OLD | NEW |
1 { | 1 { |
2 "auth": { | 2 "auth": { |
3 "oauth2": { | 3 "oauth2": { |
4 "scopes": { | 4 "scopes": { |
5 "https://www.googleapis.com/auth/cloud-platform": { | 5 "https://www.googleapis.com/auth/cloud-platform": { |
6 "description": "View and manage your data across Google Clou
d Platform services" | 6 "description": "View and manage your data across Google Clou
d Platform services" |
7 } | 7 } |
8 } | 8 } |
9 } | 9 } |
10 }, | 10 }, |
11 "basePath": "", | 11 "basePath": "", |
12 "baseUrl": "https://ml.googleapis.com/", | 12 "baseUrl": "https://ml.googleapis.com/", |
13 "batchPath": "batch", | 13 "batchPath": "batch", |
14 "canonicalName": "Cloud Machine Learning Engine", | 14 "canonicalName": "Cloud Machine Learning Engine", |
15 "description": "An API to enable creating and using machine learning models.
", | 15 "description": "An API to enable creating and using machine learning models.
", |
16 "discoveryVersion": "v1", | 16 "discoveryVersion": "v1", |
17 "documentationLink": "https://cloud.google.com/ml/", | 17 "documentationLink": "https://cloud.google.com/ml/", |
18 "icons": { | 18 "icons": { |
19 "x16": "http://www.google.com/images/icons/product/search-16.gif", | 19 "x16": "http://www.google.com/images/icons/product/search-16.gif", |
20 "x32": "http://www.google.com/images/icons/product/search-32.gif" | 20 "x32": "http://www.google.com/images/icons/product/search-32.gif" |
21 }, | 21 }, |
22 "id": "ml:v1", | 22 "id": "ml:v1", |
23 "kind": "discovery#restDescription", | 23 "kind": "discovery#restDescription", |
24 "name": "ml", | 24 "name": "ml", |
25 "ownerDomain": "google.com", | 25 "ownerDomain": "google.com", |
26 "ownerName": "Google", | 26 "ownerName": "Google", |
27 "parameters": { | 27 "parameters": { |
28 "quotaUser": { | |
29 "description": "Available to use for quota purposes for server-side
applications. Can be any arbitrary string assigned to a user, but should not exc
eed 40 characters.", | |
30 "location": "query", | |
31 "type": "string" | |
32 }, | |
33 "pp": { | |
34 "default": "true", | |
35 "description": "Pretty-print response.", | |
36 "location": "query", | |
37 "type": "boolean" | |
38 }, | |
39 "oauth_token": { | |
40 "description": "OAuth 2.0 token for the current user.", | |
41 "location": "query", | |
42 "type": "string" | |
43 }, | |
44 "bearer_token": { | |
45 "description": "OAuth bearer token.", | |
46 "location": "query", | |
47 "type": "string" | |
48 }, | |
49 "upload_protocol": { | 28 "upload_protocol": { |
50 "description": "Upload protocol for media (e.g. \"raw\", \"multipart
\").", | 29 "description": "Upload protocol for media (e.g. \"raw\", \"multipart
\").", |
51 "location": "query", | 30 "location": "query", |
52 "type": "string" | 31 "type": "string" |
53 }, | 32 }, |
54 "prettyPrint": { | 33 "prettyPrint": { |
55 "default": "true", | 34 "default": "true", |
56 "description": "Returns response with indentations and line breaks."
, | 35 "description": "Returns response with indentations and line breaks."
, |
57 "location": "query", | 36 "location": "query", |
58 "type": "boolean" | 37 "type": "boolean" |
(...skipping 44 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
103 }, | 82 }, |
104 "access_token": { | 83 "access_token": { |
105 "description": "OAuth access token.", | 84 "description": "OAuth access token.", |
106 "location": "query", | 85 "location": "query", |
107 "type": "string" | 86 "type": "string" |
108 }, | 87 }, |
109 "key": { | 88 "key": { |
110 "description": "API key. Your API key identifies your project and pr
ovides you with API access, quota, and reports. Required unless you provide an O
Auth 2.0 token.", | 89 "description": "API key. Your API key identifies your project and pr
ovides you with API access, quota, and reports. Required unless you provide an O
Auth 2.0 token.", |
111 "location": "query", | 90 "location": "query", |
112 "type": "string" | 91 "type": "string" |
| 92 }, |
| 93 "quotaUser": { |
| 94 "description": "Available to use for quota purposes for server-side
applications. Can be any arbitrary string assigned to a user, but should not exc
eed 40 characters.", |
| 95 "location": "query", |
| 96 "type": "string" |
| 97 }, |
| 98 "pp": { |
| 99 "default": "true", |
| 100 "description": "Pretty-print response.", |
| 101 "location": "query", |
| 102 "type": "boolean" |
| 103 }, |
| 104 "oauth_token": { |
| 105 "description": "OAuth 2.0 token for the current user.", |
| 106 "location": "query", |
| 107 "type": "string" |
| 108 }, |
| 109 "bearer_token": { |
| 110 "description": "OAuth bearer token.", |
| 111 "location": "query", |
| 112 "type": "string" |
113 } | 113 } |
114 }, | 114 }, |
115 "protocol": "rest", | 115 "protocol": "rest", |
116 "resources": { | 116 "resources": { |
117 "projects": { | 117 "projects": { |
118 "methods": { | 118 "methods": { |
119 "getConfig": { | |
120 "description": "Get the service account information associat
ed with your project. You need\nthis information in order to grant the service a
ccount persmissions for\nthe Google Cloud Storage location where you put your mo
del training code\nfor training the model with Google Cloud Machine Learning.", | |
121 "httpMethod": "GET", | |
122 "id": "ml.projects.getConfig", | |
123 "parameterOrder": [ | |
124 "name" | |
125 ], | |
126 "parameters": { | |
127 "name": { | |
128 "description": "Required. The project name.\n\nAutho
rization: requires `Viewer` role on the specified project.", | |
129 "location": "path", | |
130 "pattern": "^projects/[^/]+$", | |
131 "required": true, | |
132 "type": "string" | |
133 } | |
134 }, | |
135 "path": "v1/{+name}:getConfig", | |
136 "response": { | |
137 "$ref": "GoogleCloudMlV1__GetConfigResponse" | |
138 }, | |
139 "scopes": [ | |
140 "https://www.googleapis.com/auth/cloud-platform" | |
141 ] | |
142 }, | |
143 "predict": { | 119 "predict": { |
144 "description": "Performs prediction on the data in the reque
st.\n\n**** REMOVE FROM GENERATED DOCUMENTATION", | 120 "description": "Performs prediction on the data in the reque
st.\n\n**** REMOVE FROM GENERATED DOCUMENTATION", |
145 "httpMethod": "POST", | 121 "httpMethod": "POST", |
146 "id": "ml.projects.predict", | 122 "id": "ml.projects.predict", |
147 "parameterOrder": [ | 123 "parameterOrder": [ |
148 "name" | 124 "name" |
149 ], | 125 ], |
150 "parameters": { | 126 "parameters": { |
151 "name": { | 127 "name": { |
152 "description": "Required. The resource name of a mod
el or a version.\n\nAuthorization: requires `Viewer` role on the parent project.
", | 128 "description": "Required. The resource name of a mod
el or a version.\n\nAuthorization: requires `Viewer` role on the parent project.
", |
153 "location": "path", | 129 "location": "path", |
154 "pattern": "^projects/.+$", | 130 "pattern": "^projects/.+$", |
155 "required": true, | 131 "required": true, |
156 "type": "string" | 132 "type": "string" |
157 } | 133 } |
158 }, | 134 }, |
159 "path": "v1/{+name}:predict", | 135 "path": "v1/{+name}:predict", |
160 "request": { | 136 "request": { |
161 "$ref": "GoogleCloudMlV1__PredictRequest" | 137 "$ref": "GoogleCloudMlV1__PredictRequest" |
162 }, | 138 }, |
163 "response": { | 139 "response": { |
164 "$ref": "GoogleApi__HttpBody" | 140 "$ref": "GoogleApi__HttpBody" |
165 }, | 141 }, |
166 "scopes": [ | 142 "scopes": [ |
167 "https://www.googleapis.com/auth/cloud-platform" | 143 "https://www.googleapis.com/auth/cloud-platform" |
| 144 ] |
| 145 }, |
| 146 "getConfig": { |
| 147 "description": "Get the service account information associat
ed with your project. You need\nthis information in order to grant the service a
ccount persmissions for\nthe Google Cloud Storage location where you put your mo
del training code\nfor training the model with Google Cloud Machine Learning.", |
| 148 "httpMethod": "GET", |
| 149 "id": "ml.projects.getConfig", |
| 150 "parameterOrder": [ |
| 151 "name" |
| 152 ], |
| 153 "parameters": { |
| 154 "name": { |
| 155 "description": "Required. The project name.\n\nAutho
rization: requires `Viewer` role on the specified project.", |
| 156 "location": "path", |
| 157 "pattern": "^projects/[^/]+$", |
| 158 "required": true, |
| 159 "type": "string" |
| 160 } |
| 161 }, |
| 162 "path": "v1/{+name}:getConfig", |
| 163 "response": { |
| 164 "$ref": "GoogleCloudMlV1__GetConfigResponse" |
| 165 }, |
| 166 "scopes": [ |
| 167 "https://www.googleapis.com/auth/cloud-platform" |
168 ] | 168 ] |
169 } | 169 } |
170 }, | 170 }, |
171 "resources": { | 171 "resources": { |
172 "operations": { | 172 "operations": { |
173 "methods": { | 173 "methods": { |
174 "delete": { | 174 "delete": { |
175 "description": "Deletes a long-running operation. Th
is method indicates that the client is\nno longer interested in the operation re
sult. It does not cancel the\noperation. If the server doesn't support this meth
od, it returns\n`google.rpc.Code.UNIMPLEMENTED`.", | 175 "description": "Deletes a long-running operation. Th
is method indicates that the client is\nno longer interested in the operation re
sult. It does not cancel the\noperation. If the server doesn't support this meth
od, it returns\n`google.rpc.Code.UNIMPLEMENTED`.", |
176 "httpMethod": "DELETE", | 176 "httpMethod": "DELETE", |
177 "id": "ml.projects.operations.delete", | 177 "id": "ml.projects.operations.delete", |
(...skipping 11 matching lines...) Expand all Loading... |
189 }, | 189 }, |
190 "path": "v1/{+name}", | 190 "path": "v1/{+name}", |
191 "response": { | 191 "response": { |
192 "$ref": "GoogleProtobuf__Empty" | 192 "$ref": "GoogleProtobuf__Empty" |
193 }, | 193 }, |
194 "scopes": [ | 194 "scopes": [ |
195 "https://www.googleapis.com/auth/cloud-platform" | 195 "https://www.googleapis.com/auth/cloud-platform" |
196 ] | 196 ] |
197 }, | 197 }, |
198 "list": { | 198 "list": { |
199 "description": "Lists operations that match the spec
ified filter in the request. If the\nserver doesn't support this method, it retu
rns `UNIMPLEMENTED`.\n\nNOTE: the `name` binding below allows API services to ov
erride the binding\nto use different resource name schemes, such as `users/*/ope
rations`.", | 199 "description": "Lists operations that match the spec
ified filter in the request. If the\nserver doesn't support this method, it retu
rns `UNIMPLEMENTED`.\n\nNOTE: the `name` binding allows API services to override
the binding\nto use different resource name schemes, such as `users/*/operation
s`. To\noverride the binding, API services can add a binding such as\n`\"/v1/{na
me=users/*}/operations\"` to their service configuration.\nFor backwards compati
bility, the default name includes the operations\ncollection id, however overrid
ing users must ensure the name binding\nis the parent resource, without the oper
ations collection id.", |
200 "httpMethod": "GET", | 200 "httpMethod": "GET", |
201 "id": "ml.projects.operations.list", | 201 "id": "ml.projects.operations.list", |
202 "parameterOrder": [ | 202 "parameterOrder": [ |
203 "name" | 203 "name" |
204 ], | 204 ], |
205 "parameters": { | 205 "parameters": { |
206 "pageSize": { | |
207 "description": "The standard list page size.
", | |
208 "format": "int32", | |
209 "location": "query", | |
210 "type": "integer" | |
211 }, | |
212 "filter": { | 206 "filter": { |
213 "description": "The standard list filter.", | 207 "description": "The standard list filter.", |
214 "location": "query", | 208 "location": "query", |
215 "type": "string" | 209 "type": "string" |
216 }, | 210 }, |
217 "name": { | 211 "name": { |
218 "description": "The name of the operation co
llection.", | 212 "description": "The name of the operation's
parent resource.", |
219 "location": "path", | 213 "location": "path", |
220 "pattern": "^projects/[^/]+$", | 214 "pattern": "^projects/[^/]+$", |
221 "required": true, | 215 "required": true, |
222 "type": "string" | 216 "type": "string" |
223 }, | 217 }, |
224 "pageToken": { | 218 "pageToken": { |
225 "description": "The standard list page token
.", | 219 "description": "The standard list page token
.", |
226 "location": "query", | 220 "location": "query", |
227 "type": "string" | 221 "type": "string" |
| 222 }, |
| 223 "pageSize": { |
| 224 "description": "The standard list page size.
", |
| 225 "format": "int32", |
| 226 "location": "query", |
| 227 "type": "integer" |
228 } | 228 } |
229 }, | 229 }, |
230 "path": "v1/{+name}/operations", | 230 "path": "v1/{+name}/operations", |
231 "response": { | 231 "response": { |
232 "$ref": "GoogleLongrunning__ListOperationsRespon
se" | 232 "$ref": "GoogleLongrunning__ListOperationsRespon
se" |
233 }, | 233 }, |
234 "scopes": [ | 234 "scopes": [ |
235 "https://www.googleapis.com/auth/cloud-platform" | 235 "https://www.googleapis.com/auth/cloud-platform" |
236 ] | 236 ] |
237 }, | 237 }, |
(...skipping 42 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
280 "$ref": "GoogleProtobuf__Empty" | 280 "$ref": "GoogleProtobuf__Empty" |
281 }, | 281 }, |
282 "scopes": [ | 282 "scopes": [ |
283 "https://www.googleapis.com/auth/cloud-platform" | 283 "https://www.googleapis.com/auth/cloud-platform" |
284 ] | 284 ] |
285 } | 285 } |
286 } | 286 } |
287 }, | 287 }, |
288 "models": { | 288 "models": { |
289 "methods": { | 289 "methods": { |
| 290 "delete": { |
| 291 "description": "Deletes a model.\n\nYou can only del
ete a model if there are no versions in it. You can delete\nversions by calling\
n[projects.models.versions.delete](/ml-engine/reference/rest/v1/projects.models.
versions/delete).", |
| 292 "httpMethod": "DELETE", |
| 293 "id": "ml.projects.models.delete", |
| 294 "parameterOrder": [ |
| 295 "name" |
| 296 ], |
| 297 "parameters": { |
| 298 "name": { |
| 299 "description": "Required. The name of the mo
del.\n\nAuthorization: requires `Editor` role on the parent project.", |
| 300 "location": "path", |
| 301 "pattern": "^projects/[^/]+/models/[^/]+$", |
| 302 "required": true, |
| 303 "type": "string" |
| 304 } |
| 305 }, |
| 306 "path": "v1/{+name}", |
| 307 "response": { |
| 308 "$ref": "GoogleLongrunning__Operation" |
| 309 }, |
| 310 "scopes": [ |
| 311 "https://www.googleapis.com/auth/cloud-platform" |
| 312 ] |
| 313 }, |
290 "list": { | 314 "list": { |
291 "description": "Lists the models in a project.\n\nEa
ch project can contain multiple models, and each model can have multiple\nversio
ns.", | 315 "description": "Lists the models in a project.\n\nEa
ch project can contain multiple models, and each model can have multiple\nversio
ns.", |
292 "httpMethod": "GET", | 316 "httpMethod": "GET", |
293 "id": "ml.projects.models.list", | 317 "id": "ml.projects.models.list", |
294 "parameterOrder": [ | 318 "parameterOrder": [ |
295 "parent" | 319 "parent" |
296 ], | 320 ], |
297 "parameters": { | 321 "parameters": { |
| 322 "parent": { |
| 323 "description": "Required. The name of the pr
oject whose models are to be listed.\n\nAuthorization: requires `Viewer` role on
the specified project.", |
| 324 "location": "path", |
| 325 "pattern": "^projects/[^/]+$", |
| 326 "required": true, |
| 327 "type": "string" |
| 328 }, |
298 "pageToken": { | 329 "pageToken": { |
299 "description": "Optional. A page token to re
quest the next page of results.\n\nYou get the token from the `next_page_token`
field of the response from\nthe previous call.", | 330 "description": "Optional. A page token to re
quest the next page of results.\n\nYou get the token from the `next_page_token`
field of the response from\nthe previous call.", |
300 "location": "query", | 331 "location": "query", |
301 "type": "string" | 332 "type": "string" |
302 }, | 333 }, |
303 "pageSize": { | 334 "pageSize": { |
304 "description": "Optional. The number of mode
ls to retrieve per \"page\" of results. If there\nare more remaining results tha
n this number, the response message will\ncontain a valid value in the `next_pag
e_token` field.\n\nThe default value is 20, and the maximum page size is 100.", | 335 "description": "Optional. The number of mode
ls to retrieve per \"page\" of results. If there\nare more remaining results tha
n this number, the response message will\ncontain a valid value in the `next_pag
e_token` field.\n\nThe default value is 20, and the maximum page size is 100.", |
305 "format": "int32", | 336 "format": "int32", |
306 "location": "query", | 337 "location": "query", |
307 "type": "integer" | 338 "type": "integer" |
308 }, | |
309 "parent": { | |
310 "description": "Required. The name of the pr
oject whose models are to be listed.\n\nAuthorization: requires `Viewer` role on
the specified project.", | |
311 "location": "path", | |
312 "pattern": "^projects/[^/]+$", | |
313 "required": true, | |
314 "type": "string" | |
315 } | 339 } |
316 }, | 340 }, |
317 "path": "v1/{+parent}/models", | 341 "path": "v1/{+parent}/models", |
318 "response": { | 342 "response": { |
319 "$ref": "GoogleCloudMlV1__ListModelsResponse" | 343 "$ref": "GoogleCloudMlV1__ListModelsResponse" |
320 }, | 344 }, |
321 "scopes": [ | 345 "scopes": [ |
322 "https://www.googleapis.com/auth/cloud-platform" | 346 "https://www.googleapis.com/auth/cloud-platform" |
323 ] | 347 ] |
324 }, | 348 }, |
(...skipping 40 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
365 "path": "v1/{+parent}/models", | 389 "path": "v1/{+parent}/models", |
366 "request": { | 390 "request": { |
367 "$ref": "GoogleCloudMlV1__Model" | 391 "$ref": "GoogleCloudMlV1__Model" |
368 }, | 392 }, |
369 "response": { | 393 "response": { |
370 "$ref": "GoogleCloudMlV1__Model" | 394 "$ref": "GoogleCloudMlV1__Model" |
371 }, | 395 }, |
372 "scopes": [ | 396 "scopes": [ |
373 "https://www.googleapis.com/auth/cloud-platform" | 397 "https://www.googleapis.com/auth/cloud-platform" |
374 ] | 398 ] |
375 }, | |
376 "delete": { | |
377 "description": "Deletes a model.\n\nYou can only del
ete a model if there are no versions in it. You can delete\nversions by calling\
n[projects.models.versions.delete](/ml-engine/reference/rest/v1/projects.models.
versions/delete).", | |
378 "httpMethod": "DELETE", | |
379 "id": "ml.projects.models.delete", | |
380 "parameterOrder": [ | |
381 "name" | |
382 ], | |
383 "parameters": { | |
384 "name": { | |
385 "description": "Required. The name of the mo
del.\n\nAuthorization: requires `Editor` role on the parent project.", | |
386 "location": "path", | |
387 "pattern": "^projects/[^/]+/models/[^/]+$", | |
388 "required": true, | |
389 "type": "string" | |
390 } | |
391 }, | |
392 "path": "v1/{+name}", | |
393 "response": { | |
394 "$ref": "GoogleLongrunning__Operation" | |
395 }, | |
396 "scopes": [ | |
397 "https://www.googleapis.com/auth/cloud-platform" | |
398 ] | |
399 } | 399 } |
400 }, | 400 }, |
401 "resources": { | 401 "resources": { |
402 "versions": { | 402 "versions": { |
403 "methods": { | 403 "methods": { |
404 "delete": { | |
405 "description": "Deletes a model version.\n\n
Each model can have multiple versions deployed and in use at any given\ntime. Us
e this method to remove a single version.\n\nNote: You cannot delete the version
that is set as the default version\nof the model unless it is the only remainin
g version.", | |
406 "httpMethod": "DELETE", | |
407 "id": "ml.projects.models.versions.delete", | |
408 "parameterOrder": [ | |
409 "name" | |
410 ], | |
411 "parameters": { | |
412 "name": { | |
413 "description": "Required. The name o
f the version. You can get the names of all the\nversions of a model by calling\
n[projects.models.versions.list](/ml-engine/reference/rest/v1/projects.models.ve
rsions/list).\n\nAuthorization: requires `Editor` role on the parent project.", | |
414 "location": "path", | |
415 "pattern": "^projects/[^/]+/models/[
^/]+/versions/[^/]+$", | |
416 "required": true, | |
417 "type": "string" | |
418 } | |
419 }, | |
420 "path": "v1/{+name}", | |
421 "response": { | |
422 "$ref": "GoogleLongrunning__Operation" | |
423 }, | |
424 "scopes": [ | |
425 "https://www.googleapis.com/auth/cloud-p
latform" | |
426 ] | |
427 }, | |
428 "list": { | 404 "list": { |
429 "description": "Gets basic information about
all the versions of a model.\n\nIf you expect that a model has a lot of version
s, or if you need to handle\nonly a limited number of results at a time, you can
request that the list\nbe retrieved in batches (called pages):", | 405 "description": "Gets basic information about
all the versions of a model.\n\nIf you expect that a model has a lot of version
s, or if you need to handle\nonly a limited number of results at a time, you can
request that the list\nbe retrieved in batches (called pages):", |
430 "httpMethod": "GET", | 406 "httpMethod": "GET", |
431 "id": "ml.projects.models.versions.list", | 407 "id": "ml.projects.models.versions.list", |
432 "parameterOrder": [ | 408 "parameterOrder": [ |
433 "parent" | 409 "parent" |
434 ], | 410 ], |
435 "parameters": { | 411 "parameters": { |
436 "pageSize": { | |
437 "description": "Optional. The number
of versions to retrieve per \"page\" of results. If\nthere are more remaining r
esults than this number, the response message\nwill contain a valid value in the
`next_page_token` field.\n\nThe default value is 20, and the maximum page size
is 100.", | |
438 "format": "int32", | |
439 "location": "query", | |
440 "type": "integer" | |
441 }, | |
442 "parent": { | 412 "parent": { |
443 "description": "Required. The name o
f the model for which to list the version.\n\nAuthorization: requires `Viewer` r
ole on the parent project.", | 413 "description": "Required. The name o
f the model for which to list the version.\n\nAuthorization: requires `Viewer` r
ole on the parent project.", |
444 "location": "path", | 414 "location": "path", |
445 "pattern": "^projects/[^/]+/models/[
^/]+$", | 415 "pattern": "^projects/[^/]+/models/[
^/]+$", |
446 "required": true, | 416 "required": true, |
447 "type": "string" | 417 "type": "string" |
448 }, | 418 }, |
449 "pageToken": { | 419 "pageToken": { |
450 "description": "Optional. A page tok
en to request the next page of results.\n\nYou get the token from the `next_page
_token` field of the response from\nthe previous call.", | 420 "description": "Optional. A page tok
en to request the next page of results.\n\nYou get the token from the `next_page
_token` field of the response from\nthe previous call.", |
451 "location": "query", | 421 "location": "query", |
452 "type": "string" | 422 "type": "string" |
| 423 }, |
| 424 "pageSize": { |
| 425 "description": "Optional. The number
of versions to retrieve per \"page\" of results. If\nthere are more remaining r
esults than this number, the response message\nwill contain a valid value in the
`next_page_token` field.\n\nThe default value is 20, and the maximum page size
is 100.", |
| 426 "format": "int32", |
| 427 "location": "query", |
| 428 "type": "integer" |
453 } | 429 } |
454 }, | 430 }, |
455 "path": "v1/{+parent}/versions", | 431 "path": "v1/{+parent}/versions", |
456 "response": { | 432 "response": { |
457 "$ref": "GoogleCloudMlV1__ListVersionsRe
sponse" | 433 "$ref": "GoogleCloudMlV1__ListVersionsRe
sponse" |
458 }, | 434 }, |
459 "scopes": [ | 435 "scopes": [ |
460 "https://www.googleapis.com/auth/cloud-p
latform" | 436 "https://www.googleapis.com/auth/cloud-p
latform" |
461 ] | 437 ] |
462 }, | 438 }, |
(...skipping 67 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
530 "path": "v1/{+name}:setDefault", | 506 "path": "v1/{+name}:setDefault", |
531 "request": { | 507 "request": { |
532 "$ref": "GoogleCloudMlV1__SetDefaultVers
ionRequest" | 508 "$ref": "GoogleCloudMlV1__SetDefaultVers
ionRequest" |
533 }, | 509 }, |
534 "response": { | 510 "response": { |
535 "$ref": "GoogleCloudMlV1__Version" | 511 "$ref": "GoogleCloudMlV1__Version" |
536 }, | 512 }, |
537 "scopes": [ | 513 "scopes": [ |
538 "https://www.googleapis.com/auth/cloud-p
latform" | 514 "https://www.googleapis.com/auth/cloud-p
latform" |
539 ] | 515 ] |
| 516 }, |
| 517 "delete": { |
| 518 "description": "Deletes a model version.\n\n
Each model can have multiple versions deployed and in use at any given\ntime. Us
e this method to remove a single version.\n\nNote: You cannot delete the version
that is set as the default version\nof the model unless it is the only remainin
g version.", |
| 519 "httpMethod": "DELETE", |
| 520 "id": "ml.projects.models.versions.delete", |
| 521 "parameterOrder": [ |
| 522 "name" |
| 523 ], |
| 524 "parameters": { |
| 525 "name": { |
| 526 "description": "Required. The name o
f the version. You can get the names of all the\nversions of a model by calling\
n[projects.models.versions.list](/ml-engine/reference/rest/v1/projects.models.ve
rsions/list).\n\nAuthorization: requires `Editor` role on the parent project.", |
| 527 "location": "path", |
| 528 "pattern": "^projects/[^/]+/models/[
^/]+/versions/[^/]+$", |
| 529 "required": true, |
| 530 "type": "string" |
| 531 } |
| 532 }, |
| 533 "path": "v1/{+name}", |
| 534 "response": { |
| 535 "$ref": "GoogleLongrunning__Operation" |
| 536 }, |
| 537 "scopes": [ |
| 538 "https://www.googleapis.com/auth/cloud-p
latform" |
| 539 ] |
540 } | 540 } |
541 } | 541 } |
542 } | 542 } |
543 } | 543 } |
544 }, | 544 }, |
545 "jobs": { | 545 "jobs": { |
546 "methods": { | 546 "methods": { |
547 "list": { | 547 "list": { |
548 "description": "Lists the jobs in the project.", | 548 "description": "Lists the jobs in the project.", |
549 "httpMethod": "GET", | 549 "httpMethod": "GET", |
550 "id": "ml.projects.jobs.list", | 550 "id": "ml.projects.jobs.list", |
551 "parameterOrder": [ | 551 "parameterOrder": [ |
552 "parent" | 552 "parent" |
553 ], | 553 ], |
554 "parameters": { | 554 "parameters": { |
555 "pageToken": { | |
556 "description": "Optional. A page token to re
quest the next page of results.\n\nYou get the token from the `next_page_token`
field of the response from\nthe previous call.", | |
557 "location": "query", | |
558 "type": "string" | |
559 }, | |
560 "pageSize": { | |
561 "description": "Optional. The number of jobs
to retrieve per \"page\" of results. If there\nare more remaining results than
this number, the response message will\ncontain a valid value in the `next_page_
token` field.\n\nThe default value is 20, and the maximum page size is 100.", | |
562 "format": "int32", | |
563 "location": "query", | |
564 "type": "integer" | |
565 }, | |
566 "parent": { | 555 "parent": { |
567 "description": "Required. The name of the pr
oject for which to list jobs.\n\nAuthorization: requires `Viewer` role on the sp
ecified project.", | 556 "description": "Required. The name of the pr
oject for which to list jobs.\n\nAuthorization: requires `Viewer` role on the sp
ecified project.", |
568 "location": "path", | 557 "location": "path", |
569 "pattern": "^projects/[^/]+$", | 558 "pattern": "^projects/[^/]+$", |
570 "required": true, | 559 "required": true, |
571 "type": "string" | 560 "type": "string" |
572 }, | 561 }, |
573 "filter": { | 562 "filter": { |
574 "description": "Optional. Specifies the subs
et of jobs to retrieve.", | 563 "description": "Optional. Specifies the subs
et of jobs to retrieve.", |
575 "location": "query", | 564 "location": "query", |
576 "type": "string" | 565 "type": "string" |
| 566 }, |
| 567 "pageToken": { |
| 568 "description": "Optional. A page token to re
quest the next page of results.\n\nYou get the token from the `next_page_token`
field of the response from\nthe previous call.", |
| 569 "location": "query", |
| 570 "type": "string" |
| 571 }, |
| 572 "pageSize": { |
| 573 "description": "Optional. The number of jobs
to retrieve per \"page\" of results. If there\nare more remaining results than
this number, the response message will\ncontain a valid value in the `next_page_
token` field.\n\nThe default value is 20, and the maximum page size is 100.", |
| 574 "format": "int32", |
| 575 "location": "query", |
| 576 "type": "integer" |
577 } | 577 } |
578 }, | 578 }, |
579 "path": "v1/{+parent}/jobs", | 579 "path": "v1/{+parent}/jobs", |
580 "response": { | 580 "response": { |
581 "$ref": "GoogleCloudMlV1__ListJobsResponse" | 581 "$ref": "GoogleCloudMlV1__ListJobsResponse" |
582 }, | 582 }, |
583 "scopes": [ | 583 "scopes": [ |
584 "https://www.googleapis.com/auth/cloud-platform" | 584 "https://www.googleapis.com/auth/cloud-platform" |
585 ] | 585 ] |
586 }, | 586 }, |
(...skipping 73 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
660 }, | 660 }, |
661 "scopes": [ | 661 "scopes": [ |
662 "https://www.googleapis.com/auth/cloud-platform" | 662 "https://www.googleapis.com/auth/cloud-platform" |
663 ] | 663 ] |
664 } | 664 } |
665 } | 665 } |
666 } | 666 } |
667 } | 667 } |
668 } | 668 } |
669 }, | 669 }, |
670 "revision": "20170515", | 670 "revision": "20170604", |
671 "rootUrl": "https://ml.googleapis.com/", | 671 "rootUrl": "https://ml.googleapis.com/", |
672 "schemas": { | 672 "schemas": { |
673 "GoogleRpc__Status": { | 673 "GoogleCloudMlV1__OperationMetadata": { |
674 "description": "The `Status` type defines a logical error model that
is suitable for different\nprogramming environments, including REST APIs and RP
C APIs. It is used by\n[gRPC](https://github.com/grpc). The error model is desig
ned to be:\n\n- Simple to use and understand for most users\n- Flexible enough t
o meet unexpected needs\n\n# Overview\n\nThe `Status` message contains three pie
ces of data: error code, error message,\nand error details. The error code shoul
d be an enum value of\ngoogle.rpc.Code, but it may accept additional error codes
if needed. The\nerror message should be a developer-facing English message tha
t helps\ndevelopers *understand* and *resolve* the error. If a localized user-fa
cing\nerror message is needed, put the localized message in the error details or
\nlocalize it in the client. The optional error details may contain arbitrary\ni
nformation about the error. There is a predefined set of error detail types\nin
the package `google.rpc` that can be used for common error conditions.\n\n# Lang
uage mapping\n\nThe `Status` message is the logical representation of the error
model, but it\nis not necessarily the actual wire format. When the `Status` mess
age is\nexposed in different client libraries and different wire protocols, it c
an be\nmapped differently. For example, it will likely be mapped to some excepti
ons\nin Java, but more likely mapped to some error codes in C.\n\n# Other uses\n
\nThe error model and the `Status` message can be used in a variety of\nenvironm
ents, either with or without APIs, to provide a\nconsistent developer experience
across different environments.\n\nExample uses of this error model include:\n\n
- Partial errors. If a service needs to return partial errors to the client,\n
it may embed the `Status` in the normal response to indicate the partial\n
errors.\n\n- Workflow errors. A typical workflow has multiple steps. Each step m
ay\n have a `Status` message for error reporting.\n\n- Batch operations. If a
client uses batch request and batch response, the\n `Status` message should
be used directly inside batch response, one for\n each error sub-response.\n\
n- Asynchronous operations. If an API call embeds asynchronous operation\n re
sults in its response, the status of those operations should be\n represented
directly using the `Status` message.\n\n- Logging. If some API errors are store
d in logs, the message `Status` could\n be used directly after any stripping
needed for security/privacy reasons.", | 674 "description": "Represents the metadata of the long-running operatio
n.", |
675 "id": "GoogleRpc__Status", | 675 "id": "GoogleCloudMlV1__OperationMetadata", |
676 "properties": { | 676 "properties": { |
677 "details": { | 677 "startTime": { |
678 "description": "A list of messages that carry the error deta
ils. There will be a\ncommon set of message types for APIs to use.", | 678 "description": "The time operation processing started.", |
679 "items": { | 679 "format": "google-datetime", |
680 "additionalProperties": { | 680 "type": "string" |
681 "description": "Properties of the object. Contains f
ield @type with type URL.", | 681 }, |
682 "type": "any" | 682 "isCancellationRequested": { |
683 }, | 683 "description": "Indicates whether a request to cancel this o
peration has been made.", |
684 "type": "object" | 684 "type": "boolean" |
685 }, | 685 }, |
686 "type": "array" | 686 "createTime": { |
687 }, | 687 "description": "The time the operation was submitted.", |
688 "code": { | 688 "format": "google-datetime", |
689 "description": "The status code, which should be an enum val
ue of google.rpc.Code.", | 689 "type": "string" |
| 690 }, |
| 691 "modelName": { |
| 692 "description": "Contains the name of the model associated wi
th the operation.", |
| 693 "type": "string" |
| 694 }, |
| 695 "version": { |
| 696 "$ref": "GoogleCloudMlV1__Version", |
| 697 "description": "Contains the version associated with the ope
ration." |
| 698 }, |
| 699 "endTime": { |
| 700 "description": "The time operation processing completed.", |
| 701 "format": "google-datetime", |
| 702 "type": "string" |
| 703 }, |
| 704 "operationType": { |
| 705 "description": "The operation type.", |
| 706 "enum": [ |
| 707 "OPERATION_TYPE_UNSPECIFIED", |
| 708 "CREATE_VERSION", |
| 709 "DELETE_VERSION", |
| 710 "DELETE_MODEL" |
| 711 ], |
| 712 "enumDescriptions": [ |
| 713 "Unspecified operation type.", |
| 714 "An operation to create a new version.", |
| 715 "An operation to delete an existing version.", |
| 716 "An operation to delete an existing model." |
| 717 ], |
| 718 "type": "string" |
| 719 } |
| 720 }, |
| 721 "type": "object" |
| 722 }, |
| 723 "GoogleCloudMlV1beta1__OperationMetadata": { |
| 724 "description": "Represents the metadata of the long-running operatio
n.", |
| 725 "id": "GoogleCloudMlV1beta1__OperationMetadata", |
| 726 "properties": { |
| 727 "isCancellationRequested": { |
| 728 "description": "Indicates whether a request to cancel this o
peration has been made.", |
| 729 "type": "boolean" |
| 730 }, |
| 731 "createTime": { |
| 732 "description": "The time the operation was submitted.", |
| 733 "format": "google-datetime", |
| 734 "type": "string" |
| 735 }, |
| 736 "modelName": { |
| 737 "description": "Contains the name of the model associated wi
th the operation.", |
| 738 "type": "string" |
| 739 }, |
| 740 "version": { |
| 741 "$ref": "GoogleCloudMlV1beta1__Version", |
| 742 "description": "Contains the version associated with the ope
ration." |
| 743 }, |
| 744 "endTime": { |
| 745 "description": "The time operation processing completed.", |
| 746 "format": "google-datetime", |
| 747 "type": "string" |
| 748 }, |
| 749 "operationType": { |
| 750 "description": "The operation type.", |
| 751 "enum": [ |
| 752 "OPERATION_TYPE_UNSPECIFIED", |
| 753 "CREATE_VERSION", |
| 754 "DELETE_VERSION", |
| 755 "DELETE_MODEL" |
| 756 ], |
| 757 "enumDescriptions": [ |
| 758 "Unspecified operation type.", |
| 759 "An operation to create a new version.", |
| 760 "An operation to delete an existing version.", |
| 761 "An operation to delete an existing model." |
| 762 ], |
| 763 "type": "string" |
| 764 }, |
| 765 "startTime": { |
| 766 "description": "The time operation processing started.", |
| 767 "format": "google-datetime", |
| 768 "type": "string" |
| 769 } |
| 770 }, |
| 771 "type": "object" |
| 772 }, |
| 773 "GoogleCloudMlV1__HyperparameterSpec": { |
| 774 "description": "Represents a set of hyperparameters to optimize.", |
| 775 "id": "GoogleCloudMlV1__HyperparameterSpec", |
| 776 "properties": { |
| 777 "params": { |
| 778 "description": "Required. The set of parameters to tune.", |
| 779 "items": { |
| 780 "$ref": "GoogleCloudMlV1__ParameterSpec" |
| 781 }, |
| 782 "type": "array" |
| 783 }, |
| 784 "maxTrials": { |
| 785 "description": "Optional. How many training trials should be
attempted to optimize\nthe specified hyperparameters.\n\nDefaults to one.", |
690 "format": "int32", | 786 "format": "int32", |
691 "type": "integer" | 787 "type": "integer" |
692 }, | 788 }, |
693 "message": { | 789 "maxParallelTrials": { |
694 "description": "A developer-facing error message, which shou
ld be in English. Any\nuser-facing error message should be localized and sent in
the\ngoogle.rpc.Status.details field, or localized by the client.", | 790 "description": "Optional. The number of training trials to r
un concurrently.\nYou can reduce the time it takes to perform hyperparameter tun
ing by adding\ntrials in parallel. However, each trail only benefits from the in
formation\ngained in completed trials. That means that a trial does not get acce
ss to\nthe results of trials running at the same time, which could reduce the\nq
uality of the overall optimization.\n\nEach trial will use the same scale tier a
nd machine types.\n\nDefaults to one.", |
695 "type": "string" | 791 "format": "int32", |
696 } | 792 "type": "integer" |
697 }, | 793 }, |
698 "type": "object" | 794 "goal": { |
699 }, | 795 "description": "Required. The type of goal to use for tuning
. Available types are\n`MAXIMIZE` and `MINIMIZE`.\n\nDefaults to `MAXIMIZE`.", |
700 "GoogleCloudMlV1__TrainingInput": { | 796 "enum": [ |
701 "description": "Represents input parameters for a training job.", | 797 "GOAL_TYPE_UNSPECIFIED", |
702 "id": "GoogleCloudMlV1__TrainingInput", | 798 "MAXIMIZE", |
703 "properties": { | 799 "MINIMIZE" |
704 "masterType": { | 800 ], |
705 "description": "Optional. Specifies the type of virtual mach
ine to use for your training\njob's master worker.\n\nThe following types are su
pported:\n\n<dl>\n <dt>standard</dt>\n <dd>\n A basic machine configuration s
uitable for training simple models with\n small to moderate datasets.\n </dd>\
n <dt>large_model</dt>\n <dd>\n A machine with a lot of memory, specially sui
ted for parameter servers\n when your model is large (having many hidden layers
or layers with very\n large numbers of nodes).\n </dd>\n <dt>complex_model_s
</dt>\n <dd>\n A machine suitable for the master and workers of the cluster wh
en your\n model requires more computation than the standard machine can handle\
n satisfactorily.\n </dd>\n <dt>complex_model_m</dt>\n <dd>\n A machine wit
h roughly twice the number of cores and roughly double the\n memory of <code su
ppresswarning=\"true\">complex_model_s</code>.\n </dd>\n <dt>complex_model_l</
dt>\n <dd>\n A machine with roughly twice the number of cores and roughly doub
le the\n memory of <code suppresswarning=\"true\">complex_model_m</code>.\n </
dd>\n <dt>standard_gpu</dt>\n <dd>\n A machine equivalent to <code suppresswa
rning=\"true\">standard</code> that\n also includes a\n <a href=\"/ml-engine/d
ocs/how-tos/using-gpus\">\n GPU that you can use in your trainer</a>.\n </dd>\
n <dt>complex_model_m_gpu</dt>\n <dd>\n A machine equivalent to\n <code supp
resswarning=\"true\">complex_model_m</code> that also includes\n four GPUs.\n
</dd>\n</dl>\n\nYou must set this value when `scaleTier` is set to `CUSTOM`.", | 801 "enumDescriptions": [ |
706 "type": "string" | 802 "Goal Type will default to maximize.", |
707 }, | 803 "Maximize the goal metric.", |
708 "runtimeVersion": { | 804 "Minimize the goal metric." |
709 "description": "Optional. The Google Cloud ML runtime versio
n to use for training. If not\nset, Google Cloud ML will choose the latest stab
le version.", | 805 ], |
710 "type": "string" | 806 "type": "string" |
711 }, | 807 }, |
712 "pythonModule": { | 808 "hyperparameterMetricTag": { |
713 "description": "Required. The Python module name to run afte
r installing the packages.", | 809 "description": "Optional. The Tensorflow summary tag name to
use for optimizing trials. For\ncurrent versions of Tensorflow, this tag name s
hould exactly match what is\nshown in Tensorboard, including all scopes. For ve
rsions of Tensorflow\nprior to 0.12, this should be only the tag passed to tf.Su
mmary.\nBy default, \"training/hptuning/metric\" will be used.", |
714 "type": "string" | 810 "type": "string" |
715 }, | 811 } |
716 "workerType": { | 812 }, |
717 "description": "Optional. Specifies the type of virtual mach
ine to use for your training\njob's worker nodes.\n\nThe supported values are th
e same as those described in the entry for\n`masterType`.\n\nThis value must be
present when `scaleTier` is set to `CUSTOM` and\n`workerCount` is greater than z
ero.", | 813 "type": "object" |
718 "type": "string" | 814 }, |
719 }, | 815 "GoogleCloudMlV1__ListJobsResponse": { |
720 "args": { | 816 "description": "Response message for the ListJobs method.", |
721 "description": "Optional. Command line arguments to pass to
the program.", | 817 "id": "GoogleCloudMlV1__ListJobsResponse", |
| 818 "properties": { |
| 819 "nextPageToken": { |
| 820 "description": "Optional. Pass this token as the `page_token
` field of the request for a\nsubsequent call.", |
| 821 "type": "string" |
| 822 }, |
| 823 "jobs": { |
| 824 "description": "The list of jobs.", |
| 825 "items": { |
| 826 "$ref": "GoogleCloudMlV1__Job" |
| 827 }, |
| 828 "type": "array" |
| 829 } |
| 830 }, |
| 831 "type": "object" |
| 832 }, |
| 833 "GoogleCloudMlV1__SetDefaultVersionRequest": { |
| 834 "description": "Request message for the SetDefaultVersion request.", |
| 835 "id": "GoogleCloudMlV1__SetDefaultVersionRequest", |
| 836 "properties": {}, |
| 837 "type": "object" |
| 838 }, |
| 839 "GoogleLongrunning__Operation": { |
| 840 "description": "This resource represents a long-running operation th
at is the result of a\nnetwork API call.", |
| 841 "id": "GoogleLongrunning__Operation", |
| 842 "properties": { |
| 843 "done": { |
| 844 "description": "If the value is `false`, it means the operat
ion is still in progress.\nIf true, the operation is completed, and either `erro
r` or `response` is\navailable.", |
| 845 "type": "boolean" |
| 846 }, |
| 847 "response": { |
| 848 "additionalProperties": { |
| 849 "description": "Properties of the object. Contains field
@type with type URL.", |
| 850 "type": "any" |
| 851 }, |
| 852 "description": "The normal response of the operation in case
of success. If the original\nmethod returns no data on success, such as `Delet
e`, the response is\n`google.protobuf.Empty`. If the original method is standar
d\n`Get`/`Create`/`Update`, the response should be the resource. For other\nmet
hods, the response should have the type `XxxResponse`, where `Xxx`\nis the origi
nal method name. For example, if the original method name\nis `TakeSnapshot()`,
the inferred response type is\n`TakeSnapshotResponse`.", |
| 853 "type": "object" |
| 854 }, |
| 855 "name": { |
| 856 "description": "The server-assigned name, which is only uniq
ue within the same service that\noriginally returns it. If you use the default H
TTP mapping, the\n`name` should have the format of `operations/some/unique/name`
.", |
| 857 "type": "string" |
| 858 }, |
| 859 "error": { |
| 860 "$ref": "GoogleRpc__Status", |
| 861 "description": "The error result of the operation in case of
failure or cancellation." |
| 862 }, |
| 863 "metadata": { |
| 864 "additionalProperties": { |
| 865 "description": "Properties of the object. Contains field
@type with type URL.", |
| 866 "type": "any" |
| 867 }, |
| 868 "description": "Service-specific metadata associated with th
e operation. It typically\ncontains progress information and common metadata su
ch as create time.\nSome services might not provide such metadata. Any method t
hat returns a\nlong-running operation should document the metadata type, if any.
", |
| 869 "type": "object" |
| 870 } |
| 871 }, |
| 872 "type": "object" |
| 873 }, |
| 874 "GoogleCloudMlV1__Model": { |
| 875 "description": "Represents a machine learning solution.\n\nA model c
an have multiple versions, each of which is a deployed, trained\nmodel ready to
receive prediction requests. The model itself is just a\ncontainer.", |
| 876 "id": "GoogleCloudMlV1__Model", |
| 877 "properties": { |
| 878 "defaultVersion": { |
| 879 "$ref": "GoogleCloudMlV1__Version", |
| 880 "description": "Output only. The default version of the mode
l. This version will be used to\nhandle prediction requests that do not specify
a version.\n\nYou can change the default version by calling\n[projects.methods.v
ersions.setDefault](/ml-engine/reference/rest/v1/projects.models.versions/setDef
ault)." |
| 881 }, |
| 882 "regions": { |
| 883 "description": "Optional. The list of regions where the mode
l is going to be deployed.\nCurrently only one region per model is supported.\nD
efaults to 'us-central1' if nothing is set.\nNote:\n* No matter where a model
is deployed, it can always be accessed by\n users from anywhere, both for onl
ine and batch prediction.\n* The region for a batch prediction job is set by t
he region field when\n submitting the batch prediction job and does not take
its value from\n this field.", |
722 "items": { | 884 "items": { |
723 "type": "string" | 885 "type": "string" |
724 }, | 886 }, |
725 "type": "array" | 887 "type": "array" |
726 }, | 888 }, |
727 "region": { | 889 "name": { |
728 "description": "Required. The Google Compute Engine region t
o run the training job in.", | 890 "description": "Required. The name specified for the model w
hen it was created.\n\nThe model name must be unique within the project it is cr
eated in.", |
729 "type": "string" | 891 "type": "string" |
730 }, | 892 }, |
731 "parameterServerType": { | 893 "description": { |
732 "description": "Optional. Specifies the type of virtual mach
ine to use for your training\njob's parameter server.\n\nThe supported values ar
e the same as those described in the entry for\n`master_type`.\n\nThis value mus
t be present when `scaleTier` is set to `CUSTOM` and\n`parameter_server_count` i
s greater than zero.", | 894 "description": "Optional. The description specified for the
model when it was created.", |
733 "type": "string" | 895 "type": "string" |
734 }, | 896 }, |
735 "scaleTier": { | 897 "onlinePredictionLogging": { |
736 "description": "Required. Specifies the machine types, the n
umber of replicas for workers\nand parameter servers.", | 898 "description": "Optional. If true, enables StackDriver Loggi
ng for online prediction.\nDefault is false.", |
737 "enum": [ | 899 "type": "boolean" |
738 "BASIC", | 900 } |
739 "STANDARD_1", | 901 }, |
740 "PREMIUM_1", | 902 "type": "object" |
741 "BASIC_GPU", | 903 }, |
742 "CUSTOM" | 904 "GoogleProtobuf__Empty": { |
743 ], | 905 "description": "A generic empty message that you can re-use to avoid
defining duplicated\nempty messages in your APIs. A typical example is to use i
t as the request\nor the response type of an API method. For instance:\n\n se
rvice Foo {\n rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty
);\n }\n\nThe JSON representation for `Empty` is empty JSON object `{}`.", |
744 "enumDescriptions": [ | 906 "id": "GoogleProtobuf__Empty", |
745 "A single worker instance. This tier is suitable for lea
rning how to use\nCloud ML, and for experimenting with new models using small da
tasets.", | 907 "properties": {}, |
746 "Many workers and a few parameter servers.", | 908 "type": "object" |
747 "A large number of workers with many parameter servers."
, | 909 }, |
748 "A single worker instance [with a GPU](/ml-engine/docs/h
ow-tos/using-gpus).", | 910 "GoogleCloudMlV1__ListVersionsResponse": { |
749 "The CUSTOM tier is not a set tier, but rather enables y
ou to use your\nown cluster specification. When you use this tier, set values to
\nconfigure your processing cluster according to these guidelines:\n\n* You _m
ust_ set `TrainingInput.masterType` to specify the type\n of machine to use f
or your master node. This is the only required\n setting.\n\n* You _may_ se
t `TrainingInput.workerCount` to specify the number of\n workers to use. If y
ou specify one or more workers, you _must_ also\n set `TrainingInput.workerTy
pe` to specify the type of machine to use\n for your worker nodes.\n\n* You
_may_ set `TrainingInput.parameterServerCount` to specify the\n number of pa
rameter servers to use. If you specify one or more\n parameter servers, you _
must_ also set\n `TrainingInput.parameterServerType` to specify the type of m
achine to\n use for your parameter servers.\n\nNote that all of your workers
must use the same machine type, which can\nbe different from your parameter serv
er type and master type. Your\nparameter servers must likewise use the same mach
ine type, which can be\ndifferent from your worker type and master type." | 911 "description": "Response message for the ListVersions method.", |
750 ], | 912 "id": "GoogleCloudMlV1__ListVersionsResponse", |
751 "type": "string" | 913 "properties": { |
752 }, | 914 "versions": { |
753 "jobDir": { | 915 "description": "The list of versions.", |
754 "description": "Optional. A Google Cloud Storage path in whi
ch to store training outputs\nand other data needed for training. This path is p
assed to your TensorFlow\nprogram as the 'job_dir' command-line argument. The be
nefit of specifying\nthis field is that Cloud ML validates the path for use in t
raining.", | 916 "items": { |
755 "type": "string" | 917 "$ref": "GoogleCloudMlV1__Version" |
756 }, | 918 }, |
757 "hyperparameters": { | 919 "type": "array" |
758 "$ref": "GoogleCloudMlV1__HyperparameterSpec", | 920 }, |
759 "description": "Optional. The set of Hyperparameters to tune
." | |
760 }, | |
761 "parameterServerCount": { | |
762 "description": "Optional. The number of parameter server rep
licas to use for the training\njob. Each replica in the cluster will be of the t
ype specified in\n`parameter_server_type`.\n\nThis value can only be used when `
scale_tier` is set to `CUSTOM`.If you\nset this value, you must also set `parame
ter_server_type`.", | |
763 "format": "int64", | |
764 "type": "string" | |
765 }, | |
766 "packageUris": { | |
767 "description": "Required. The Google Cloud Storage location
of the packages with\nthe training program and any additional dependencies.\nThe
maximum number of package URIs is 100.", | |
768 "items": { | |
769 "type": "string" | |
770 }, | |
771 "type": "array" | |
772 }, | |
773 "workerCount": { | |
774 "description": "Optional. The number of worker replicas to u
se for the training job. Each\nreplica in the cluster will be of the type specif
ied in `worker_type`.\n\nThis value can only be used when `scale_tier` is set to
`CUSTOM`. If you\nset this value, you must also set `worker_type`.", | |
775 "format": "int64", | |
776 "type": "string" | |
777 } | |
778 }, | |
779 "type": "object" | |
780 }, | |
781 "GoogleCloudMlV1__ListModelsResponse": { | |
782 "description": "Response message for the ListModels method.", | |
783 "id": "GoogleCloudMlV1__ListModelsResponse", | |
784 "properties": { | |
785 "models": { | |
786 "description": "The list of models.", | |
787 "items": { | |
788 "$ref": "GoogleCloudMlV1__Model" | |
789 }, | |
790 "type": "array" | |
791 }, | |
792 "nextPageToken": { | 921 "nextPageToken": { |
793 "description": "Optional. Pass this token as the `page_token
` field of the request for a\nsubsequent call.", | 922 "description": "Optional. Pass this token as the `page_token
` field of the request for a\nsubsequent call.", |
794 "type": "string" | 923 "type": "string" |
795 } | 924 } |
796 }, | 925 }, |
797 "type": "object" | 926 "type": "object" |
798 }, | 927 }, |
| 928 "GoogleCloudMlV1__CancelJobRequest": { |
| 929 "description": "Request message for the CancelJob method.", |
| 930 "id": "GoogleCloudMlV1__CancelJobRequest", |
| 931 "properties": {}, |
| 932 "type": "object" |
| 933 }, |
| 934 "GoogleCloudMlV1beta1__ManualScaling": { |
| 935 "description": "Options for manually scaling a model.", |
| 936 "id": "GoogleCloudMlV1beta1__ManualScaling", |
| 937 "properties": { |
| 938 "nodes": { |
| 939 "description": "The number of nodes to allocate for this mod
el. These nodes are always up,\nstarting from the time the model is deployed, so
the cost of operating\nthis model will be proportional to `nodes` * number of h
ours since\nlast billing cycle.", |
| 940 "format": "int32", |
| 941 "type": "integer" |
| 942 } |
| 943 }, |
| 944 "type": "object" |
| 945 }, |
| 946 "GoogleRpc__Status": { |
| 947 "description": "The `Status` type defines a logical error model that
is suitable for different\nprogramming environments, including REST APIs and RP
C APIs. It is used by\n[gRPC](https://github.com/grpc). The error model is desig
ned to be:\n\n- Simple to use and understand for most users\n- Flexible enough t
o meet unexpected needs\n\n# Overview\n\nThe `Status` message contains three pie
ces of data: error code, error message,\nand error details. The error code shoul
d be an enum value of\ngoogle.rpc.Code, but it may accept additional error codes
if needed. The\nerror message should be a developer-facing English message tha
t helps\ndevelopers *understand* and *resolve* the error. If a localized user-fa
cing\nerror message is needed, put the localized message in the error details or
\nlocalize it in the client. The optional error details may contain arbitrary\ni
nformation about the error. There is a predefined set of error detail types\nin
the package `google.rpc` that can be used for common error conditions.\n\n# Lang
uage mapping\n\nThe `Status` message is the logical representation of the error
model, but it\nis not necessarily the actual wire format. When the `Status` mess
age is\nexposed in different client libraries and different wire protocols, it c
an be\nmapped differently. For example, it will likely be mapped to some excepti
ons\nin Java, but more likely mapped to some error codes in C.\n\n# Other uses\n
\nThe error model and the `Status` message can be used in a variety of\nenvironm
ents, either with or without APIs, to provide a\nconsistent developer experience
across different environments.\n\nExample uses of this error model include:\n\n
- Partial errors. If a service needs to return partial errors to the client,\n
it may embed the `Status` in the normal response to indicate the partial\n
errors.\n\n- Workflow errors. A typical workflow has multiple steps. Each step m
ay\n have a `Status` message for error reporting.\n\n- Batch operations. If a
client uses batch request and batch response, the\n `Status` message should
be used directly inside batch response, one for\n each error sub-response.\n\
n- Asynchronous operations. If an API call embeds asynchronous operation\n re
sults in its response, the status of those operations should be\n represented
directly using the `Status` message.\n\n- Logging. If some API errors are store
d in logs, the message `Status` could\n be used directly after any stripping
needed for security/privacy reasons.", |
| 948 "id": "GoogleRpc__Status", |
| 949 "properties": { |
| 950 "message": { |
| 951 "description": "A developer-facing error message, which shou
ld be in English. Any\nuser-facing error message should be localized and sent in
the\ngoogle.rpc.Status.details field, or localized by the client.", |
| 952 "type": "string" |
| 953 }, |
| 954 "details": { |
| 955 "description": "A list of messages that carry the error deta
ils. There will be a\ncommon set of message types for APIs to use.", |
| 956 "items": { |
| 957 "additionalProperties": { |
| 958 "description": "Properties of the object. Contains f
ield @type with type URL.", |
| 959 "type": "any" |
| 960 }, |
| 961 "type": "object" |
| 962 }, |
| 963 "type": "array" |
| 964 }, |
| 965 "code": { |
| 966 "description": "The status code, which should be an enum val
ue of google.rpc.Code.", |
| 967 "format": "int32", |
| 968 "type": "integer" |
| 969 } |
| 970 }, |
| 971 "type": "object" |
| 972 }, |
| 973 "GoogleCloudMlV1__ListModelsResponse": { |
| 974 "description": "Response message for the ListModels method.", |
| 975 "id": "GoogleCloudMlV1__ListModelsResponse", |
| 976 "properties": { |
| 977 "nextPageToken": { |
| 978 "description": "Optional. Pass this token as the `page_token
` field of the request for a\nsubsequent call.", |
| 979 "type": "string" |
| 980 }, |
| 981 "models": { |
| 982 "description": "The list of models.", |
| 983 "items": { |
| 984 "$ref": "GoogleCloudMlV1__Model" |
| 985 }, |
| 986 "type": "array" |
| 987 } |
| 988 }, |
| 989 "type": "object" |
| 990 }, |
| 991 "GoogleCloudMlV1__TrainingInput": { |
| 992 "description": "Represents input parameters for a training job.", |
| 993 "id": "GoogleCloudMlV1__TrainingInput", |
| 994 "properties": { |
| 995 "workerCount": { |
| 996 "description": "Optional. The number of worker replicas to u
se for the training job. Each\nreplica in the cluster will be of the type specif
ied in `worker_type`.\n\nThis value can only be used when `scale_tier` is set to
`CUSTOM`. If you\nset this value, you must also set `worker_type`.", |
| 997 "format": "int64", |
| 998 "type": "string" |
| 999 }, |
| 1000 "masterType": { |
| 1001 "description": "Optional. Specifies the type of virtual mach
ine to use for your training\njob's master worker.\n\nThe following types are su
pported:\n\n<dl>\n <dt>standard</dt>\n <dd>\n A basic machine configuration s
uitable for training simple models with\n small to moderate datasets.\n </dd>\
n <dt>large_model</dt>\n <dd>\n A machine with a lot of memory, specially sui
ted for parameter servers\n when your model is large (having many hidden layers
or layers with very\n large numbers of nodes).\n </dd>\n <dt>complex_model_s
</dt>\n <dd>\n A machine suitable for the master and workers of the cluster wh
en your\n model requires more computation than the standard machine can handle\
n satisfactorily.\n </dd>\n <dt>complex_model_m</dt>\n <dd>\n A machine wit
h roughly twice the number of cores and roughly double the\n memory of <code su
ppresswarning=\"true\">complex_model_s</code>.\n </dd>\n <dt>complex_model_l</
dt>\n <dd>\n A machine with roughly twice the number of cores and roughly doub
le the\n memory of <code suppresswarning=\"true\">complex_model_m</code>.\n </
dd>\n <dt>standard_gpu</dt>\n <dd>\n A machine equivalent to <code suppresswa
rning=\"true\">standard</code> that\n also includes a\n <a href=\"/ml-engine/d
ocs/how-tos/using-gpus\">\n GPU that you can use in your trainer</a>.\n </dd>\
n <dt>complex_model_m_gpu</dt>\n <dd>\n A machine equivalent to\n <code supp
resswarning=\"true\">complex_model_m</code> that also includes\n four GPUs.\n
</dd>\n</dl>\n\nYou must set this value when `scaleTier` is set to `CUSTOM`.", |
| 1002 "type": "string" |
| 1003 }, |
| 1004 "runtimeVersion": { |
| 1005 "description": "Optional. The Google Cloud ML runtime versio
n to use for training. If not\nset, Google Cloud ML will choose the latest stab
le version.", |
| 1006 "type": "string" |
| 1007 }, |
| 1008 "pythonModule": { |
| 1009 "description": "Required. The Python module name to run afte
r installing the packages.", |
| 1010 "type": "string" |
| 1011 }, |
| 1012 "workerType": { |
| 1013 "description": "Optional. Specifies the type of virtual mach
ine to use for your training\njob's worker nodes.\n\nThe supported values are th
e same as those described in the entry for\n`masterType`.\n\nThis value must be
present when `scaleTier` is set to `CUSTOM` and\n`workerCount` is greater than z
ero.", |
| 1014 "type": "string" |
| 1015 }, |
| 1016 "region": { |
| 1017 "description": "Required. The Google Compute Engine region t
o run the training job in.", |
| 1018 "type": "string" |
| 1019 }, |
| 1020 "args": { |
| 1021 "description": "Optional. Command line arguments to pass to
the program.", |
| 1022 "items": { |
| 1023 "type": "string" |
| 1024 }, |
| 1025 "type": "array" |
| 1026 }, |
| 1027 "parameterServerType": { |
| 1028 "description": "Optional. Specifies the type of virtual mach
ine to use for your training\njob's parameter server.\n\nThe supported values ar
e the same as those described in the entry for\n`master_type`.\n\nThis value mus
t be present when `scaleTier` is set to `CUSTOM` and\n`parameter_server_count` i
s greater than zero.", |
| 1029 "type": "string" |
| 1030 }, |
| 1031 "scaleTier": { |
| 1032 "description": "Required. Specifies the machine types, the n
umber of replicas for workers\nand parameter servers.", |
| 1033 "enum": [ |
| 1034 "BASIC", |
| 1035 "STANDARD_1", |
| 1036 "PREMIUM_1", |
| 1037 "BASIC_GPU", |
| 1038 "CUSTOM" |
| 1039 ], |
| 1040 "enumDescriptions": [ |
| 1041 "A single worker instance. This tier is suitable for lea
rning how to use\nCloud ML, and for experimenting with new models using small da
tasets.", |
| 1042 "Many workers and a few parameter servers.", |
| 1043 "A large number of workers with many parameter servers."
, |
| 1044 "A single worker instance [with a GPU](/ml-engine/docs/h
ow-tos/using-gpus).", |
| 1045 "The CUSTOM tier is not a set tier, but rather enables y
ou to use your\nown cluster specification. When you use this tier, set values to
\nconfigure your processing cluster according to these guidelines:\n\n* You _m
ust_ set `TrainingInput.masterType` to specify the type\n of machine to use f
or your master node. This is the only required\n setting.\n\n* You _may_ se
t `TrainingInput.workerCount` to specify the number of\n workers to use. If y
ou specify one or more workers, you _must_ also\n set `TrainingInput.workerTy
pe` to specify the type of machine to use\n for your worker nodes.\n\n* You
_may_ set `TrainingInput.parameterServerCount` to specify the\n number of pa
rameter servers to use. If you specify one or more\n parameter servers, you _
must_ also set\n `TrainingInput.parameterServerType` to specify the type of m
achine to\n use for your parameter servers.\n\nNote that all of your workers
must use the same machine type, which can\nbe different from your parameter serv
er type and master type. Your\nparameter servers must likewise use the same mach
ine type, which can be\ndifferent from your worker type and master type." |
| 1046 ], |
| 1047 "type": "string" |
| 1048 }, |
| 1049 "jobDir": { |
| 1050 "description": "Optional. A Google Cloud Storage path in whi
ch to store training outputs\nand other data needed for training. This path is p
assed to your TensorFlow\nprogram as the 'job_dir' command-line argument. The be
nefit of specifying\nthis field is that Cloud ML validates the path for use in t
raining.", |
| 1051 "type": "string" |
| 1052 }, |
| 1053 "hyperparameters": { |
| 1054 "$ref": "GoogleCloudMlV1__HyperparameterSpec", |
| 1055 "description": "Optional. The set of Hyperparameters to tune
." |
| 1056 }, |
| 1057 "parameterServerCount": { |
| 1058 "description": "Optional. The number of parameter server rep
licas to use for the training\njob. Each replica in the cluster will be of the t
ype specified in\n`parameter_server_type`.\n\nThis value can only be used when `
scale_tier` is set to `CUSTOM`.If you\nset this value, you must also set `parame
ter_server_type`.", |
| 1059 "format": "int64", |
| 1060 "type": "string" |
| 1061 }, |
| 1062 "packageUris": { |
| 1063 "description": "Required. The Google Cloud Storage location
of the packages with\nthe training program and any additional dependencies.\nThe
maximum number of package URIs is 100.", |
| 1064 "items": { |
| 1065 "type": "string" |
| 1066 }, |
| 1067 "type": "array" |
| 1068 } |
| 1069 }, |
| 1070 "type": "object" |
| 1071 }, |
799 "GoogleCloudMlV1__Job": { | 1072 "GoogleCloudMlV1__Job": { |
800 "description": "Represents a training or prediction job.", | 1073 "description": "Represents a training or prediction job.", |
801 "id": "GoogleCloudMlV1__Job", | 1074 "id": "GoogleCloudMlV1__Job", |
802 "properties": { | 1075 "properties": { |
| 1076 "createTime": { |
| 1077 "description": "Output only. When the job was created.", |
| 1078 "format": "google-datetime", |
| 1079 "type": "string" |
| 1080 }, |
| 1081 "trainingInput": { |
| 1082 "$ref": "GoogleCloudMlV1__TrainingInput", |
| 1083 "description": "Input parameters to create a training job." |
| 1084 }, |
803 "state": { | 1085 "state": { |
804 "description": "Output only. The detailed state of a job.", | 1086 "description": "Output only. The detailed state of a job.", |
805 "enum": [ | 1087 "enum": [ |
806 "STATE_UNSPECIFIED", | 1088 "STATE_UNSPECIFIED", |
807 "QUEUED", | 1089 "QUEUED", |
808 "PREPARING", | 1090 "PREPARING", |
809 "RUNNING", | 1091 "RUNNING", |
810 "SUCCEEDED", | 1092 "SUCCEEDED", |
811 "FAILED", | 1093 "FAILED", |
812 "CANCELLING", | 1094 "CANCELLING", |
(...skipping 33 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
846 "format": "google-datetime", | 1128 "format": "google-datetime", |
847 "type": "string" | 1129 "type": "string" |
848 }, | 1130 }, |
849 "predictionOutput": { | 1131 "predictionOutput": { |
850 "$ref": "GoogleCloudMlV1__PredictionOutput", | 1132 "$ref": "GoogleCloudMlV1__PredictionOutput", |
851 "description": "The current prediction job result." | 1133 "description": "The current prediction job result." |
852 }, | 1134 }, |
853 "trainingOutput": { | 1135 "trainingOutput": { |
854 "$ref": "GoogleCloudMlV1__TrainingOutput", | 1136 "$ref": "GoogleCloudMlV1__TrainingOutput", |
855 "description": "The current training job result." | 1137 "description": "The current training job result." |
856 }, | |
857 "trainingInput": { | |
858 "$ref": "GoogleCloudMlV1__TrainingInput", | |
859 "description": "Input parameters to create a training job." | |
860 }, | |
861 "createTime": { | |
862 "description": "Output only. When the job was created.", | |
863 "format": "google-datetime", | |
864 "type": "string" | |
865 } | 1138 } |
866 }, | 1139 }, |
867 "type": "object" | 1140 "type": "object" |
868 }, | 1141 }, |
869 "GoogleApi__HttpBody": { | 1142 "GoogleApi__HttpBody": { |
870 "description": "Message that represents an arbitrary HTTP body. It s
hould only be used for\npayload formats that can't be represented as JSON, such
as raw binary or\nan HTML page.\n\n\nThis message can be used both in streaming
and non-streaming API methods in\nthe request as well as the response.\n\nIt can
be used as a top-level request field, which is convenient if one\nwants to extr
act parameters from either the URL or HTTP template into the\nrequest fields and
also want access to the raw HTTP body.\n\nExample:\n\n message GetResourceRe
quest {\n // A unique request id.\n string request_id = 1;\n\n //
The raw HTTP body is bound to this field.\n google.api.HttpBody http_body
= 2;\n }\n\n service ResourceService {\n rpc GetResource(GetResourceR
equest) returns (google.api.HttpBody);\n rpc UpdateResource(google.api.Http
Body) returns (google.protobuf.Empty);\n }\n\nExample with streaming methods:
\n\n service CaldavService {\n rpc GetCalendar(stream google.api.HttpBod
y)\n returns (stream google.api.HttpBody);\n rpc UpdateCalendar(stre
am google.api.HttpBody)\n returns (stream google.api.HttpBody);\n }\n\
nUse of this type only changes how the request and response bodies are\nhandled,
all other features will continue to work unchanged.", | 1143 "description": "Message that represents an arbitrary HTTP body. It s
hould only be used for\npayload formats that can't be represented as JSON, such
as raw binary or\nan HTML page.\n\n\nThis message can be used both in streaming
and non-streaming API methods in\nthe request as well as the response.\n\nIt can
be used as a top-level request field, which is convenient if one\nwants to extr
act parameters from either the URL or HTTP template into the\nrequest fields and
also want access to the raw HTTP body.\n\nExample:\n\n message GetResourceRe
quest {\n // A unique request id.\n string request_id = 1;\n\n //
The raw HTTP body is bound to this field.\n google.api.HttpBody http_body
= 2;\n }\n\n service ResourceService {\n rpc GetResource(GetResourceR
equest) returns (google.api.HttpBody);\n rpc UpdateResource(google.api.Http
Body) returns (google.protobuf.Empty);\n }\n\nExample with streaming methods:
\n\n service CaldavService {\n rpc GetCalendar(stream google.api.HttpBod
y)\n returns (stream google.api.HttpBody);\n rpc UpdateCalendar(stre
am google.api.HttpBody)\n returns (stream google.api.HttpBody);\n }\n\
nUse of this type only changes how the request and response bodies are\nhandled,
all other features will continue to work unchanged.", |
871 "id": "GoogleApi__HttpBody", | 1144 "id": "GoogleApi__HttpBody", |
872 "properties": { | 1145 "properties": { |
| 1146 "extensions": { |
| 1147 "description": "Application specific response metadata. Must
be set in the first response\nfor streaming APIs.", |
| 1148 "items": { |
| 1149 "additionalProperties": { |
| 1150 "description": "Properties of the object. Contains f
ield @type with type URL.", |
| 1151 "type": "any" |
| 1152 }, |
| 1153 "type": "object" |
| 1154 }, |
| 1155 "type": "array" |
| 1156 }, |
873 "data": { | 1157 "data": { |
874 "description": "HTTP body binary data.", | 1158 "description": "HTTP body binary data.", |
875 "format": "byte", | 1159 "format": "byte", |
876 "type": "string" | 1160 "type": "string" |
877 }, | 1161 }, |
878 "contentType": { | 1162 "contentType": { |
879 "description": "The HTTP Content-Type string representing th
e content type of the body.", | 1163 "description": "The HTTP Content-Type string representing th
e content type of the body.", |
880 "type": "string" | 1164 "type": "string" |
881 } | 1165 } |
882 }, | 1166 }, |
883 "type": "object" | 1167 "type": "object" |
884 }, | 1168 }, |
| 1169 "GoogleCloudMlV1__GetConfigResponse": { |
| 1170 "description": "Returns service account information associated with
a project.", |
| 1171 "id": "GoogleCloudMlV1__GetConfigResponse", |
| 1172 "properties": { |
| 1173 "serviceAccount": { |
| 1174 "description": "The service account Cloud ML uses to access
resources in the project.", |
| 1175 "type": "string" |
| 1176 }, |
| 1177 "serviceAccountProject": { |
| 1178 "description": "The project number for `service_account`.", |
| 1179 "format": "int64", |
| 1180 "type": "string" |
| 1181 } |
| 1182 }, |
| 1183 "type": "object" |
| 1184 }, |
885 "GoogleCloudMlV1beta1__Version": { | 1185 "GoogleCloudMlV1beta1__Version": { |
886 "description": "Represents a version of the model.\n\nEach version i
s a trained model deployed in the cloud, ready to handle\nprediction requests. A
model can have multiple versions. You can get\ninformation about all of the ver
sions of a given model by calling\n[projects.models.versions.list](/ml-engine/re
ference/rest/v1beta1/projects.models.versions/list).", | 1186 "description": "Represents a version of the model.\n\nEach version i
s a trained model deployed in the cloud, ready to handle\nprediction requests. A
model can have multiple versions. You can get\ninformation about all of the ver
sions of a given model by calling\n[projects.models.versions.list](/ml-engine/re
ference/rest/v1beta1/projects.models.versions/list).", |
887 "id": "GoogleCloudMlV1beta1__Version", | 1187 "id": "GoogleCloudMlV1beta1__Version", |
888 "properties": { | 1188 "properties": { |
889 "description": { | 1189 "description": { |
890 "description": "Optional. The description specified for the
version when it was created.", | 1190 "description": "Optional. The description specified for the
version when it was created.", |
891 "type": "string" | 1191 "type": "string" |
892 }, | 1192 }, |
893 "deploymentUri": { | 1193 "deploymentUri": { |
894 "description": "Required. The Google Cloud Storage location
of the trained model used to\ncreate the version. See the\n[overview of model\nd
eployment](/ml-engine/docs/concepts/deployment-overview) for more\ninformaiton.\
n\nWhen passing Version to\n[projects.models.versions.create](/ml-engine/referen
ce/rest/v1beta1/projects.models.versions/create)\nthe model service uses the spe
cified location as the source of the model.\nOnce deployed, the model version is
hosted by the prediction service, so\nthis location is useful only as a histori
cal record.\nThe total number of model files can't exceed 1000.", | 1194 "description": "Required. The Google Cloud Storage location
of the trained model used to\ncreate the version. See the\n[overview of model\nd
eployment](/ml-engine/docs/concepts/deployment-overview) for more\ninformaiton.\
n\nWhen passing Version to\n[projects.models.versions.create](/ml-engine/referen
ce/rest/v1beta1/projects.models.versions/create)\nthe model service uses the spe
cified location as the source of the model.\nOnce deployed, the model version is
hosted by the prediction service, so\nthis location is useful only as a histori
cal record.\nThe total number of model files can't exceed 1000.", |
895 "type": "string" | 1195 "type": "string" |
896 }, | 1196 }, |
897 "isDefault": { | 1197 "isDefault": { |
898 "description": "Output only. If true, this version will be u
sed to handle prediction\nrequests that do not specify a version.\n\nYou can cha
nge the default version by calling\n[projects.methods.versions.setDefault](/ml-e
ngine/reference/rest/v1beta1/projects.models.versions/setDefault).", | 1198 "description": "Output only. If true, this version will be u
sed to handle prediction\nrequests that do not specify a version.\n\nYou can cha
nge the default version by calling\n[projects.methods.versions.setDefault](/ml-e
ngine/reference/rest/v1beta1/projects.models.versions/setDefault).", |
899 "type": "boolean" | 1199 "type": "boolean" |
900 }, | 1200 }, |
901 "createTime": { | 1201 "createTime": { |
902 "description": "Output only. The time the version was create
d.", | 1202 "description": "Output only. The time the version was create
d.", |
903 "format": "google-datetime", | 1203 "format": "google-datetime", |
904 "type": "string" | 1204 "type": "string" |
905 }, | 1205 }, |
906 "manualScaling": { | 1206 "manualScaling": { |
907 "$ref": "GoogleCloudMlV1beta1__ManualScaling", | 1207 "$ref": "GoogleCloudMlV1beta1__ManualScaling", |
908 "description": "Optional. Manually select the number of node
s to use for serving the\nmodel. If unset (i.e., by default), the number of node
s used to serve\nthe model automatically scales with traffic. However, care shou
ld be\ntaken to ramp up traffic according to the model's ability to scale. If\ny
our model needs to handle bursts of traffic beyond it's ability to\nscale, it is
recommended you set this field appropriately." | 1208 "description": "Manually select the number of nodes to use f
or serving the\nmodel. You should generally use `automatic_scaling` with an appr
opriate\n`min_nodes` instead, but this option is available if you want predictab
le\nbilling. Beware that latency and error rates will increase if the\ntraffic e
xceeds that capability of the system to serve it based on\nthe selected number o
f nodes." |
909 }, | 1209 }, |
910 "name": { | 1210 "name": { |
911 "description": "Required.The name specified for the version
when it was created.\n\nThe version name must be unique within the model it is c
reated in.", | 1211 "description": "Required.The name specified for the version
when it was created.\n\nThe version name must be unique within the model it is c
reated in.", |
912 "type": "string" | 1212 "type": "string" |
913 }, | 1213 }, |
| 1214 "automaticScaling": { |
| 1215 "$ref": "GoogleCloudMlV1beta1__AutomaticScaling", |
| 1216 "description": "Automatically scale the number of nodes used
to serve the model in\nresponse to increases and decreases in traffic. Care sho
uld be\ntaken to ramp up traffic according to the model's ability to scale\nor y
ou will start seeing increases in latency and 429 response codes." |
| 1217 }, |
914 "runtimeVersion": { | 1218 "runtimeVersion": { |
915 "description": "Optional. The Google Cloud ML runtime versio
n to use for this deployment.\nIf not set, Google Cloud ML will choose a version
.", | 1219 "description": "Optional. The Google Cloud ML runtime versio
n to use for this deployment.\nIf not set, Google Cloud ML will choose a version
.", |
916 "type": "string" | 1220 "type": "string" |
917 }, | 1221 }, |
918 "lastUseTime": { | 1222 "lastUseTime": { |
919 "description": "Output only. The time the version was last u
sed for prediction.", | 1223 "description": "Output only. The time the version was last u
sed for prediction.", |
920 "format": "google-datetime", | 1224 "format": "google-datetime", |
921 "type": "string" | 1225 "type": "string" |
922 } | 1226 } |
923 }, | 1227 }, |
924 "type": "object" | 1228 "type": "object" |
925 }, | 1229 }, |
926 "GoogleCloudMlV1__GetConfigResponse": { | |
927 "description": "Returns service account information associated with
a project.", | |
928 "id": "GoogleCloudMlV1__GetConfigResponse", | |
929 "properties": { | |
930 "serviceAccountProject": { | |
931 "description": "The project number for `service_account`.", | |
932 "format": "int64", | |
933 "type": "string" | |
934 }, | |
935 "serviceAccount": { | |
936 "description": "The service account Cloud ML uses to access
resources in the project.", | |
937 "type": "string" | |
938 } | |
939 }, | |
940 "type": "object" | |
941 }, | |
942 "GoogleCloudMlV1__HyperparameterOutput": { | 1230 "GoogleCloudMlV1__HyperparameterOutput": { |
943 "description": "Represents the result of a single hyperparameter tun
ing trial from a\ntraining job. The TrainingOutput object that is returned on su
ccessful\ncompletion of a training job with hyperparameter tuning includes a lis
t\nof HyperparameterOutput objects, one for each successful trial.", | 1231 "description": "Represents the result of a single hyperparameter tun
ing trial from a\ntraining job. The TrainingOutput object that is returned on su
ccessful\ncompletion of a training job with hyperparameter tuning includes a lis
t\nof HyperparameterOutput objects, one for each successful trial.", |
944 "id": "GoogleCloudMlV1__HyperparameterOutput", | 1232 "id": "GoogleCloudMlV1__HyperparameterOutput", |
945 "properties": { | 1233 "properties": { |
946 "finalMetric": { | |
947 "$ref": "GoogleCloudMlV1_HyperparameterOutput_Hyperparameter
Metric", | |
948 "description": "The final objective metric seen for this tri
al." | |
949 }, | |
950 "hyperparameters": { | 1234 "hyperparameters": { |
951 "additionalProperties": { | 1235 "additionalProperties": { |
952 "type": "string" | 1236 "type": "string" |
953 }, | 1237 }, |
954 "description": "The hyperparameters given to this trial.", | 1238 "description": "The hyperparameters given to this trial.", |
955 "type": "object" | 1239 "type": "object" |
956 }, | 1240 }, |
957 "trialId": { | 1241 "trialId": { |
958 "description": "The trial id for these results.", | 1242 "description": "The trial id for these results.", |
959 "type": "string" | 1243 "type": "string" |
960 }, | 1244 }, |
961 "allMetrics": { | 1245 "allMetrics": { |
962 "description": "All recorded object metrics for this trial."
, | 1246 "description": "All recorded object metrics for this trial."
, |
963 "items": { | 1247 "items": { |
964 "$ref": "GoogleCloudMlV1_HyperparameterOutput_Hyperparam
eterMetric" | 1248 "$ref": "GoogleCloudMlV1_HyperparameterOutput_Hyperparam
eterMetric" |
965 }, | 1249 }, |
966 "type": "array" | 1250 "type": "array" |
| 1251 }, |
| 1252 "finalMetric": { |
| 1253 "$ref": "GoogleCloudMlV1_HyperparameterOutput_Hyperparameter
Metric", |
| 1254 "description": "The final objective metric seen for this tri
al." |
967 } | 1255 } |
968 }, | 1256 }, |
969 "type": "object" | 1257 "type": "object" |
| 1258 }, |
| 1259 "GoogleCloudMlV1__AutomaticScaling": { |
| 1260 "description": "Options for automatically scaling a model.", |
| 1261 "id": "GoogleCloudMlV1__AutomaticScaling", |
| 1262 "properties": { |
| 1263 "minNodes": { |
| 1264 "description": "Optional. The minimum number of nodes to all
ocate for this model. These\nnodes are always up, starting from the time the mod
el is deployed, so the\ncost of operating this model will be at least\n`rate` *
`min_nodes` * number of hours since last billing cycle,\nwhere `rate` is the cos
t per node-hour as documented in\n[pricing](https://cloud.google.com/ml-engine/p
ricing#prediction_pricing),\neven if no predictions are performed. There is addi
tional cost for each\nprediction performed.\n\nUnlike manual scaling, if the loa
d gets too heavy for the nodes\nthat are up, the service will automatically add
nodes to handle the\nincreased load as well as scale back as traffic drops, alwa
ys maintaining\nat least `min_nodes`. You will be charged for the time in which
additional\nnodes are used.\n\nIf not specified, `min_nodes` defaults to 0, in w
hich case, when traffic\nto a model stops (and after a cool-down period), nodes
will be shut down\nand no charges will be incurred until traffic to the model re
sumes.", |
| 1265 "format": "int32", |
| 1266 "type": "integer" |
| 1267 } |
| 1268 }, |
| 1269 "type": "object" |
970 }, | 1270 }, |
971 "GoogleCloudMlV1__PredictionOutput": { | 1271 "GoogleCloudMlV1__PredictionOutput": { |
972 "description": "Represents results of a prediction job.", | 1272 "description": "Represents results of a prediction job.", |
973 "id": "GoogleCloudMlV1__PredictionOutput", | 1273 "id": "GoogleCloudMlV1__PredictionOutput", |
974 "properties": { | 1274 "properties": { |
975 "outputPath": { | 1275 "outputPath": { |
976 "description": "The output Google Cloud Storage location pro
vided at the job creation time.", | 1276 "description": "The output Google Cloud Storage location pro
vided at the job creation time.", |
977 "type": "string" | 1277 "type": "string" |
978 }, | 1278 }, |
979 "nodeHours": { | 1279 "nodeHours": { |
980 "description": "Node hours used by the batch prediction job.
", | 1280 "description": "Node hours used by the batch prediction job.
", |
981 "format": "double", | 1281 "format": "double", |
982 "type": "number" | 1282 "type": "number" |
983 }, | 1283 }, |
984 "predictionCount": { | 1284 "predictionCount": { |
985 "description": "The number of generated predictions.", | 1285 "description": "The number of generated predictions.", |
986 "format": "int64", | 1286 "format": "int64", |
987 "type": "string" | 1287 "type": "string" |
988 }, | 1288 }, |
989 "errorCount": { | 1289 "errorCount": { |
990 "description": "The number of data instances which resulted
in errors.", | 1290 "description": "The number of data instances which resulted
in errors.", |
991 "format": "int64", | 1291 "format": "int64", |
992 "type": "string" | 1292 "type": "string" |
993 } | 1293 } |
994 }, | 1294 }, |
995 "type": "object" | 1295 "type": "object" |
996 }, | 1296 }, |
| 1297 "GoogleCloudMlV1beta1__AutomaticScaling": { |
| 1298 "description": "Options for automatically scaling a model.", |
| 1299 "id": "GoogleCloudMlV1beta1__AutomaticScaling", |
| 1300 "properties": { |
| 1301 "minNodes": { |
| 1302 "description": "Optional. The minimum number of nodes to all
ocate for this model. These\nnodes are always up, starting from the time the mod
el is deployed, so the\ncost of operating this model will be at least\n`rate` *
`min_nodes` * number of hours since last billing cycle,\nwhere `rate` is the cos
t per node-hour as documented in\n[pricing](https://cloud.google.com/ml-engine/p
ricing#prediction_pricing),\neven if no predictions are performed. There is addi
tional cost for each\nprediction performed.\n\nUnlike manual scaling, if the loa
d gets too heavy for the nodes\nthat are up, the service will automatically add
nodes to handle the\nincreased load as well as scale back as traffic drops, alwa
ys maintaining\nat least `min_nodes`. You will be charged for the time in which
additional\nnodes are used.\n\nIf not specified, `min_nodes` defaults to 0, in w
hich case, when traffic\nto a model stops (and after a cool-down period), nodes
will be shut down\nand no charges will be incurred until traffic to the model re
sumes.", |
| 1303 "format": "int32", |
| 1304 "type": "integer" |
| 1305 } |
| 1306 }, |
| 1307 "type": "object" |
| 1308 }, |
997 "GoogleLongrunning__ListOperationsResponse": { | 1309 "GoogleLongrunning__ListOperationsResponse": { |
998 "description": "The response message for Operations.ListOperations."
, | 1310 "description": "The response message for Operations.ListOperations."
, |
999 "id": "GoogleLongrunning__ListOperationsResponse", | 1311 "id": "GoogleLongrunning__ListOperationsResponse", |
1000 "properties": { | 1312 "properties": { |
1001 "nextPageToken": { | |
1002 "description": "The standard List next-page token.", | |
1003 "type": "string" | |
1004 }, | |
1005 "operations": { | 1313 "operations": { |
1006 "description": "A list of operations that matches the specif
ied filter in the request.", | 1314 "description": "A list of operations that matches the specif
ied filter in the request.", |
1007 "items": { | 1315 "items": { |
1008 "$ref": "GoogleLongrunning__Operation" | 1316 "$ref": "GoogleLongrunning__Operation" |
1009 }, | 1317 }, |
1010 "type": "array" | 1318 "type": "array" |
| 1319 }, |
| 1320 "nextPageToken": { |
| 1321 "description": "The standard List next-page token.", |
| 1322 "type": "string" |
1011 } | 1323 } |
1012 }, | 1324 }, |
1013 "type": "object" | 1325 "type": "object" |
1014 }, | 1326 }, |
1015 "GoogleCloudMlV1__ManualScaling": { | 1327 "GoogleCloudMlV1__ManualScaling": { |
1016 "description": "Options for manually scaling a model.", | 1328 "description": "Options for manually scaling a model.", |
1017 "id": "GoogleCloudMlV1__ManualScaling", | 1329 "id": "GoogleCloudMlV1__ManualScaling", |
1018 "properties": { | 1330 "properties": { |
1019 "nodes": { | 1331 "nodes": { |
1020 "description": "The number of nodes to allocate for this mod
el. These nodes are always up,\nstarting from the time the model is deployed, so
the cost of operating\nthis model will be proportional to nodes * number of hou
rs since\ndeployment.", | 1332 "description": "The number of nodes to allocate for this mod
el. These nodes are always up,\nstarting from the time the model is deployed, so
the cost of operating\nthis model will be proportional to `nodes` * number of h
ours since\nlast billing cycle plus the cost for each prediction performed.", |
1021 "format": "int32", | 1333 "format": "int32", |
1022 "type": "integer" | 1334 "type": "integer" |
1023 } | 1335 } |
1024 }, | 1336 }, |
1025 "type": "object" | 1337 "type": "object" |
1026 }, | 1338 }, |
1027 "GoogleCloudMlV1__TrainingOutput": { | 1339 "GoogleCloudMlV1__TrainingOutput": { |
1028 "description": "Represents results of a training job. Output only.", | 1340 "description": "Represents results of a training job. Output only.", |
1029 "id": "GoogleCloudMlV1__TrainingOutput", | 1341 "id": "GoogleCloudMlV1__TrainingOutput", |
1030 "properties": { | 1342 "properties": { |
1031 "completedTrialCount": { | |
1032 "description": "The number of hyperparameter tuning trials t
hat completed successfully.\nOnly set for hyperparameter tuning jobs.", | |
1033 "format": "int64", | |
1034 "type": "string" | |
1035 }, | |
1036 "isHyperparameterTuningJob": { | |
1037 "description": "Whether this job is a hyperparameter tuning
job.", | |
1038 "type": "boolean" | |
1039 }, | |
1040 "consumedMLUnits": { | 1343 "consumedMLUnits": { |
1041 "description": "The amount of ML units consumed by the job."
, | 1344 "description": "The amount of ML units consumed by the job."
, |
1042 "format": "double", | 1345 "format": "double", |
1043 "type": "number" | 1346 "type": "number" |
1044 }, | 1347 }, |
1045 "trials": { | 1348 "trials": { |
1046 "description": "Results for individual Hyperparameter trials
.\nOnly set for hyperparameter tuning jobs.", | 1349 "description": "Results for individual Hyperparameter trials
.\nOnly set for hyperparameter tuning jobs.", |
1047 "items": { | 1350 "items": { |
1048 "$ref": "GoogleCloudMlV1__HyperparameterOutput" | 1351 "$ref": "GoogleCloudMlV1__HyperparameterOutput" |
1049 }, | 1352 }, |
1050 "type": "array" | 1353 "type": "array" |
| 1354 }, |
| 1355 "completedTrialCount": { |
| 1356 "description": "The number of hyperparameter tuning trials t
hat completed successfully.\nOnly set for hyperparameter tuning jobs.", |
| 1357 "format": "int64", |
| 1358 "type": "string" |
| 1359 }, |
| 1360 "isHyperparameterTuningJob": { |
| 1361 "description": "Whether this job is a hyperparameter tuning
job.", |
| 1362 "type": "boolean" |
1051 } | 1363 } |
1052 }, | 1364 }, |
1053 "type": "object" | 1365 "type": "object" |
1054 }, | 1366 }, |
1055 "GoogleCloudMlV1__PredictRequest": { | 1367 "GoogleCloudMlV1__PredictRequest": { |
1056 "description": "Request for predictions to be issued against a train
ed model.\n\nThe body of the request is a single JSON object with a single top-l
evel\nfield:\n\n<dl>\n <dt>instances</dt>\n <dd>A JSON array containing values
representing the instances to use for\n prediction.</dd>\n</dl>\n\nThe str
ucture of each element of the instances list is determined by your\nmodel's inpu
t definition. Instances can include named inputs or can contain\nonly unlabeled
values.\n\nNot all data includes named inputs. Some instances will be simple\nJS
ON values (boolean, number, or string). However, instances are often lists\nof s
imple values, or complex nested lists. Here are some examples of request\nbodies
:\n\nCSV data with each row encoded as a string value:\n<pre>\n{\"instances\": [
\"1.0,true,\\\\\"x\\\\\"\", \"-2.0,false,\\\\\"y\\\\\"\"]}\n</pre>\nPlain text:\
n<pre>\n{\"instances\": [\"the quick brown fox\", \"la bruja le dio\"]}\n</pre>\
nSentences encoded as lists of words (vectors of strings):\n<pre>\n{\n \"instan
ces\": [\n [\"the\",\"quick\",\"brown\"],\n [\"la\",\"bruja\",\"le\"],\n
...\n ]\n}\n</pre>\nFloating point scalar values:\n<pre>\n{\"instances\": [0.
0, 1.1, 2.2]}\n</pre>\nVectors of integers:\n<pre>\n{\n \"instances\": [\n [
0, 1, 2],\n [3, 4, 5],\n ...\n ]\n}\n</pre>\nTensors (in this case, two-d
imensional tensors):\n<pre>\n{\n \"instances\": [\n [\n [0, 1, 2],\n
[3, 4, 5]\n ],\n ...\n ]\n}\n</pre>\nImages can be represented differe
nt ways. In this encoding scheme the first\ntwo dimensions represent the rows an
d columns of the image, and the third\ncontains lists (vectors) of the R, G, and
B values for each pixel.\n<pre>\n{\n \"instances\": [\n [\n [\n
[138, 30, 66],\n [130, 20, 56],\n ...\n ],\n [\n
[126, 38, 61],\n [122, 24, 57],\n ...\n ],\n ...\n ]
,\n ...\n ]\n}\n</pre>\nJSON strings must be encoded as UTF-8. To send binar
y data, you must\nbase64-encode the data and mark it as binary. To mark a JSON s
tring\nas binary, replace it with a JSON object with a single attribute named `b
64`:\n<pre>{\"b64\": \"...\"} </pre>\nFor example:\n\nTwo Serialized tf.Examples
(fake data, for illustrative purposes only):\n<pre>\n{\"instances\": [{\"b64\":
\"X5ad6u\"}, {\"b64\": \"IA9j4nx\"}]}\n</pre>\nTwo JPEG image byte strings (fak
e data, for illustrative purposes only):\n<pre>\n{\"instances\": [{\"b64\": \"AS
a8asdf\"}, {\"b64\": \"JLK7ljk3\"}]}\n</pre>\nIf your data includes named refere
nces, format each instance as a JSON object\nwith the named references as the ke
ys:\n\nJSON input data to be preprocessed:\n<pre>\n{\n \"instances\": [\n {\
n \"a\": 1.0,\n \"b\": true,\n \"c\": \"x\"\n },\n {\n
\"a\": -2.0,\n \"b\": false,\n \"c\": \"y\"\n }\n ]\n}\n</pre>\nS
ome models have an underlying TensorFlow graph that accepts multiple input\ntens
ors. In this case, you should use the names of JSON name/value pairs to\nidentif
y the input tensors, as shown in the following exmaples:\n\nFor a graph with inp
ut tensor aliases \"tag\" (string) and \"image\"\n(base64-encoded string):\n<pre
>\n{\n \"instances\": [\n {\n \"tag\": \"beach\",\n \"image\": {\"
b64\": \"ASa8asdf\"}\n },\n {\n \"tag\": \"car\",\n \"image\": {
\"b64\": \"JLK7ljk3\"}\n }\n ]\n}\n</pre>\nFor a graph with input tensor ali
ases \"tag\" (string) and \"image\"\n(3-dimensional array of 8-bit ints):\n<pre>
\n{\n \"instances\": [\n {\n \"tag\": \"beach\",\n \"image\": [\n
[\n [138, 30, 66],\n [130, 20, 56],\n ...\n
],\n [\n [126, 38, 61],\n [122, 24, 57],\n
...\n ],\n ...\n ]\n },\n {\n \"tag\": \"car\",\
n \"image\": [\n [\n [255, 0, 102],\n [255, 0, 97]
,\n ...\n ],\n [\n [254, 1, 101],\n [25
4, 2, 93],\n ...\n ],\n ...\n ]\n },\n ...\n
]\n}\n</pre>\nIf the call is successful, the response body will contain one pred
iction\nentry per instance in the request body. If prediction fails for any\nins
tance, the response body will contain no predictions and will contian\na single
error entry instead.", | 1368 "description": "Request for predictions to be issued against a train
ed model.\n\nThe body of the request is a single JSON object with a single top-l
evel\nfield:\n\n<dl>\n <dt>instances</dt>\n <dd>A JSON array containing values
representing the instances to use for\n prediction.</dd>\n</dl>\n\nThe str
ucture of each element of the instances list is determined by your\nmodel's inpu
t definition. Instances can include named inputs or can contain\nonly unlabeled
values.\n\nNot all data includes named inputs. Some instances will be simple\nJS
ON values (boolean, number, or string). However, instances are often lists\nof s
imple values, or complex nested lists. Here are some examples of request\nbodies
:\n\nCSV data with each row encoded as a string value:\n<pre>\n{\"instances\": [
\"1.0,true,\\\\\"x\\\\\"\", \"-2.0,false,\\\\\"y\\\\\"\"]}\n</pre>\nPlain text:\
n<pre>\n{\"instances\": [\"the quick brown fox\", \"la bruja le dio\"]}\n</pre>\
nSentences encoded as lists of words (vectors of strings):\n<pre>\n{\n \"instan
ces\": [\n [\"the\",\"quick\",\"brown\"],\n [\"la\",\"bruja\",\"le\"],\n
...\n ]\n}\n</pre>\nFloating point scalar values:\n<pre>\n{\"instances\": [0.
0, 1.1, 2.2]}\n</pre>\nVectors of integers:\n<pre>\n{\n \"instances\": [\n [
0, 1, 2],\n [3, 4, 5],\n ...\n ]\n}\n</pre>\nTensors (in this case, two-d
imensional tensors):\n<pre>\n{\n \"instances\": [\n [\n [0, 1, 2],\n
[3, 4, 5]\n ],\n ...\n ]\n}\n</pre>\nImages can be represented differe
nt ways. In this encoding scheme the first\ntwo dimensions represent the rows an
d columns of the image, and the third\ncontains lists (vectors) of the R, G, and
B values for each pixel.\n<pre>\n{\n \"instances\": [\n [\n [\n
[138, 30, 66],\n [130, 20, 56],\n ...\n ],\n [\n
[126, 38, 61],\n [122, 24, 57],\n ...\n ],\n ...\n ]
,\n ...\n ]\n}\n</pre>\nJSON strings must be encoded as UTF-8. To send binar
y data, you must\nbase64-encode the data and mark it as binary. To mark a JSON s
tring\nas binary, replace it with a JSON object with a single attribute named `b
64`:\n<pre>{\"b64\": \"...\"} </pre>\nFor example:\n\nTwo Serialized tf.Examples
(fake data, for illustrative purposes only):\n<pre>\n{\"instances\": [{\"b64\":
\"X5ad6u\"}, {\"b64\": \"IA9j4nx\"}]}\n</pre>\nTwo JPEG image byte strings (fak
e data, for illustrative purposes only):\n<pre>\n{\"instances\": [{\"b64\": \"AS
a8asdf\"}, {\"b64\": \"JLK7ljk3\"}]}\n</pre>\nIf your data includes named refere
nces, format each instance as a JSON object\nwith the named references as the ke
ys:\n\nJSON input data to be preprocessed:\n<pre>\n{\n \"instances\": [\n {\
n \"a\": 1.0,\n \"b\": true,\n \"c\": \"x\"\n },\n {\n
\"a\": -2.0,\n \"b\": false,\n \"c\": \"y\"\n }\n ]\n}\n</pre>\nS
ome models have an underlying TensorFlow graph that accepts multiple input\ntens
ors. In this case, you should use the names of JSON name/value pairs to\nidentif
y the input tensors, as shown in the following exmaples:\n\nFor a graph with inp
ut tensor aliases \"tag\" (string) and \"image\"\n(base64-encoded string):\n<pre
>\n{\n \"instances\": [\n {\n \"tag\": \"beach\",\n \"image\": {\"
b64\": \"ASa8asdf\"}\n },\n {\n \"tag\": \"car\",\n \"image\": {
\"b64\": \"JLK7ljk3\"}\n }\n ]\n}\n</pre>\nFor a graph with input tensor ali
ases \"tag\" (string) and \"image\"\n(3-dimensional array of 8-bit ints):\n<pre>
\n{\n \"instances\": [\n {\n \"tag\": \"beach\",\n \"image\": [\n
[\n [138, 30, 66],\n [130, 20, 56],\n ...\n
],\n [\n [126, 38, 61],\n [122, 24, 57],\n
...\n ],\n ...\n ]\n },\n {\n \"tag\": \"car\",\
n \"image\": [\n [\n [255, 0, 102],\n [255, 0, 97]
,\n ...\n ],\n [\n [254, 1, 101],\n [25
4, 2, 93],\n ...\n ],\n ...\n ]\n },\n ...\n
]\n}\n</pre>\nIf the call is successful, the response body will contain one pred
iction\nentry per instance in the request body. If prediction fails for any\nins
tance, the response body will contain no predictions and will contian\na single
error entry instead.", |
1057 "id": "GoogleCloudMlV1__PredictRequest", | 1369 "id": "GoogleCloudMlV1__PredictRequest", |
1058 "properties": { | 1370 "properties": { |
1059 "httpBody": { | 1371 "httpBody": { |
1060 "$ref": "GoogleApi__HttpBody", | 1372 "$ref": "GoogleApi__HttpBody", |
1061 "description": "\nRequired. The prediction request body." | 1373 "description": "\nRequired. The prediction request body." |
1062 } | 1374 } |
1063 }, | 1375 }, |
1064 "type": "object" | 1376 "type": "object" |
1065 }, | 1377 }, |
1066 "GoogleCloudMlV1_HyperparameterOutput_HyperparameterMetric": { | 1378 "GoogleCloudMlV1_HyperparameterOutput_HyperparameterMetric": { |
1067 "description": "An observed value of a metric.", | 1379 "description": "An observed value of a metric.", |
1068 "id": "GoogleCloudMlV1_HyperparameterOutput_HyperparameterMetric", | 1380 "id": "GoogleCloudMlV1_HyperparameterOutput_HyperparameterMetric", |
1069 "properties": { | 1381 "properties": { |
| 1382 "trainingStep": { |
| 1383 "description": "The global training step for this metric.", |
| 1384 "format": "int64", |
| 1385 "type": "string" |
| 1386 }, |
1070 "objectiveValue": { | 1387 "objectiveValue": { |
1071 "description": "The objective value at this training step.", | 1388 "description": "The objective value at this training step.", |
1072 "format": "double", | 1389 "format": "double", |
1073 "type": "number" | 1390 "type": "number" |
1074 }, | |
1075 "trainingStep": { | |
1076 "description": "The global training step for this metric.", | |
1077 "format": "int64", | |
1078 "type": "string" | |
1079 } | 1391 } |
1080 }, | 1392 }, |
1081 "type": "object" | 1393 "type": "object" |
1082 }, | 1394 }, |
1083 "GoogleCloudMlV1__Version": { | 1395 "GoogleCloudMlV1__Version": { |
1084 "description": "Represents a version of the model.\n\nEach version i
s a trained model deployed in the cloud, ready to handle\nprediction requests. A
model can have multiple versions. You can get\ninformation about all of the ver
sions of a given model by calling\n[projects.models.versions.list](/ml-engine/re
ference/rest/v1/projects.models.versions/list).", | 1396 "description": "Represents a version of the model.\n\nEach version i
s a trained model deployed in the cloud, ready to handle\nprediction requests. A
model can have multiple versions. You can get\ninformation about all of the ver
sions of a given model by calling\n[projects.models.versions.list](/ml-engine/re
ference/rest/v1/projects.models.versions/list).", |
1085 "id": "GoogleCloudMlV1__Version", | 1397 "id": "GoogleCloudMlV1__Version", |
1086 "properties": { | 1398 "properties": { |
1087 "runtimeVersion": { | 1399 "name": { |
1088 "description": "Optional. The Google Cloud ML runtime versio
n to use for this deployment.\nIf not set, Google Cloud ML will choose a version
.", | 1400 "description": "Required.The name specified for the version
when it was created.\n\nThe version name must be unique within the model it is c
reated in.", |
1089 "type": "string" | 1401 "type": "string" |
1090 }, | 1402 }, |
| 1403 "automaticScaling": { |
| 1404 "$ref": "GoogleCloudMlV1__AutomaticScaling", |
| 1405 "description": "Automatically scale the number of nodes used
to serve the model in\nresponse to increases and decreases in traffic. Care sho
uld be\ntaken to ramp up traffic according to the model's ability to scale\nor y
ou will start seeing increases in latency and 429 response codes." |
| 1406 }, |
1091 "lastUseTime": { | 1407 "lastUseTime": { |
1092 "description": "Output only. The time the version was last u
sed for prediction.", | 1408 "description": "Output only. The time the version was last u
sed for prediction.", |
1093 "format": "google-datetime", | 1409 "format": "google-datetime", |
1094 "type": "string" | 1410 "type": "string" |
1095 }, | 1411 }, |
| 1412 "runtimeVersion": { |
| 1413 "description": "Optional. The Google Cloud ML runtime versio
n to use for this deployment.\nIf not set, Google Cloud ML will choose a version
.", |
| 1414 "type": "string" |
| 1415 }, |
1096 "description": { | 1416 "description": { |
1097 "description": "Optional. The description specified for the
version when it was created.", | 1417 "description": "Optional. The description specified for the
version when it was created.", |
1098 "type": "string" | 1418 "type": "string" |
1099 }, | 1419 }, |
1100 "deploymentUri": { | 1420 "deploymentUri": { |
1101 "description": "Required. The Google Cloud Storage location
of the trained model used to\ncreate the version. See the\n[overview of model\nd
eployment](/ml-engine/docs/concepts/deployment-overview) for more\ninformaiton.\
n\nWhen passing Version to\n[projects.models.versions.create](/ml-engine/referen
ce/rest/v1/projects.models.versions/create)\nthe model service uses the specifie
d location as the source of the model.\nOnce deployed, the model version is host
ed by the prediction service, so\nthis location is useful only as a historical r
ecord.\nThe total number of model files can't exceed 1000.", | 1421 "description": "Required. The Google Cloud Storage location
of the trained model used to\ncreate the version. See the\n[overview of model\nd
eployment](/ml-engine/docs/concepts/deployment-overview) for more\ninformaiton.\
n\nWhen passing Version to\n[projects.models.versions.create](/ml-engine/referen
ce/rest/v1/projects.models.versions/create)\nthe model service uses the specifie
d location as the source of the model.\nOnce deployed, the model version is host
ed by the prediction service, so\nthis location is useful only as a historical r
ecord.\nThe total number of model files can't exceed 1000.", |
1102 "type": "string" | 1422 "type": "string" |
1103 }, | 1423 }, |
1104 "isDefault": { | 1424 "isDefault": { |
1105 "description": "Output only. If true, this version will be u
sed to handle prediction\nrequests that do not specify a version.\n\nYou can cha
nge the default version by calling\n[projects.methods.versions.setDefault](/ml-e
ngine/reference/rest/v1/projects.models.versions/setDefault).", | 1425 "description": "Output only. If true, this version will be u
sed to handle prediction\nrequests that do not specify a version.\n\nYou can cha
nge the default version by calling\n[projects.methods.versions.setDefault](/ml-e
ngine/reference/rest/v1/projects.models.versions/setDefault).", |
1106 "type": "boolean" | 1426 "type": "boolean" |
1107 }, | 1427 }, |
1108 "createTime": { | 1428 "createTime": { |
1109 "description": "Output only. The time the version was create
d.", | 1429 "description": "Output only. The time the version was create
d.", |
1110 "format": "google-datetime", | 1430 "format": "google-datetime", |
1111 "type": "string" | 1431 "type": "string" |
1112 }, | 1432 }, |
1113 "manualScaling": { | 1433 "manualScaling": { |
1114 "$ref": "GoogleCloudMlV1__ManualScaling", | 1434 "$ref": "GoogleCloudMlV1__ManualScaling", |
1115 "description": "Optional. Manually select the number of node
s to use for serving the\nmodel. If unset (i.e., by default), the number of node
s used to serve\nthe model automatically scales with traffic. However, care shou
ld be\ntaken to ramp up traffic according to the model's ability to scale. If\ny
our model needs to handle bursts of traffic beyond it's ability to\nscale, it is
recommended you set this field appropriately." | 1435 "description": "Manually select the number of nodes to use f
or serving the\nmodel. You should generally use `automatic_scaling` with an appr
opriate\n`min_nodes` instead, but this option is available if you want more\npre
dictable billing. Beware that latency and error rates will increase\nif the traf
fic exceeds that capability of the system to serve it based\non the selected num
ber of nodes." |
1116 }, | |
1117 "name": { | |
1118 "description": "Required.The name specified for the version
when it was created.\n\nThe version name must be unique within the model it is c
reated in.", | |
1119 "type": "string" | |
1120 } | 1436 } |
1121 }, | 1437 }, |
1122 "type": "object" | 1438 "type": "object" |
1123 }, | 1439 }, |
1124 "GoogleCloudMlV1__ParameterSpec": { | 1440 "GoogleCloudMlV1__ParameterSpec": { |
1125 "description": "Represents a single hyperparameter to optimize.", | 1441 "description": "Represents a single hyperparameter to optimize.", |
1126 "id": "GoogleCloudMlV1__ParameterSpec", | 1442 "id": "GoogleCloudMlV1__ParameterSpec", |
1127 "properties": { | 1443 "properties": { |
| 1444 "minValue": { |
| 1445 "description": "Required if type is `DOUBLE` or `INTEGER`. T
his field\nshould be unset if type is `CATEGORICAL`. This value should be intege
rs if\ntype is INTEGER.", |
| 1446 "format": "double", |
| 1447 "type": "number" |
| 1448 }, |
1128 "discreteValues": { | 1449 "discreteValues": { |
1129 "description": "Required if type is `DISCRETE`.\nA list of f
easible points.\nThe list should be in strictly increasing order. For instance,
this\nparameter might have possible settings of 1.5, 2.5, and 4.0. This list\nsh
ould not contain more than 1,000 values.", | 1450 "description": "Required if type is `DISCRETE`.\nA list of f
easible points.\nThe list should be in strictly increasing order. For instance,
this\nparameter might have possible settings of 1.5, 2.5, and 4.0. This list\nsh
ould not contain more than 1,000 values.", |
1130 "items": { | 1451 "items": { |
1131 "format": "double", | 1452 "format": "double", |
1132 "type": "number" | 1453 "type": "number" |
1133 }, | 1454 }, |
1134 "type": "array" | 1455 "type": "array" |
1135 }, | 1456 }, |
1136 "scaleType": { | 1457 "scaleType": { |
1137 "description": "Optional. How the parameter should be scaled
to the hypercube.\nLeave unset for categorical parameters.\nSome kind of scalin
g is strongly recommended for real or integral\nparameters (e.g., `UNIT_LINEAR_S
CALE`).", | 1458 "description": "Optional. How the parameter should be scaled
to the hypercube.\nLeave unset for categorical parameters.\nSome kind of scalin
g is strongly recommended for real or integral\nparameters (e.g., `UNIT_LINEAR_S
CALE`).", |
(...skipping 37 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
1175 "categoricalValues": { | 1496 "categoricalValues": { |
1176 "description": "Required if type is `CATEGORICAL`. The list
of possible categories.", | 1497 "description": "Required if type is `CATEGORICAL`. The list
of possible categories.", |
1177 "items": { | 1498 "items": { |
1178 "type": "string" | 1499 "type": "string" |
1179 }, | 1500 }, |
1180 "type": "array" | 1501 "type": "array" |
1181 }, | 1502 }, |
1182 "parameterName": { | 1503 "parameterName": { |
1183 "description": "Required. The parameter name must be unique
amongst all ParameterConfigs in\na HyperparameterSpec message. E.g., \"learning_
rate\".", | 1504 "description": "Required. The parameter name must be unique
amongst all ParameterConfigs in\na HyperparameterSpec message. E.g., \"learning_
rate\".", |
1184 "type": "string" | 1505 "type": "string" |
1185 }, | |
1186 "minValue": { | |
1187 "description": "Required if type is `DOUBLE` or `INTEGER`. T
his field\nshould be unset if type is `CATEGORICAL`. This value should be intege
rs if\ntype is INTEGER.", | |
1188 "format": "double", | |
1189 "type": "number" | |
1190 } | 1506 } |
1191 }, | 1507 }, |
1192 "type": "object" | 1508 "type": "object" |
1193 }, | 1509 }, |
1194 "GoogleCloudMlV1__PredictionInput": { | 1510 "GoogleCloudMlV1__PredictionInput": { |
1195 "description": "Represents input parameters for a prediction job.", | 1511 "description": "Represents input parameters for a prediction job.", |
1196 "id": "GoogleCloudMlV1__PredictionInput", | 1512 "id": "GoogleCloudMlV1__PredictionInput", |
1197 "properties": { | 1513 "properties": { |
1198 "region": { | 1514 "region": { |
1199 "description": "Required. The Google Compute Engine region t
o run the prediction job in.", | 1515 "description": "Required. The Google Compute Engine region t
o run the prediction job in.", |
1200 "type": "string" | 1516 "type": "string" |
1201 }, | 1517 }, |
1202 "versionName": { | 1518 "versionName": { |
1203 "description": "Use this field if you want to specify a vers
ion of the model to use. The\nstring is formatted the same way as `model_version
`, with the addition\nof the version information:\n\n`\"projects/<var>[YOUR_PROJ
ECT]</var>/models/<var>YOUR_MODEL/versions/<var>[YOUR_VERSION]</var>\"`", | 1519 "description": "Use this field if you want to specify a vers
ion of the model to use. The\nstring is formatted the same way as `model_version
`, with the addition\nof the version information:\n\n`\"projects/<var>[YOUR_PROJ
ECT]</var>/models/<var>YOUR_MODEL/versions/<var>[YOUR_VERSION]</var>\"`", |
1204 "type": "string" | 1520 "type": "string" |
1205 }, | 1521 }, |
1206 "modelName": { | 1522 "modelName": { |
1207 "description": "Use this field if you want to use the defaul
t version for the specified\nmodel. The string must use the following format:\n\
n`\"projects/<var>[YOUR_PROJECT]</var>/models/<var>[YOUR_MODEL]</var>\"`", | 1523 "description": "Use this field if you want to use the defaul
t version for the specified\nmodel. The string must use the following format:\n\
n`\"projects/<var>[YOUR_PROJECT]</var>/models/<var>[YOUR_MODEL]</var>\"`", |
1208 "type": "string" | 1524 "type": "string" |
1209 }, | 1525 }, |
1210 "outputPath": { | 1526 "outputPath": { |
1211 "description": "Required. The output Google Cloud Storage lo
cation.", | 1527 "description": "Required. The output Google Cloud Storage lo
cation.", |
1212 "type": "string" | 1528 "type": "string" |
1213 }, | 1529 }, |
| 1530 "uri": { |
| 1531 "description": "Use this field if you want to specify a Goog
le Cloud Storage path for\nthe model to use.", |
| 1532 "type": "string" |
| 1533 }, |
1214 "maxWorkerCount": { | 1534 "maxWorkerCount": { |
1215 "description": "Optional. The maximum number of workers to b
e used for parallel processing.\nDefaults to 10 if not specified.", | 1535 "description": "Optional. The maximum number of workers to b
e used for parallel processing.\nDefaults to 10 if not specified.", |
1216 "format": "int64", | 1536 "format": "int64", |
1217 "type": "string" | 1537 "type": "string" |
1218 }, | 1538 }, |
1219 "uri": { | |
1220 "description": "Use this field if you want to specify a Goog
le Cloud Storage path for\nthe model to use.", | |
1221 "type": "string" | |
1222 }, | |
1223 "dataFormat": { | 1539 "dataFormat": { |
1224 "description": "Required. The format of the input data files
.", | 1540 "description": "Required. The format of the input data files
.", |
1225 "enum": [ | 1541 "enum": [ |
1226 "DATA_FORMAT_UNSPECIFIED", | 1542 "DATA_FORMAT_UNSPECIFIED", |
1227 "TEXT", | 1543 "TEXT", |
1228 "TF_RECORD", | 1544 "TF_RECORD", |
1229 "TF_RECORD_GZIP" | 1545 "TF_RECORD_GZIP" |
1230 ], | 1546 ], |
1231 "enumDescriptions": [ | 1547 "enumDescriptions": [ |
1232 "Unspecified format.", | 1548 "Unspecified format.", |
1233 "The source file is a text file with instances separated
by the\nnew-line character.", | 1549 "The source file is a text file with instances separated
by the\nnew-line character.", |
1234 "The source file is a TFRecord file.", | 1550 "The source file is a TFRecord file.", |
1235 "The source file is a GZIP-compressed TFRecord file." | 1551 "The source file is a GZIP-compressed TFRecord file." |
1236 ], | 1552 ], |
1237 "type": "string" | 1553 "type": "string" |
1238 }, | 1554 }, |
1239 "runtimeVersion": { | 1555 "runtimeVersion": { |
1240 "description": "Optional. The Google Cloud ML runtime versio
n to use for this batch\nprediction. If not set, Google Cloud ML will pick the r
untime version used\nduring the CreateVersion request for this model version, or
choose the\nlatest stable version when model version information is not availab
le\nsuch as when the model is specified by uri.", | 1556 "description": "Optional. The Google Cloud ML runtime versio
n to use for this batch\nprediction. If not set, Google Cloud ML will pick the r
untime version used\nduring the CreateVersion request for this model version, or
choose the\nlatest stable version when model version information is not availab
le\nsuch as when the model is specified by uri.", |
1241 "type": "string" | 1557 "type": "string" |
1242 }, | 1558 }, |
1243 "inputPaths": { | 1559 "inputPaths": { |
1244 "description": "Required. The Google Cloud Storage location
of the input data files.\nMay contain wildcards.", | 1560 "description": "Required. The Google Cloud Storage location
of the input data files.\nMay contain wildcards.", |
1245 "items": { | 1561 "items": { |
1246 "type": "string" | 1562 "type": "string" |
1247 }, | 1563 }, |
1248 "type": "array" | 1564 "type": "array" |
1249 } | 1565 } |
1250 }, | 1566 }, |
1251 "type": "object" | 1567 "type": "object" |
1252 }, | |
1253 "GoogleCloudMlV1beta1__OperationMetadata": { | |
1254 "description": "Represents the metadata of the long-running operatio
n.", | |
1255 "id": "GoogleCloudMlV1beta1__OperationMetadata", | |
1256 "properties": { | |
1257 "createTime": { | |
1258 "description": "The time the operation was submitted.", | |
1259 "format": "google-datetime", | |
1260 "type": "string" | |
1261 }, | |
1262 "modelName": { | |
1263 "description": "Contains the name of the model associated wi
th the operation.", | |
1264 "type": "string" | |
1265 }, | |
1266 "version": { | |
1267 "$ref": "GoogleCloudMlV1beta1__Version", | |
1268 "description": "Contains the version associated with the ope
ration." | |
1269 }, | |
1270 "endTime": { | |
1271 "description": "The time operation processing completed.", | |
1272 "format": "google-datetime", | |
1273 "type": "string" | |
1274 }, | |
1275 "operationType": { | |
1276 "description": "The operation type.", | |
1277 "enum": [ | |
1278 "OPERATION_TYPE_UNSPECIFIED", | |
1279 "CREATE_VERSION", | |
1280 "DELETE_VERSION", | |
1281 "DELETE_MODEL" | |
1282 ], | |
1283 "enumDescriptions": [ | |
1284 "Unspecified operation type.", | |
1285 "An operation to create a new version.", | |
1286 "An operation to delete an existing version.", | |
1287 "An operation to delete an existing model." | |
1288 ], | |
1289 "type": "string" | |
1290 }, | |
1291 "startTime": { | |
1292 "description": "The time operation processing started.", | |
1293 "format": "google-datetime", | |
1294 "type": "string" | |
1295 }, | |
1296 "isCancellationRequested": { | |
1297 "description": "Indicates whether a request to cancel this o
peration has been made.", | |
1298 "type": "boolean" | |
1299 } | |
1300 }, | |
1301 "type": "object" | |
1302 }, | |
1303 "GoogleCloudMlV1__OperationMetadata": { | |
1304 "description": "Represents the metadata of the long-running operatio
n.", | |
1305 "id": "GoogleCloudMlV1__OperationMetadata", | |
1306 "properties": { | |
1307 "modelName": { | |
1308 "description": "Contains the name of the model associated wi
th the operation.", | |
1309 "type": "string" | |
1310 }, | |
1311 "version": { | |
1312 "$ref": "GoogleCloudMlV1__Version", | |
1313 "description": "Contains the version associated with the ope
ration." | |
1314 }, | |
1315 "endTime": { | |
1316 "description": "The time operation processing completed.", | |
1317 "format": "google-datetime", | |
1318 "type": "string" | |
1319 }, | |
1320 "operationType": { | |
1321 "description": "The operation type.", | |
1322 "enum": [ | |
1323 "OPERATION_TYPE_UNSPECIFIED", | |
1324 "CREATE_VERSION", | |
1325 "DELETE_VERSION", | |
1326 "DELETE_MODEL" | |
1327 ], | |
1328 "enumDescriptions": [ | |
1329 "Unspecified operation type.", | |
1330 "An operation to create a new version.", | |
1331 "An operation to delete an existing version.", | |
1332 "An operation to delete an existing model." | |
1333 ], | |
1334 "type": "string" | |
1335 }, | |
1336 "startTime": { | |
1337 "description": "The time operation processing started.", | |
1338 "format": "google-datetime", | |
1339 "type": "string" | |
1340 }, | |
1341 "isCancellationRequested": { | |
1342 "description": "Indicates whether a request to cancel this o
peration has been made.", | |
1343 "type": "boolean" | |
1344 }, | |
1345 "createTime": { | |
1346 "description": "The time the operation was submitted.", | |
1347 "format": "google-datetime", | |
1348 "type": "string" | |
1349 } | |
1350 }, | |
1351 "type": "object" | |
1352 }, | |
1353 "GoogleCloudMlV1__HyperparameterSpec": { | |
1354 "description": "Represents a set of hyperparameters to optimize.", | |
1355 "id": "GoogleCloudMlV1__HyperparameterSpec", | |
1356 "properties": { | |
1357 "params": { | |
1358 "description": "Required. The set of parameters to tune.", | |
1359 "items": { | |
1360 "$ref": "GoogleCloudMlV1__ParameterSpec" | |
1361 }, | |
1362 "type": "array" | |
1363 }, | |
1364 "maxTrials": { | |
1365 "description": "Optional. How many training trials should be
attempted to optimize\nthe specified hyperparameters.\n\nDefaults to one.", | |
1366 "format": "int32", | |
1367 "type": "integer" | |
1368 }, | |
1369 "maxParallelTrials": { | |
1370 "description": "Optional. The number of training trials to r
un concurrently.\nYou can reduce the time it takes to perform hyperparameter tun
ing by adding\ntrials in parallel. However, each trail only benefits from the in
formation\ngained in completed trials. That means that a trial does not get acce
ss to\nthe results of trials running at the same time, which could reduce the\nq
uality of the overall optimization.\n\nEach trial will use the same scale tier a
nd machine types.\n\nDefaults to one.", | |
1371 "format": "int32", | |
1372 "type": "integer" | |
1373 }, | |
1374 "goal": { | |
1375 "description": "Required. The type of goal to use for tuning
. Available types are\n`MAXIMIZE` and `MINIMIZE`.\n\nDefaults to `MAXIMIZE`.", | |
1376 "enum": [ | |
1377 "GOAL_TYPE_UNSPECIFIED", | |
1378 "MAXIMIZE", | |
1379 "MINIMIZE" | |
1380 ], | |
1381 "enumDescriptions": [ | |
1382 "Goal Type will default to maximize.", | |
1383 "Maximize the goal metric.", | |
1384 "Minimize the goal metric." | |
1385 ], | |
1386 "type": "string" | |
1387 }, | |
1388 "hyperparameterMetricTag": { | |
1389 "description": "Optional. The Tensorflow summary tag name to
use for optimizing trials. For\ncurrent versions of Tensorflow, this tag name s
hould exactly match what is\nshown in Tensorboard, including all scopes. For ve
rsions of Tensorflow\nprior to 0.12, this should be only the tag passed to tf.Su
mmary.\nBy default, \"training/hptuning/metric\" will be used.", | |
1390 "type": "string" | |
1391 } | |
1392 }, | |
1393 "type": "object" | |
1394 }, | |
1395 "GoogleCloudMlV1__ListJobsResponse": { | |
1396 "description": "Response message for the ListJobs method.", | |
1397 "id": "GoogleCloudMlV1__ListJobsResponse", | |
1398 "properties": { | |
1399 "jobs": { | |
1400 "description": "The list of jobs.", | |
1401 "items": { | |
1402 "$ref": "GoogleCloudMlV1__Job" | |
1403 }, | |
1404 "type": "array" | |
1405 }, | |
1406 "nextPageToken": { | |
1407 "description": "Optional. Pass this token as the `page_token
` field of the request for a\nsubsequent call.", | |
1408 "type": "string" | |
1409 } | |
1410 }, | |
1411 "type": "object" | |
1412 }, | |
1413 "GoogleCloudMlV1__SetDefaultVersionRequest": { | |
1414 "description": "Request message for the SetDefaultVersion request.", | |
1415 "id": "GoogleCloudMlV1__SetDefaultVersionRequest", | |
1416 "properties": {}, | |
1417 "type": "object" | |
1418 }, | |
1419 "GoogleLongrunning__Operation": { | |
1420 "description": "This resource represents a long-running operation th
at is the result of a\nnetwork API call.", | |
1421 "id": "GoogleLongrunning__Operation", | |
1422 "properties": { | |
1423 "done": { | |
1424 "description": "If the value is `false`, it means the operat
ion is still in progress.\nIf true, the operation is completed, and either `erro
r` or `response` is\navailable.", | |
1425 "type": "boolean" | |
1426 }, | |
1427 "response": { | |
1428 "additionalProperties": { | |
1429 "description": "Properties of the object. Contains field
@type with type URL.", | |
1430 "type": "any" | |
1431 }, | |
1432 "description": "The normal response of the operation in case
of success. If the original\nmethod returns no data on success, such as `Delet
e`, the response is\n`google.protobuf.Empty`. If the original method is standar
d\n`Get`/`Create`/`Update`, the response should be the resource. For other\nmet
hods, the response should have the type `XxxResponse`, where `Xxx`\nis the origi
nal method name. For example, if the original method name\nis `TakeSnapshot()`,
the inferred response type is\n`TakeSnapshotResponse`.", | |
1433 "type": "object" | |
1434 }, | |
1435 "name": { | |
1436 "description": "The server-assigned name, which is only uniq
ue within the same service that\noriginally returns it. If you use the default H
TTP mapping, the\n`name` should have the format of `operations/some/unique/name`
.", | |
1437 "type": "string" | |
1438 }, | |
1439 "error": { | |
1440 "$ref": "GoogleRpc__Status", | |
1441 "description": "The error result of the operation in case of
failure or cancellation." | |
1442 }, | |
1443 "metadata": { | |
1444 "additionalProperties": { | |
1445 "description": "Properties of the object. Contains field
@type with type URL.", | |
1446 "type": "any" | |
1447 }, | |
1448 "description": "Service-specific metadata associated with th
e operation. It typically\ncontains progress information and common metadata su
ch as create time.\nSome services might not provide such metadata. Any method t
hat returns a\nlong-running operation should document the metadata type, if any.
", | |
1449 "type": "object" | |
1450 } | |
1451 }, | |
1452 "type": "object" | |
1453 }, | |
1454 "GoogleCloudMlV1__Model": { | |
1455 "description": "Represents a machine learning solution.\n\nA model c
an have multiple versions, each of which is a deployed, trained\nmodel ready to
receive prediction requests. The model itself is just a\ncontainer.", | |
1456 "id": "GoogleCloudMlV1__Model", | |
1457 "properties": { | |
1458 "onlinePredictionLogging": { | |
1459 "description": "Optional. If true, enables StackDriver Loggi
ng for online prediction.\nDefault is false.", | |
1460 "type": "boolean" | |
1461 }, | |
1462 "defaultVersion": { | |
1463 "$ref": "GoogleCloudMlV1__Version", | |
1464 "description": "Output only. The default version of the mode
l. This version will be used to\nhandle prediction requests that do not specify
a version.\n\nYou can change the default version by calling\n[projects.methods.v
ersions.setDefault](/ml-engine/reference/rest/v1/projects.models.versions/setDef
ault)." | |
1465 }, | |
1466 "regions": { | |
1467 "description": "Optional. The list of regions where the mode
l is going to be deployed.\nCurrently only one region per model is supported.\nD
efaults to 'us-central1' if nothing is set.\nNote:\n* No matter where a model
is deployed, it can always be accessed by\n users from anywhere, both for onl
ine and batch prediction.\n* The region for a batch prediction job is set by t
he region field when\n submitting the batch prediction job and does not take
its value from\n this field.", | |
1468 "items": { | |
1469 "type": "string" | |
1470 }, | |
1471 "type": "array" | |
1472 }, | |
1473 "name": { | |
1474 "description": "Required. The name specified for the model w
hen it was created.\n\nThe model name must be unique within the project it is cr
eated in.", | |
1475 "type": "string" | |
1476 }, | |
1477 "description": { | |
1478 "description": "Optional. The description specified for the
model when it was created.", | |
1479 "type": "string" | |
1480 } | |
1481 }, | |
1482 "type": "object" | |
1483 }, | |
1484 "GoogleProtobuf__Empty": { | |
1485 "description": "A generic empty message that you can re-use to avoid
defining duplicated\nempty messages in your APIs. A typical example is to use i
t as the request\nor the response type of an API method. For instance:\n\n se
rvice Foo {\n rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty
);\n }\n\nThe JSON representation for `Empty` is empty JSON object `{}`.", | |
1486 "id": "GoogleProtobuf__Empty", | |
1487 "properties": {}, | |
1488 "type": "object" | |
1489 }, | |
1490 "GoogleCloudMlV1__ListVersionsResponse": { | |
1491 "description": "Response message for the ListVersions method.", | |
1492 "id": "GoogleCloudMlV1__ListVersionsResponse", | |
1493 "properties": { | |
1494 "nextPageToken": { | |
1495 "description": "Optional. Pass this token as the `page_token
` field of the request for a\nsubsequent call.", | |
1496 "type": "string" | |
1497 }, | |
1498 "versions": { | |
1499 "description": "The list of versions.", | |
1500 "items": { | |
1501 "$ref": "GoogleCloudMlV1__Version" | |
1502 }, | |
1503 "type": "array" | |
1504 } | |
1505 }, | |
1506 "type": "object" | |
1507 }, | |
1508 "GoogleCloudMlV1__CancelJobRequest": { | |
1509 "description": "Request message for the CancelJob method.", | |
1510 "id": "GoogleCloudMlV1__CancelJobRequest", | |
1511 "properties": {}, | |
1512 "type": "object" | |
1513 }, | |
1514 "GoogleCloudMlV1beta1__ManualScaling": { | |
1515 "description": "Options for manually scaling a model.", | |
1516 "id": "GoogleCloudMlV1beta1__ManualScaling", | |
1517 "properties": { | |
1518 "nodes": { | |
1519 "description": "The number of nodes to allocate for this mod
el. These nodes are always up,\nstarting from the time the model is deployed, so
the cost of operating\nthis model will be proportional to nodes * number of hou
rs since\ndeployment.", | |
1520 "format": "int32", | |
1521 "type": "integer" | |
1522 } | |
1523 }, | |
1524 "type": "object" | |
1525 } | 1568 } |
1526 }, | 1569 }, |
1527 "servicePath": "", | 1570 "servicePath": "", |
1528 "title": "Google Cloud Machine Learning Engine", | 1571 "title": "Google Cloud Machine Learning Engine", |
1529 "version": "v1" | 1572 "version": "v1" |
1530 } | 1573 } |
OLD | NEW |