Index: third_party/WebKit/LayoutTests/webaudio/BiquadFilter/tail-time-lowpass.html |
diff --git a/third_party/WebKit/LayoutTests/webaudio/BiquadFilter/tail-time-lowpass.html b/third_party/WebKit/LayoutTests/webaudio/BiquadFilter/tail-time-lowpass.html |
deleted file mode 100644 |
index dc0426371a19453512c3f2f28e506d1650390190..0000000000000000000000000000000000000000 |
--- a/third_party/WebKit/LayoutTests/webaudio/BiquadFilter/tail-time-lowpass.html |
+++ /dev/null |
@@ -1,168 +0,0 @@ |
-<!doctype html> |
-<html> |
- <head> |
- <title>Test Biquad Tail-Time</title> |
- <script src="../../resources/testharness.js"></script> |
- <script src="../../resources/testharnessreport.js"></script> |
- <script src="../resources/audit-util.js"></script> |
- <script src="../resources/audit.js"></script> |
- <script src="../resources/biquad-filters.js"></script> |
- <script src="test-tail-time.js"></script> |
- </head> |
- |
- <body> |
- <script> |
- let audit = Audit.createTaskRunner(); |
- |
- let sampleRate = 16384; |
- let renderSeconds = 1; |
- |
- // For a lowpass filter: |
- // b0 = (1-cos(w0))/2 |
- // b1 = 1-cos(w0) |
- // b2 = (1-cos(w0))/2 |
- // a0 = 1 + alpha |
- // a1 = -2*cos(w0) |
- // a2 = 1 - alpha |
- // |
- // where alpha = sin(w0)/(2*10^(Q/20)) and w0 = 2*%pi*f0/Fs. |
- // |
- // Equivalently a1 = -2*cos(w0)/(1+alpha), a2 = (1-alpha)/(1+alpha). The |
- // poles of this filter are at |
- // |
- // cos(w0)/(1+alpha) +/- sqrt(alpha^2-sin(w0)^2)/(1+alpha) |
- // |
- // But alpha^2-sin(w0)^2 = sin(w0)^2*(1/4/10^(Q/10) - 1). Thus the poles |
- // are complex if 1/4/10^(Q/10) < 1; real distinct if 1/4/10^(Q/10) > 1; |
- // and repeated if 1/4/10^(Q/10) = 1. |
- |
- // Array of tests to run. |descripton| is the task description for |
- // audit.define. |parameters| is option for |testTailTime|. |
- let tests = [ |
- { |
- descripton: |
- {label: 'lpf-complex-roots', description: 'complex roots'}, |
- sampleRate: sampleRate, |
- renderDuration: renderSeconds, |
- parameters: { |
- prefix: 'LPF complex roots', |
- filterOptions: {type: 'lowpass', Q: 40, frequency: sampleRate / 4} |
- }, |
- // Node computed tail frame is 2079.4 which matches the real tail, so |
- // tail output should be exactly 0. |
- threshold: 0, |
- }, |
- { |
- descripton: { |
- label: 'lpf-real-distinct-roots', |
- description: 'real distinct roots' |
- }, |
- sampleRate: sampleRate, |
- renderDuration: renderSeconds, |
- parameters: { |
- prefix: 'LPF real distinct roots', |
- filterOptions: |
- {type: 'lowpass', Q: -50, frequency: sampleRate / 8} |
- }, |
- // Node computed tail frame is 1699 which matches the real tail, so |
- // tail output should be exactly 0. |
- threshold: 0, |
- }, |
- { |
- descripton: |
- {label: 'lpf-repeated-root', description: 'repeated real root'}, |
- sampleRate: sampleRate, |
- renderDuration: renderSeconds, |
- parameters: { |
- prefix: 'LPF repeated roots (approximately)', |
- // For a repeated root, we need 1/4/10^(Q/10) = 1, or Q = |
- // -10*log(4)/log(10). This isn't exactly representable as a float, |
- // we the roots might not actually be repeated. In fact the roots |
- // are actually complex at 6.402396e-5*exp(i*1.570796). |
- filterOptions: { |
- type: 'lowpass', |
- Q: -10 * Math.log10(4), |
- frequency: sampleRate / 4 |
- } |
- }, |
- // Node computed tail frame is 2.9 which matches the real tail, so |
- // tail output should be exactly 0. |
- threshold: 0, |
- }, |
- { |
- descripton: {label: 'lpf-real-roots-2', description: 'complex roots'}, |
- sampleRate: sampleRate, |
- renderDuration: renderSeconds, |
- parameters: { |
- prefix: 'LPF repeated roots 2', |
- // This tests an extreme case where approximate impulse response is |
- // h(n) = C*r^(n-1) and C < 1/32768. Thus, the impulse response is |
- // always less than the response threshold of 1/32768. |
- filterOptions: |
- {type: 'lowpass', Q: -100, frequency: sampleRate / 4} |
- }, |
- // Node computed tail frame is 0 which matches the real tail, so |
- // tail output should be exactly 0. |
- threshold: 0, |
- }, |
- { |
- descripton: 'huge tail', |
- // The BiquadFilter has an internal maximum tail of 30 sec so we want |
- // to render for at least 30 sec to test this. Use the smallest |
- // sample rate we can to limit memory and CPU usage! |
- sampleRate: 3000, |
- renderDuration: 31, |
- parameters: { |
- prefix: 'LPF repeated roots (approximately)', |
- hugeTaileTime: true, |
- // For the record, for this lowpass filter, the computed tail time |
- // is approximately 2830.23 sec, with poles at |
- // 0.999998960442086*exp(i*0.209439510236777). This is very close to |
- // being marginally stable. |
- filterOptions: { |
- type: 'lowpass', |
- Q: 100, |
- frequency: 100, |
- }, |
- // Node computed tail frame is 8.49069e6 which is clamped to 30 sec |
- // so tail output should be exactly 0 after 30 sec. |
- threshold: 0, |
- }, |
- }, |
- { |
- descripton: 'ginormous tail', |
- // Or this lowpass filter, the complex poles are actually computed to |
- // be on the unit circle so the tail infinite. This just tests that |
- // nothing bad happens in computing the tail time. Thus, any small |
- // sample rate and short duration for the test; the results aren't |
- // really interesting. (But they must pass, of course!) |
- sampleRate: 3000, |
- renderDuration: 0.25, |
- parameters: { |
- prefix: 'LPF repeated roots (approximately)', |
- filterOptions: { |
- type: 'lowpass', |
- Q: 500, |
- frequency: 100, |
- }, |
- }, |
- // Node computed tail frame is 90000 which matches the real tail, so |
- // tail output should be exactly 0. |
- threshold: 0, |
- } |
- ] |
- |
- // Define an appropriate task for each test. |
- tests.forEach(entry => { |
- audit.define(entry.descripton, (task, should) => { |
- let context = new OfflineAudioContext( |
- 1, entry.renderDuration * entry.sampleRate, entry.sampleRate); |
- testTailTime(should, context, entry.parameters) |
- .then(() => task.done()); |
- }); |
- }); |
- |
- audit.run(); |
- </script> |
- </body> |
-</html> |