Chromium Code Reviews| OLD | NEW |
|---|---|
| (Empty) | |
| 1 // Copyright 2017 The Chromium Authors. All rights reserved. | |
| 2 // Use of this source code is governed by a BSD-style license that can be | |
| 3 // found in the LICENSE file. | |
| 4 | |
| 5 #ifndef CHROME_INSTALLER_ZUCCHINI_SUFFIX_ARRAY_H_ | |
| 6 #define CHROME_INSTALLER_ZUCCHINI_SUFFIX_ARRAY_H_ | |
| 7 | |
| 8 #include <algorithm> | |
| 9 #include <cassert> | |
| 10 #include <iterator> | |
| 11 #include <numeric> | |
| 12 #include <vector> | |
| 13 | |
| 14 #include "base/logging.h" | |
| 15 | |
| 16 namespace zucchini { | |
| 17 | |
| 18 // A functor class that implements the naive suffix sorting algorithm that uses | |
| 19 // std::sort with lexicographical compare. This is only meant as reference of | |
| 20 // the interface. | |
| 21 class NaiveSuffixSort { | |
| 22 public: | |
| 23 // Type requirements: | |
| 24 // |InputRng| is an input random access range. | |
| 25 // |KeyType| is an unsigned integer type. | |
| 26 // |SAIt| is a random access iterator with mutable references. | |
| 27 template <class InputRng, class KeyType, class SAIt> | |
| 28 // |str| is the input string on which suffix sort is applied. | |
| 29 // Characters found in |str| must be in the range [0, |key_bound|) | |
| 30 // |suffix_array| is the beginning of the destination range, which is at least | |
| 31 // as large as |str|. | |
| 32 void operator()(const InputRng& str, | |
| 33 KeyType key_bound, | |
| 34 SAIt suffix_array) const { | |
| 35 using size_type = typename SAIt::value_type; | |
| 36 | |
| 37 size_type n = static_cast<size_type>(std::end(str) - std::begin(str)); | |
| 38 | |
| 39 // |suffix_array| is first filled with ordered indices of |str|. | |
| 40 // Those indices are then sorted with lexicographical comparisons in |str|. | |
| 41 std::iota(suffix_array, suffix_array + n, 0); | |
| 42 std::sort(suffix_array, suffix_array + n, [&str](size_type i, size_type j) { | |
| 43 return std::lexicographical_compare(std::begin(str) + i, std::end(str), | |
| 44 std::begin(str) + j, std::end(str)); | |
| 45 }); | |
| 46 } | |
| 47 }; | |
| 48 | |
| 49 // A functor class that implements suffix array induced sorting (SA-IS) | |
| 50 // algorithm with linear time and memory complexity, | |
| 51 // see http://ieeexplore.ieee.org/abstract/document/5582081/ | |
| 52 class Sais { | |
| 53 public: | |
| 54 // Type requirements: | |
| 55 // |InputRng| is an input random access range. | |
| 56 // |KeyType| is an unsigned integer type. | |
| 57 // |SAIt| is a random access iterator with mutable values. | |
| 58 template <class InputRng, class KeyType, class SAIt> | |
| 59 // |str| is the input string on which suffix sort is applied. | |
| 60 // Characters found in |str| must be in the range [0, |key_bound|) | |
| 61 // |suffix_array| is the beginning of the destination range, which is at least | |
| 62 // as large as |str|. | |
| 63 void operator()(const InputRng& str, | |
| 64 KeyType key_bound, | |
| 65 SAIt suffix_array) const { | |
| 66 using value_type = typename InputRng::value_type; | |
| 67 using size_type = typename SAIt::value_type; | |
| 68 | |
| 69 static_assert(std::is_unsigned<value_type>::value, | |
| 70 "Sais only supports input string with unsigned values"); | |
| 71 static_assert(std::is_unsigned<KeyType>::value, "KeyType must be unsigned"); | |
| 72 | |
| 73 size_type n = static_cast<size_type>(std::end(str) - std::begin(str)); | |
| 74 | |
| 75 Implementation<size_type, KeyType>::SuffixSort(std::begin(str), n, | |
| 76 key_bound, suffix_array); | |
| 77 } | |
| 78 | |
| 79 // Given string S of length n. We assume S is terminated by a unique sentinel | |
| 80 // $, which is considered as the smallest character. This sentinel does not | |
| 81 // exist in memory and is only treated implicitly, hence |n| does not count | |
| 82 // the sentinel in this implementation. We denote suf(S,i) the suffix formed | |
| 83 // by S[i..n). | |
| 84 | |
| 85 // A suffix suf(S,i) is said to be S-type or L-type, if suf(S,i) < suf(S,i+1) | |
| 86 // or suf(S,i) > suf(S,i+1), respectively. | |
| 87 enum SLType : bool { SType, LType }; | |
| 88 | |
| 89 // A character S[i] is said to be S-type or L-type if the suffix suf(S,i) is | |
| 90 // S-type or L-type, respectively. | |
| 91 | |
| 92 // A character S[i] is called LMS (leftmost S-type), if S[i] is S-type and | |
| 93 // S[i-1] is L-type. A suffix suf(S,i) is called LMS, if S[i] is an LMS | |
| 94 // character. | |
| 95 | |
| 96 // An LMS-substring is a substring S[i..j) with both S[i] and S[j], being LMS | |
| 97 // characters, and there is no other LMS character in the substring, or the | |
| 98 // sentinel itself | |
| 99 | |
| 100 // A substring S[i..j) is an LMS-substring if | |
|
huangs
2017/07/10 20:01:18
I meant to have this replace the above comment --
etiennep1
2017/07/10 22:57:08
Oops, I forgot to remove the above.
| |
| 101 // (1) S[i] is LMS, S[j] is LMS or the sentinel $, and S[i..j) has no other | |
| 102 // LMS characters, or | |
| 103 // (2) S[i..j) is the sentinel $. | |
| 104 | |
| 105 template <class SizeType, class KeyType> | |
| 106 struct Implementation { | |
| 107 static_assert(std::is_unsigned<SizeType>::value, | |
| 108 "SizeType must be unsigned"); | |
| 109 static_assert(std::is_unsigned<KeyType>::value, "KeyType must be unsigned"); | |
| 110 using size_type = SizeType; | |
| 111 using key_type = KeyType; | |
| 112 | |
| 113 using iterator = typename std::vector<size_type>::iterator; | |
| 114 using const_iterator = typename std::vector<size_type>::const_iterator; | |
| 115 | |
| 116 // Partition every suffix based on SL-type. Returns the number of LMS | |
| 117 // suffixes. | |
| 118 template <class StrIt> | |
| 119 static size_type BuildSLPartition( | |
| 120 StrIt str, | |
| 121 size_type length, | |
| 122 key_type key_bound, | |
| 123 std::vector<SLType>::reverse_iterator sl_partition_it) { | |
| 124 // We will count LMS suffixes (S to L-type or last S-type). | |
| 125 size_type lms_count = 0; | |
| 126 | |
| 127 // |previous_type| is initialized to L-type to avoid counting an extra | |
| 128 // LMS suffix at the end | |
| 129 SLType previous_type = LType; | |
| 130 | |
| 131 // Initialized to dummy, impossible key. | |
| 132 key_type previous_key = key_bound; | |
| 133 | |
| 134 // We're travelling backward to determine the partition, | |
| 135 // as if we prepend one character at a time to the string, ex: | |
| 136 // b$ is L-type because b > $. | |
| 137 // ab$ is S-type because a < b, implying ab$ < b$. | |
| 138 // bab$ is L-type because b > a, implying bab$ > ab$. | |
| 139 // bbab$ is L-type, because bab$ was also L-type, implying bbab$ > bab$. | |
| 140 for (auto str_it = std::reverse_iterator<StrIt>(str + length); | |
| 141 str_it != std::reverse_iterator<StrIt>(str); | |
| 142 ++str_it, ++sl_partition_it) { | |
| 143 key_type current_key = *str_it; | |
| 144 | |
| 145 if (current_key > previous_key || previous_key == key_bound) { | |
| 146 // S[i] > S[i + 1] or S[i] is last character. | |
| 147 if (previous_type == SType) | |
| 148 // suf(S,i) is L-type and suf(S,i + 1) is S-type, therefore, | |
| 149 // suf(S,i+1) was a LMS suffix. | |
| 150 ++lms_count; | |
| 151 | |
| 152 previous_type = LType; // For next round. | |
| 153 } else if (current_key < previous_key) { | |
| 154 // S[i] < S[i + 1] | |
| 155 previous_type = SType; // For next round. | |
| 156 } | |
| 157 // Else, S[i] == S[i + 1]: | |
| 158 // The next character that differs determines the SL-type, | |
| 159 // so we reuse the last seen type. | |
| 160 | |
| 161 *sl_partition_it = previous_type; | |
| 162 previous_key = current_key; // For next round. | |
| 163 } | |
| 164 | |
| 165 return lms_count; | |
| 166 } | |
| 167 | |
| 168 // Find indices of LMS suffixes and write result to |lms_indices|. | |
| 169 static void FindLmsSuffixes(const std::vector<SLType>& sl_partition, | |
| 170 iterator lms_indices) { | |
| 171 // |previous_type| is initialized to S-type to avoid counting an extra | |
| 172 // LMS suffix at the beginning | |
| 173 SLType previous_type = SType; | |
| 174 for (size_type i = 0; i < sl_partition.size(); ++i) { | |
| 175 if (sl_partition[i] == SType && previous_type == LType) | |
| 176 *lms_indices++ = i; | |
| 177 previous_type = sl_partition[i]; | |
| 178 } | |
| 179 } | |
| 180 | |
| 181 template <class StrIt> | |
| 182 static std::vector<size_type> MakeBucketCount(StrIt str, | |
| 183 size_type length, | |
| 184 key_type key_bound) { | |
| 185 // Occurrence of every unique character is counted in |buckets| | |
| 186 std::vector<size_type> buckets(static_cast<size_type>(key_bound)); | |
| 187 | |
| 188 for (auto it = str; it != str + length; ++it) | |
| 189 ++buckets[*it]; | |
| 190 return buckets; | |
| 191 } | |
| 192 | |
| 193 // Apply induced sort from |lms_indices| to |suffix_array| associated with | |
| 194 // the string |str|. | |
| 195 template <class StrIt, class SAIt> | |
| 196 static void InducedSort(StrIt str, | |
| 197 size_type length, | |
| 198 const std::vector<SLType>& sl_partition, | |
| 199 const std::vector<size_type>& lms_indices, | |
| 200 const std::vector<size_type>& buckets, | |
| 201 SAIt suffix_array) { | |
| 202 // All indices are first marked as unset with the illegal value |length|. | |
| 203 std::fill(suffix_array, suffix_array + length, length); | |
| 204 | |
| 205 // Used to mark bucket boundaries (head or end) as indices in str. | |
| 206 DCHECK(!buckets.empty()); | |
| 207 std::vector<size_type> bucket_bounds(buckets.size()); | |
| 208 | |
| 209 // Step 1: Assign indices for LMS suffixes, populating the end of | |
| 210 // respective buckets but keeping relative order. | |
| 211 | |
| 212 // Find the end of each bucket and write it to |bucket_bounds|. | |
| 213 std::partial_sum(buckets.begin(), buckets.end(), bucket_bounds.begin()); | |
| 214 | |
| 215 // Process each |lms_indices| backward, and assign them to the end of | |
| 216 // their respective buckets, so relative order is preserved. | |
| 217 for (auto it = lms_indices.crbegin(); it != lms_indices.crend(); ++it) { | |
| 218 key_type key = str[*it]; | |
| 219 suffix_array[--bucket_bounds[key]] = *it; | |
| 220 } | |
| 221 | |
| 222 // Step 2 | |
| 223 // Scan forward |suffix_array|; for each modified suf(S,i) for which | |
| 224 // suf(S,SA(i) - 1) is L-type, place suf(S,SA(i) - 1) to the current | |
| 225 // head of the corresponding bucket and forward the bucket head to the | |
| 226 // right. | |
| 227 | |
| 228 // Find the head of each bucket and write it to |bucket_bounds|. Since | |
| 229 // only LMS suffixes where inserted in |suffix_array| during Step 1, | |
| 230 // |bucket_bounds| does not contains the head of each bucket and needs to | |
| 231 // be updated. | |
| 232 bucket_bounds[0] = 0; | |
| 233 std::partial_sum(buckets.begin(), buckets.end() - 1, | |
| 234 bucket_bounds.begin() + 1); | |
| 235 | |
| 236 // From Step 1, the sentinel $, which we treat implicitly, would have | |
| 237 // been placed at the beginning of |suffix_array|, since $ is always | |
| 238 // considered as the smallest character. We then have to deal with the | |
| 239 // previous (last) suffix. | |
| 240 if (sl_partition[length - 1] == LType) { | |
| 241 key_type key = str[length - 1]; | |
| 242 suffix_array[bucket_bounds[key]++] = length - 1; | |
| 243 } | |
| 244 for (auto it = suffix_array; it != suffix_array + length; ++it) { | |
| 245 size_type suffix_index = *it; | |
| 246 | |
| 247 // While the original algorithm marks unset suffixes with -1, | |
| 248 // we found that marking them with |length| is also possible and more | |
| 249 // convenient because we are working with unsigned integers. | |
| 250 if (suffix_index != length && suffix_index > 0 && | |
| 251 sl_partition[--suffix_index] == LType) { | |
| 252 key_type key = str[suffix_index]; | |
| 253 suffix_array[bucket_bounds[key]++] = suffix_index; | |
| 254 } | |
| 255 } | |
| 256 | |
| 257 // Step 3 | |
| 258 // Scan backward |suffix_array|; for each modified suf(S, i) for which | |
| 259 // suf(S,SA(i) - 1) is S-type, place suf(S,SA(i) - 1) to the current | |
| 260 // end of the corresponding bucket and forward the bucket head to the | |
| 261 // left. | |
| 262 | |
| 263 // Find the end of each bucket and write it to |bucket_bounds|. Since | |
| 264 // only L-type suffixes where inserted in |suffix_array| during Step 2, | |
| 265 // |bucket_bounds| does not contain the end of each bucket and needs to | |
| 266 // be updated. | |
| 267 std::partial_sum(buckets.begin(), buckets.end(), bucket_bounds.begin()); | |
| 268 | |
| 269 for (auto it = std::reverse_iterator<SAIt>(suffix_array + length); | |
| 270 it != std::reverse_iterator<SAIt>(suffix_array); ++it) { | |
| 271 size_type suffix_index = *it; | |
| 272 if (suffix_index != length && suffix_index > 0 && | |
| 273 sl_partition[--suffix_index] == SType) { | |
| 274 key_type key = str[suffix_index]; | |
| 275 suffix_array[--bucket_bounds[key]] = suffix_index; | |
| 276 } | |
| 277 } | |
| 278 // Deals with the last suffix, because of the sentinel. | |
| 279 if (sl_partition[length - 1] == SType) { | |
| 280 key_type key = str[length - 1]; | |
| 281 suffix_array[--bucket_bounds[key]] = length - 1; | |
| 282 } | |
| 283 } | |
| 284 | |
| 285 // Given a string S starting at |str| with length |length|, an array | |
| 286 // starting at |substring_array| containing lexicographically ordered LMS | |
| 287 // terminated substring indices of S and an SL-Type partition |sl_partition| | |
| 288 // of S, assigns a unique label to every unique LMS substring. The sorted | |
| 289 // labels for all LMS substrings are written to |lms_str|, while the indices | |
| 290 // of LMS suffixes are written to |lms_indices|. In addition, returns the | |
| 291 // total number of unique labels. | |
| 292 template <class StrIt, class SAIt> | |
| 293 static size_type LabelLmsSubstrings(StrIt str, | |
| 294 size_type length, | |
| 295 const std::vector<SLType>& sl_partition, | |
| 296 SAIt suffix_array, | |
| 297 iterator lms_indices, | |
| 298 iterator lms_str) { | |
| 299 // Labelling starts at 0. | |
| 300 size_type label = 0; | |
| 301 | |
| 302 // |previous_lms| is initialized to 0 to indicate it is unset. | |
| 303 // Note that suf(S,0) is never a LMS suffix. Substrings will be visited in | |
| 304 // lexicographical order. | |
| 305 size_type previous_lms = 0; | |
| 306 for (auto it = suffix_array; it != suffix_array + length; ++it) { | |
| 307 if (*it > 0 && sl_partition[*it] == SType && | |
| 308 sl_partition[*it - 1] == LType) { | |
| 309 // suf(S, *it) is a LMS suffix. | |
| 310 | |
| 311 size_type current_lms = *it; | |
| 312 if (previous_lms != 0) { | |
| 313 // There was a previous LMS suffix. Check if the current LMS | |
| 314 // substring is equal to the previous one. | |
| 315 SLType current_lms_type = SType; | |
| 316 SLType previous_lms_type = SType; | |
| 317 for (size_type k = 0;; ++k) { | |
| 318 // |current_lms_end| and |previous_lms_end| denote whether we have | |
| 319 // reached the end of the current and previous LMS substring, | |
| 320 // respectively | |
| 321 bool current_lms_end = false; | |
| 322 bool previous_lms_end = false; | |
| 323 | |
| 324 // Check for both previous and current substring ends. | |
| 325 // Note that it is more convenient to check if | |
| 326 // suf(S,current_lms + k) is an LMS suffix than to retrieve it | |
| 327 // from lms_indices. | |
| 328 if (current_lms + k >= length || | |
| 329 (current_lms_type == LType && | |
| 330 sl_partition[current_lms + k] == SType)) { | |
| 331 current_lms_end = true; | |
| 332 } | |
| 333 if (previous_lms + k >= length || | |
| 334 (previous_lms_type == LType && | |
| 335 sl_partition[previous_lms + k] == SType)) { | |
| 336 previous_lms_end = true; | |
| 337 } | |
| 338 | |
| 339 if (current_lms_end && previous_lms_end) { | |
| 340 break; // Previous and current substrings are identical. | |
| 341 } else if (current_lms_end != previous_lms_end || | |
| 342 str[current_lms + k] != str[previous_lms + k]) { | |
| 343 // Previous and current substrings differ, a new label is used. | |
| 344 ++label; | |
| 345 break; | |
| 346 } | |
| 347 | |
| 348 current_lms_type = sl_partition[current_lms + k]; | |
| 349 previous_lms_type = sl_partition[previous_lms + k]; | |
| 350 } | |
| 351 } | |
| 352 *lms_indices++ = *it; | |
| 353 *lms_str++ = label; | |
| 354 previous_lms = current_lms; | |
| 355 } | |
| 356 } | |
| 357 | |
| 358 return label + 1; | |
| 359 } | |
| 360 | |
| 361 // Implementation of the SA-IS algorithm. |str| must be a random access | |
| 362 // iterator pointing at the beginning of S with length |length|. The result | |
| 363 // is writtend in |suffix_array|, a random access iterator. | |
| 364 template <class StrIt, class SAIt> | |
| 365 static void SuffixSort(StrIt str, | |
| 366 size_type length, | |
| 367 key_type key_bound, | |
| 368 SAIt suffix_array) { | |
| 369 if (length == 1) | |
| 370 *suffix_array = 0; | |
| 371 if (length < 2) | |
| 372 return; | |
| 373 | |
| 374 std::vector<SLType> sl_partition(length); | |
| 375 size_type lms_count = | |
| 376 BuildSLPartition(str, length, key_bound, sl_partition.rbegin()); | |
| 377 std::vector<size_type> lms_indices(lms_count); | |
| 378 FindLmsSuffixes(sl_partition, lms_indices.begin()); | |
| 379 std::vector<size_type> buckets = MakeBucketCount(str, length, key_bound); | |
| 380 | |
| 381 if (lms_indices.size() > 1) { | |
| 382 // Given |lms_indices| in the same order they appear in |str|, induce | |
| 383 // LMS substrings relative order and write result to |suffix_array|. | |
| 384 InducedSort(str, length, sl_partition, lms_indices, buckets, | |
| 385 suffix_array); | |
| 386 std::vector<size_type> lms_str(lms_indices.size()); | |
| 387 | |
| 388 // Given LMS substrings in relative order found in |suffix_array|, | |
| 389 // map LMS substrings to unique labels to form a new string, |lms_str|. | |
| 390 size_type label_count = | |
| 391 LabelLmsSubstrings(str, length, sl_partition, suffix_array, | |
| 392 lms_indices.begin(), lms_str.begin()); | |
| 393 | |
| 394 if (label_count < lms_str.size()) { | |
| 395 // Reorder |lms_str| to have LMS suffixes in the same order they | |
| 396 // appear in |str|. | |
| 397 for (size_type i = 0; i < lms_indices.size(); ++i) | |
| 398 suffix_array[lms_indices[i]] = lms_str[i]; | |
| 399 | |
| 400 SLType previous_type = SType; | |
| 401 for (size_type i = 0, j = 0; i < sl_partition.size(); ++i) { | |
| 402 if (sl_partition[i] == SType && previous_type == LType) { | |
| 403 lms_str[j] = suffix_array[i]; | |
| 404 lms_indices[j++] = i; | |
| 405 } | |
| 406 previous_type = sl_partition[i]; | |
| 407 } | |
| 408 | |
| 409 // Recursively apply SuffixSort on |lms_str|, which is formed from | |
| 410 // labeled LMS suffixes in the same order they appear in |str|. | |
| 411 // Note that |KeyType| will be size_type because |lms_str| contains | |
| 412 // indices. |lms_str| is at most half the length of |str|. | |
| 413 Implementation<size_type, size_type>::SuffixSort( | |
| 414 lms_str.begin(), static_cast<size_type>(lms_str.size()), | |
| 415 label_count, suffix_array); | |
| 416 | |
| 417 // Map LMS labels back to indices in |str| and write result to | |
| 418 // |lms_indices|. We're using |suffix_array| as a temporary buffer. | |
| 419 for (size_type i = 0; i < lms_indices.size(); ++i) | |
| 420 suffix_array[i] = lms_indices[suffix_array[i]]; | |
| 421 std::copy_n(suffix_array, lms_indices.size(), lms_indices.begin()); | |
| 422 | |
| 423 // At this point, |lms_indices| contains sorted LMS suffixes of |str|. | |
| 424 } | |
| 425 } | |
| 426 // Given |lms_indices| where LMS suffixes are sorted, induce the full | |
| 427 // order of suffixes in |str|. | |
| 428 InducedSort(str, length, sl_partition, lms_indices, buckets, | |
| 429 suffix_array); | |
| 430 } | |
| 431 }; | |
| 432 }; | |
| 433 | |
| 434 // Generates a sorted suffix array for the input string |str| using the functor | |
| 435 // |Algorithm| which provides an interface equivalent to NaiveSuffixSort. | |
| 436 /// Characters found in |str| are assumed to be in range [0, |key_bound|). | |
| 437 // Returns the suffix array as a vector. | |
| 438 // |StrRng| is an input random access range. | |
| 439 // |KeyType| is an unsigned integer type. | |
| 440 template <class Algorithm, class StrRng, class KeyType> | |
| 441 std::vector<typename StrRng::size_type> MakeSuffixArray(const StrRng& str, | |
| 442 KeyType key_bound) { | |
| 443 Algorithm sort; | |
| 444 std::vector<typename StrRng::size_type> suffix_array(str.end() - str.begin()); | |
| 445 sort(str, key_bound, suffix_array.begin()); | |
| 446 return suffix_array; | |
| 447 } | |
| 448 | |
| 449 // Type requirements: | |
| 450 // |SARng| is an input random access range. | |
| 451 // |StrIt1| is a random access iterator. | |
| 452 // |StrIt2| is a forward iterator. | |
| 453 template <class SARng, class StrIt1, class StrIt2> | |
| 454 // Lexicographical lower bound using binary search for | |
| 455 // [|str2_first|, |str2_last|) in the suffix array |suffix_array| of a string | |
| 456 // starting at |str1_first|. This does not necessarily return the index of | |
| 457 // the longest matching substring. | |
| 458 auto SuffixLowerBound(const SARng& suffix_array, | |
| 459 StrIt1 str1_first, | |
| 460 StrIt2 str2_first, | |
| 461 StrIt2 str2_last) -> decltype(std::begin(suffix_array)) { | |
| 462 using size_type = typename SARng::value_type; | |
| 463 | |
| 464 size_t n = std::end(suffix_array) - std::begin(suffix_array); | |
| 465 auto it = std::lower_bound( | |
| 466 std::begin(suffix_array), std::end(suffix_array), str2_first, | |
| 467 [str1_first, str2_last, n](size_type a, StrIt2 b) { | |
| 468 return std::lexicographical_compare(str1_first + a, str1_first + n, b, | |
| 469 str2_last); | |
| 470 }); | |
| 471 return it; | |
| 472 } | |
| 473 | |
| 474 } // namespace zucchini | |
| 475 | |
| 476 #endif // CHROME_INSTALLER_ZUCCHINI_SUFFIX_ARRAY_H_ | |
| OLD | NEW |