size_type i = 0; i < lms_indices.size(); ++i)
398 suffix_array[i] = lms_indices[suffix_array[i]];
399 for (size_type i = 0; i < lms_indices.size(); ++i)
400 lms_indices[i] = suffix_array[i];
401
402 // At this point, |lms_indices| contains sorted LMS suffixes of |str|.
403 }
404 }
405 // Given |lms_indices| where LMS suffixes are sorted,
406 // induce the full order of suffixes in |str|
407 InducedSort(str, length, sl_partition, lms_indices, buckets,
408 suffix_array);
409 }
410 };
411 };
412
413 // Generates a suffix array from |str|, a random access input range from which
414 // suffixes are sorted, using the functor |algorithm| which provides an
415 // interface equivalent to NaiveSuffixSort.
416 // Characters found in |str| are assumed to be in range [0, |max_key|).
417 // Returns the suffix array as a vector.
418 template <class Algorithm, class StrRng, class KeyType>
419 std::vector<typename StrRng::size_type> MakeSuffixArray(Algorithm algorithm,
huangs 2017/06/27 20:31:21 |algorithm| is unused?
etiennep1 2017/06/28 19:26:09 It is used as a tag and allows the template parame
huangs 2017/06/28 20:02:55 I think the first form is preferred, since it's be
420 const StrRng& str,
421 KeyType max_key) {
422 Algorithm sort;
423 std::vector<typename StrRng::size_type> suffix_array(str.end() - str.begin());
424 sort(str, max_key, suffix_array.begin());
425 return suffix_array;
426 }
427
428 // Lexicographical lower bound of |str2| in the suffix array of |str1| using
429 // binary search.
430 // |str1_first| is a random access iterator pointing to the beginning of |str1|.
431 // |str2_first| and |str2_last| are forward iterators pointing to the beginning
432 // and end of |str2|, respectively.
433 template <class SARng, class StrIt1, class StrIt2>
434 auto SearchSuffixArray(const SARng& suffix_array,
435 StrIt1 str1_first,
436 StrIt2 str2_first,
437 StrIt2 str2_last) -> decltype(std::begin(suffix_array)) {
438 using size_type = typename SARng::value_type;
439
440 size_t n = std::end(suffix_array) - std::begin(suffix_array);
441 auto it = std::lower_bound(
442 std::begin(suffix_array), std::end(suffix_array), str2_first,
443 [str1_first, str2_last, n](size_type a, StrIt2 b) {
444 return std::lexicographical_compare(str1_first + a, str1_first + n, b,
445 str2_last);
446 });
447 return it;
448 }
449
450 } // namespace zucchini
451
452 #endif // CHROME_INSTALLER_ZUCCHINI_SUFFIX_ARRAY_H_
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698