Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(143)

Unified Diff: base/numerics/safe_math_impl.h

Issue 2931323002: Split out code to be shared between CheckedNumeric and ClampedNumeric (Closed)
Patch Set: iwyu Created 3 years, 6 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: base/numerics/safe_math_impl.h
diff --git a/base/numerics/safe_math_impl.h b/base/numerics/safe_math_impl.h
deleted file mode 100644
index a224f692dd5db196d937135ac6681395514b5809..0000000000000000000000000000000000000000
--- a/base/numerics/safe_math_impl.h
+++ /dev/null
@@ -1,641 +0,0 @@
-// Copyright 2014 The Chromium Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style license that can be
-// found in the LICENSE file.
-
-#ifndef BASE_NUMERICS_SAFE_MATH_IMPL_H_
-#define BASE_NUMERICS_SAFE_MATH_IMPL_H_
-
-#include <stddef.h>
-#include <stdint.h>
-
-#include <climits>
-#include <cmath>
-#include <cstdlib>
-#include <limits>
-#include <type_traits>
-
-#include "base/numerics/safe_conversions.h"
-
-namespace base {
-namespace internal {
-
-// Everything from here up to the floating point operations is portable C++,
-// but it may not be fast. This code could be split based on
-// platform/architecture and replaced with potentially faster implementations.
-
-// This is used for UnsignedAbs, where we need to support floating-point
-// template instantiations even though we don't actually support the operations.
-// However, there is no corresponding implementation of e.g. SafeUnsignedAbs,
-// so the float versions will not compile.
-template <typename Numeric,
- bool IsInteger = std::is_integral<Numeric>::value,
- bool IsFloat = std::is_floating_point<Numeric>::value>
-struct UnsignedOrFloatForSize;
-
-template <typename Numeric>
-struct UnsignedOrFloatForSize<Numeric, true, false> {
- using type = typename std::make_unsigned<Numeric>::type;
-};
-
-template <typename Numeric>
-struct UnsignedOrFloatForSize<Numeric, false, true> {
- using type = Numeric;
-};
-
-// Probe for builtin math overflow support on Clang and version check on GCC.
-#if defined(__has_builtin)
-#define USE_OVERFLOW_BUILTINS (__has_builtin(__builtin_add_overflow))
-#elif defined(__GNUC__)
-#define USE_OVERFLOW_BUILTINS (__GNUC__ >= 5)
-#else
-#define USE_OVERFLOW_BUILTINS (0)
-#endif
-
-template <typename T>
-bool CheckedAddImpl(T x, T y, T* result) {
- static_assert(std::is_integral<T>::value, "Type must be integral");
- // Since the value of x+y is undefined if we have a signed type, we compute
- // it using the unsigned type of the same size.
- using UnsignedDst = typename std::make_unsigned<T>::type;
- using SignedDst = typename std::make_signed<T>::type;
- UnsignedDst ux = static_cast<UnsignedDst>(x);
- UnsignedDst uy = static_cast<UnsignedDst>(y);
- UnsignedDst uresult = static_cast<UnsignedDst>(ux + uy);
- *result = static_cast<T>(uresult);
- // Addition is valid if the sign of (x + y) is equal to either that of x or
- // that of y.
- return (std::is_signed<T>::value)
- ? static_cast<SignedDst>((uresult ^ ux) & (uresult ^ uy)) >= 0
- : uresult >= uy; // Unsigned is either valid or underflow.
-}
-
-template <typename T, typename U, class Enable = void>
-struct CheckedAddOp {};
-
-template <typename T, typename U>
-struct CheckedAddOp<T,
- U,
- typename std::enable_if<std::is_integral<T>::value &&
- std::is_integral<U>::value>::type> {
- using result_type = typename MaxExponentPromotion<T, U>::type;
- template <typename V>
- static bool Do(T x, U y, V* result) {
-#if USE_OVERFLOW_BUILTINS
- return !__builtin_add_overflow(x, y, result);
-#else
- using Promotion = typename BigEnoughPromotion<T, U>::type;
- Promotion presult;
- // Fail if either operand is out of range for the promoted type.
- // TODO(jschuh): This could be made to work for a broader range of values.
- bool is_valid = IsValueInRangeForNumericType<Promotion>(x) &&
- IsValueInRangeForNumericType<Promotion>(y);
-
- if (IsIntegerArithmeticSafe<Promotion, T, U>::value) {
- presult = static_cast<Promotion>(x) + static_cast<Promotion>(y);
- } else {
- is_valid &= CheckedAddImpl(static_cast<Promotion>(x),
- static_cast<Promotion>(y), &presult);
- }
- *result = static_cast<V>(presult);
- return is_valid && IsValueInRangeForNumericType<V>(presult);
-#endif
- }
-};
-
-template <typename T>
-bool CheckedSubImpl(T x, T y, T* result) {
- static_assert(std::is_integral<T>::value, "Type must be integral");
- // Since the value of x+y is undefined if we have a signed type, we compute
- // it using the unsigned type of the same size.
- using UnsignedDst = typename std::make_unsigned<T>::type;
- using SignedDst = typename std::make_signed<T>::type;
- UnsignedDst ux = static_cast<UnsignedDst>(x);
- UnsignedDst uy = static_cast<UnsignedDst>(y);
- UnsignedDst uresult = static_cast<UnsignedDst>(ux - uy);
- *result = static_cast<T>(uresult);
- // Subtraction is valid if either x and y have same sign, or (x-y) and x have
- // the same sign.
- return (std::is_signed<T>::value)
- ? static_cast<SignedDst>((uresult ^ ux) & (ux ^ uy)) >= 0
- : x >= y;
-}
-
-template <typename T, typename U, class Enable = void>
-struct CheckedSubOp {};
-
-template <typename T, typename U>
-struct CheckedSubOp<T,
- U,
- typename std::enable_if<std::is_integral<T>::value &&
- std::is_integral<U>::value>::type> {
- using result_type = typename MaxExponentPromotion<T, U>::type;
- template <typename V>
- static bool Do(T x, U y, V* result) {
-#if USE_OVERFLOW_BUILTINS
- return !__builtin_sub_overflow(x, y, result);
-#else
- using Promotion = typename BigEnoughPromotion<T, U>::type;
- Promotion presult;
- // Fail if either operand is out of range for the promoted type.
- // TODO(jschuh): This could be made to work for a broader range of values.
- bool is_valid = IsValueInRangeForNumericType<Promotion>(x) &&
- IsValueInRangeForNumericType<Promotion>(y);
-
- if (IsIntegerArithmeticSafe<Promotion, T, U>::value) {
- presult = static_cast<Promotion>(x) - static_cast<Promotion>(y);
- } else {
- is_valid &= CheckedSubImpl(static_cast<Promotion>(x),
- static_cast<Promotion>(y), &presult);
- }
- *result = static_cast<V>(presult);
- return is_valid && IsValueInRangeForNumericType<V>(presult);
-#endif
- }
-};
-
-template <typename T>
-bool CheckedMulImpl(T x, T y, T* result) {
- static_assert(std::is_integral<T>::value, "Type must be integral");
- // Since the value of x*y is potentially undefined if we have a signed type,
- // we compute it using the unsigned type of the same size.
- using UnsignedDst = typename std::make_unsigned<T>::type;
- using SignedDst = typename std::make_signed<T>::type;
- const UnsignedDst ux = SafeUnsignedAbs(x);
- const UnsignedDst uy = SafeUnsignedAbs(y);
- UnsignedDst uresult = static_cast<UnsignedDst>(ux * uy);
- const bool is_negative =
- std::is_signed<T>::value && static_cast<SignedDst>(x ^ y) < 0;
- *result = is_negative ? 0 - uresult : uresult;
- // We have a fast out for unsigned identity or zero on the second operand.
- // After that it's an unsigned overflow check on the absolute value, with
- // a +1 bound for a negative result.
- return uy <= UnsignedDst(!std::is_signed<T>::value || is_negative) ||
- ux <= (std::numeric_limits<T>::max() + UnsignedDst(is_negative)) / uy;
-}
-
-template <typename T, typename U, class Enable = void>
-struct CheckedMulOp {};
-
-template <typename T, typename U>
-struct CheckedMulOp<T,
- U,
- typename std::enable_if<std::is_integral<T>::value &&
- std::is_integral<U>::value>::type> {
- using result_type = typename MaxExponentPromotion<T, U>::type;
- template <typename V>
- static bool Do(T x, U y, V* result) {
-#if USE_OVERFLOW_BUILTINS
-#if defined(__clang__)
- // TODO(jschuh): Get the Clang runtime library issues sorted out so we can
- // support full-width, mixed-sign multiply builtins.
- // https://crbug.com/613003
- static const bool kUseMaxInt =
- // Narrower type than uintptr_t is always safe.
- std::numeric_limits<__typeof__(x * y)>::digits <
- std::numeric_limits<intptr_t>::digits ||
- // Safe for intptr_t and uintptr_t if the sign matches.
- (IntegerBitsPlusSign<__typeof__(x * y)>::value ==
- IntegerBitsPlusSign<intptr_t>::value &&
- std::is_signed<T>::value == std::is_signed<U>::value);
-#else
- static const bool kUseMaxInt = true;
-#endif
- if (kUseMaxInt)
- return !__builtin_mul_overflow(x, y, result);
-#endif
- using Promotion = typename FastIntegerArithmeticPromotion<T, U>::type;
- Promotion presult;
- // Fail if either operand is out of range for the promoted type.
- // TODO(jschuh): This could be made to work for a broader range of values.
- bool is_valid = IsValueInRangeForNumericType<Promotion>(x) &&
- IsValueInRangeForNumericType<Promotion>(y);
-
- if (IsIntegerArithmeticSafe<Promotion, T, U>::value) {
- presult = static_cast<Promotion>(x) * static_cast<Promotion>(y);
- } else {
- is_valid &= CheckedMulImpl(static_cast<Promotion>(x),
- static_cast<Promotion>(y), &presult);
- }
- *result = static_cast<V>(presult);
- return is_valid && IsValueInRangeForNumericType<V>(presult);
- }
-};
-
-// Avoid poluting the namespace once we're done with the macro.
-#undef USE_OVERFLOW_BUILTINS
-
-// Division just requires a check for a zero denominator or an invalid negation
-// on signed min/-1.
-template <typename T>
-bool CheckedDivImpl(T x, T y, T* result) {
- static_assert(std::is_integral<T>::value, "Type must be integral");
- if (y && (!std::is_signed<T>::value ||
- x != std::numeric_limits<T>::lowest() || y != static_cast<T>(-1))) {
- *result = x / y;
- return true;
- }
- return false;
-}
-
-template <typename T, typename U, class Enable = void>
-struct CheckedDivOp {};
-
-template <typename T, typename U>
-struct CheckedDivOp<T,
- U,
- typename std::enable_if<std::is_integral<T>::value &&
- std::is_integral<U>::value>::type> {
- using result_type = typename MaxExponentPromotion<T, U>::type;
- template <typename V>
- static bool Do(T x, U y, V* result) {
- using Promotion = typename BigEnoughPromotion<T, U>::type;
- Promotion presult;
- // Fail if either operand is out of range for the promoted type.
- // TODO(jschuh): This could be made to work for a broader range of values.
- bool is_valid = IsValueInRangeForNumericType<Promotion>(x) &&
- IsValueInRangeForNumericType<Promotion>(y);
- is_valid &= CheckedDivImpl(static_cast<Promotion>(x),
- static_cast<Promotion>(y), &presult);
- *result = static_cast<V>(presult);
- return is_valid && IsValueInRangeForNumericType<V>(presult);
- }
-};
-
-template <typename T>
-bool CheckedModImpl(T x, T y, T* result) {
- static_assert(std::is_integral<T>::value, "Type must be integral");
- if (y > 0) {
- *result = static_cast<T>(x % y);
- return true;
- }
- return false;
-}
-
-template <typename T, typename U, class Enable = void>
-struct CheckedModOp {};
-
-template <typename T, typename U>
-struct CheckedModOp<T,
- U,
- typename std::enable_if<std::is_integral<T>::value &&
- std::is_integral<U>::value>::type> {
- using result_type = typename MaxExponentPromotion<T, U>::type;
- template <typename V>
- static bool Do(T x, U y, V* result) {
- using Promotion = typename BigEnoughPromotion<T, U>::type;
- Promotion presult;
- bool is_valid = CheckedModImpl(static_cast<Promotion>(x),
- static_cast<Promotion>(y), &presult);
- *result = static_cast<V>(presult);
- return is_valid && IsValueInRangeForNumericType<V>(presult);
- }
-};
-
-template <typename T, typename U, class Enable = void>
-struct CheckedLshOp {};
-
-// Left shift. Shifts less than 0 or greater than or equal to the number
-// of bits in the promoted type are undefined. Shifts of negative values
-// are undefined. Otherwise it is defined when the result fits.
-template <typename T, typename U>
-struct CheckedLshOp<T,
- U,
- typename std::enable_if<std::is_integral<T>::value &&
- std::is_integral<U>::value>::type> {
- using result_type = T;
- template <typename V>
- static bool Do(T x, U shift, V* result) {
- using ShiftType = typename std::make_unsigned<T>::type;
- static const ShiftType kBitWidth = IntegerBitsPlusSign<T>::value;
- const ShiftType real_shift = static_cast<ShiftType>(shift);
- // Signed shift is not legal on negative values.
- if (!IsValueNegative(x) && real_shift < kBitWidth) {
- // Just use a multiplication because it's easy.
- // TODO(jschuh): This could probably be made more efficient.
- if (!std::is_signed<T>::value || real_shift != kBitWidth - 1)
- return CheckedMulOp<T, T>::Do(x, static_cast<T>(1) << shift, result);
- return !x; // Special case zero for a full width signed shift.
- }
- return false;
- }
-};
-
-template <typename T, typename U, class Enable = void>
-struct CheckedRshOp {};
-
-// Right shift. Shifts less than 0 or greater than or equal to the number
-// of bits in the promoted type are undefined. Otherwise, it is always defined,
-// but a right shift of a negative value is implementation-dependent.
-template <typename T, typename U>
-struct CheckedRshOp<T,
- U,
- typename std::enable_if<std::is_integral<T>::value &&
- std::is_integral<U>::value>::type> {
- using result_type = T;
- template <typename V = result_type>
- static bool Do(T x, U shift, V* result) {
- // Use the type conversion push negative values out of range.
- using ShiftType = typename std::make_unsigned<T>::type;
- if (static_cast<ShiftType>(shift) < IntegerBitsPlusSign<T>::value) {
- T tmp = x >> shift;
- *result = static_cast<V>(tmp);
- return IsValueInRangeForNumericType<V>(tmp);
- }
- return false;
- }
-};
-
-template <typename T, typename U, class Enable = void>
-struct CheckedAndOp {};
-
-// For simplicity we support only unsigned integer results.
-template <typename T, typename U>
-struct CheckedAndOp<T,
- U,
- typename std::enable_if<std::is_integral<T>::value &&
- std::is_integral<U>::value>::type> {
- using result_type = typename std::make_unsigned<
- typename MaxExponentPromotion<T, U>::type>::type;
- template <typename V = result_type>
- static bool Do(T x, U y, V* result) {
- result_type tmp = static_cast<result_type>(x) & static_cast<result_type>(y);
- *result = static_cast<V>(tmp);
- return IsValueInRangeForNumericType<V>(tmp);
- }
-};
-
-template <typename T, typename U, class Enable = void>
-struct CheckedOrOp {};
-
-// For simplicity we support only unsigned integers.
-template <typename T, typename U>
-struct CheckedOrOp<T,
- U,
- typename std::enable_if<std::is_integral<T>::value &&
- std::is_integral<U>::value>::type> {
- using result_type = typename std::make_unsigned<
- typename MaxExponentPromotion<T, U>::type>::type;
- template <typename V = result_type>
- static bool Do(T x, U y, V* result) {
- result_type tmp = static_cast<result_type>(x) | static_cast<result_type>(y);
- *result = static_cast<V>(tmp);
- return IsValueInRangeForNumericType<V>(tmp);
- }
-};
-
-template <typename T, typename U, class Enable = void>
-struct CheckedXorOp {};
-
-// For simplicity we support only unsigned integers.
-template <typename T, typename U>
-struct CheckedXorOp<T,
- U,
- typename std::enable_if<std::is_integral<T>::value &&
- std::is_integral<U>::value>::type> {
- using result_type = typename std::make_unsigned<
- typename MaxExponentPromotion<T, U>::type>::type;
- template <typename V = result_type>
- static bool Do(T x, U y, V* result) {
- result_type tmp = static_cast<result_type>(x) ^ static_cast<result_type>(y);
- *result = static_cast<V>(tmp);
- return IsValueInRangeForNumericType<V>(tmp);
- }
-};
-
-// Max doesn't really need to be implemented this way because it can't fail,
-// but it makes the code much cleaner to use the MathOp wrappers.
-template <typename T, typename U, class Enable = void>
-struct CheckedMaxOp {};
-
-template <typename T, typename U>
-struct CheckedMaxOp<
- T,
- U,
- typename std::enable_if<std::is_arithmetic<T>::value &&
- std::is_arithmetic<U>::value>::type> {
- using result_type = typename MaxExponentPromotion<T, U>::type;
- template <typename V = result_type>
- static bool Do(T x, U y, V* result) {
- *result = IsGreater<T, U>::Test(x, y) ? static_cast<result_type>(x)
- : static_cast<result_type>(y);
- return true;
- }
-};
-
-// Min doesn't really need to be implemented this way because it can't fail,
-// but it makes the code much cleaner to use the MathOp wrappers.
-template <typename T, typename U, class Enable = void>
-struct CheckedMinOp {};
-
-template <typename T, typename U>
-struct CheckedMinOp<
- T,
- U,
- typename std::enable_if<std::is_arithmetic<T>::value &&
- std::is_arithmetic<U>::value>::type> {
- using result_type = typename LowestValuePromotion<T, U>::type;
- template <typename V = result_type>
- static bool Do(T x, U y, V* result) {
- *result = IsLess<T, U>::Test(x, y) ? static_cast<result_type>(x)
- : static_cast<result_type>(y);
- return true;
- }
-};
-
-// This is just boilerplate that wraps the standard floating point arithmetic.
-// A macro isn't the nicest solution, but it beats rewriting these repeatedly.
-#define BASE_FLOAT_ARITHMETIC_OPS(NAME, OP) \
- template <typename T, typename U> \
- struct Checked##NAME##Op< \
- T, U, typename std::enable_if<std::is_floating_point<T>::value || \
- std::is_floating_point<U>::value>::type> { \
- using result_type = typename MaxExponentPromotion<T, U>::type; \
- template <typename V> \
- static bool Do(T x, U y, V* result) { \
- using Promotion = typename MaxExponentPromotion<T, U>::type; \
- Promotion presult = x OP y; \
- *result = static_cast<V>(presult); \
- return IsValueInRangeForNumericType<V>(presult); \
- } \
- };
-
-BASE_FLOAT_ARITHMETIC_OPS(Add, +)
-BASE_FLOAT_ARITHMETIC_OPS(Sub, -)
-BASE_FLOAT_ARITHMETIC_OPS(Mul, *)
-BASE_FLOAT_ARITHMETIC_OPS(Div, /)
-
-#undef BASE_FLOAT_ARITHMETIC_OPS
-
-// Wrap the unary operations to allow SFINAE when instantiating integrals versus
-// floating points. These don't perform any overflow checking. Rather, they
-// exhibit well-defined overflow semantics and rely on the caller to detect
-// if an overflow occured.
-
-template <typename T,
- typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
-constexpr T NegateWrapper(T value) {
- using UnsignedT = typename std::make_unsigned<T>::type;
- // This will compile to a NEG on Intel, and is normal negation on ARM.
- return static_cast<T>(UnsignedT(0) - static_cast<UnsignedT>(value));
-}
-
-template <
- typename T,
- typename std::enable_if<std::is_floating_point<T>::value>::type* = nullptr>
-constexpr T NegateWrapper(T value) {
- return -value;
-}
-
-template <typename T,
- typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
-constexpr typename std::make_unsigned<T>::type InvertWrapper(T value) {
- return ~value;
-}
-
-template <typename T,
- typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
-constexpr T AbsWrapper(T value) {
- return static_cast<T>(SafeUnsignedAbs(value));
-}
-
-template <
- typename T,
- typename std::enable_if<std::is_floating_point<T>::value>::type* = nullptr>
-constexpr T AbsWrapper(T value) {
- return value < 0 ? -value : value;
-}
-
-// Floats carry around their validity state with them, but integers do not. So,
-// we wrap the underlying value in a specialization in order to hide that detail
-// and expose an interface via accessors.
-enum NumericRepresentation {
- NUMERIC_INTEGER,
- NUMERIC_FLOATING,
- NUMERIC_UNKNOWN
-};
-
-template <typename NumericType>
-struct GetNumericRepresentation {
- static const NumericRepresentation value =
- std::is_integral<NumericType>::value
- ? NUMERIC_INTEGER
- : (std::is_floating_point<NumericType>::value ? NUMERIC_FLOATING
- : NUMERIC_UNKNOWN);
-};
-
-template <typename T, NumericRepresentation type =
- GetNumericRepresentation<T>::value>
-class CheckedNumericState {};
-
-// Integrals require quite a bit of additional housekeeping to manage state.
-template <typename T>
-class CheckedNumericState<T, NUMERIC_INTEGER> {
- private:
- // is_valid_ precedes value_ because member intializers in the constructors
- // are evaluated in field order, and is_valid_ must be read when initializing
- // value_.
- bool is_valid_;
- T value_;
-
- // Ensures that a type conversion does not trigger undefined behavior.
- template <typename Src>
- static constexpr T WellDefinedConversionOrZero(const Src value,
- const bool is_valid) {
- using SrcType = typename internal::UnderlyingType<Src>::type;
- return (std::is_integral<SrcType>::value || is_valid)
- ? static_cast<T>(value)
- : static_cast<T>(0);
- }
-
- public:
- template <typename Src, NumericRepresentation type>
- friend class CheckedNumericState;
-
- constexpr CheckedNumericState() : is_valid_(true), value_(0) {}
-
- template <typename Src>
- constexpr CheckedNumericState(Src value, bool is_valid)
- : is_valid_(is_valid && IsValueInRangeForNumericType<T>(value)),
- value_(WellDefinedConversionOrZero(value, is_valid_)) {
- static_assert(std::is_arithmetic<Src>::value, "Argument must be numeric.");
- }
-
- // Copy constructor.
- template <typename Src>
- constexpr CheckedNumericState(const CheckedNumericState<Src>& rhs)
- : is_valid_(rhs.IsValid()),
- value_(WellDefinedConversionOrZero(rhs.value(), is_valid_)) {}
-
- template <typename Src>
- constexpr explicit CheckedNumericState(Src value)
- : is_valid_(IsValueInRangeForNumericType<T>(value)),
- value_(WellDefinedConversionOrZero(value, is_valid_)) {}
-
- constexpr bool is_valid() const { return is_valid_; }
- constexpr T value() const { return value_; }
-};
-
-// Floating points maintain their own validity, but need translation wrappers.
-template <typename T>
-class CheckedNumericState<T, NUMERIC_FLOATING> {
- private:
- T value_;
-
- // Ensures that a type conversion does not trigger undefined behavior.
- template <typename Src>
- static constexpr T WellDefinedConversionOrNaN(const Src value,
- const bool is_valid) {
- using SrcType = typename internal::UnderlyingType<Src>::type;
- return (StaticDstRangeRelationToSrcRange<T, SrcType>::value ==
- NUMERIC_RANGE_CONTAINED ||
- is_valid)
- ? static_cast<T>(value)
- : std::numeric_limits<T>::quiet_NaN();
- }
-
- public:
- template <typename Src, NumericRepresentation type>
- friend class CheckedNumericState;
-
- constexpr CheckedNumericState() : value_(0.0) {}
-
- template <typename Src>
- constexpr CheckedNumericState(Src value, bool is_valid)
- : value_(WellDefinedConversionOrNaN(value, is_valid)) {}
-
- template <typename Src>
- constexpr explicit CheckedNumericState(Src value)
- : value_(WellDefinedConversionOrNaN(
- value,
- IsValueInRangeForNumericType<T>(value))) {}
-
- // Copy constructor.
- template <typename Src>
- constexpr CheckedNumericState(const CheckedNumericState<Src>& rhs)
- : value_(WellDefinedConversionOrNaN(
- rhs.value(),
- rhs.is_valid() && IsValueInRangeForNumericType<T>(rhs.value()))) {}
-
- constexpr bool is_valid() const {
- // Written this way because std::isfinite is not reliably constexpr.
- // TODO(jschuh): Fix this if the libraries ever get fixed.
- return value_ <= std::numeric_limits<T>::max() &&
- value_ >= std::numeric_limits<T>::lowest();
- }
- constexpr T value() const { return value_; }
-};
-
-template <template <typename, typename, typename> class M,
- typename L,
- typename R>
-struct MathWrapper {
- using math = M<typename UnderlyingType<L>::type,
- typename UnderlyingType<R>::type,
- void>;
- using type = typename math::result_type;
-};
-
-} // namespace internal
-} // namespace base
-
-#endif // BASE_NUMERICS_SAFE_MATH_IMPL_H_

Powered by Google App Engine
This is Rietveld 408576698