| Index: ui/gfx/geometry/quad_f.cc
|
| diff --git a/ui/gfx/geometry/quad_f.cc b/ui/gfx/geometry/quad_f.cc
|
| index 1283b0dc3bbc4a1a64542840945d1f8c360d83f1..dbc50458b3fa1e04aedfdee3c51d5ae00351b46a 100644
|
| --- a/ui/gfx/geometry/quad_f.cc
|
| +++ b/ui/gfx/geometry/quad_f.cc
|
| @@ -62,28 +62,24 @@ static inline bool PointIsInTriangle(const PointF& point,
|
| const PointF& r1,
|
| const PointF& r2,
|
| const PointF& r3) {
|
| - // Compute the barycentric coordinates of |point| relative to the triangle
|
| - // (r1, r2, r3). This algorithm comes from Christer Ericson's Real-Time
|
| - // Collision Detection.
|
| - Vector2dF v0 = r2 - r1;
|
| - Vector2dF v1 = r3 - r1;
|
| - Vector2dF v2 = point - r1;
|
| + // Compute the barycentric coordinates (u, v, w) of |point| relative to the
|
| + // triangle (r1, r2, r3) by the solving the system of equations:
|
| + // 1) point = u * r1 + v * r2 + w * r3
|
| + // 2) u + v + w = 1
|
| + // This algorithm comes from Christer Ericson's Real-Time Collision Detection.
|
|
|
| - double dot00 = DotProduct(v0, v0);
|
| - double dot01 = DotProduct(v0, v1);
|
| - double dot11 = DotProduct(v1, v1);
|
| - double dot20 = DotProduct(v2, v0);
|
| - double dot21 = DotProduct(v2, v1);
|
| + Vector2dF r31 = r1 - r3;
|
| + Vector2dF r32 = r2 - r3;
|
| + Vector2dF r3p = point - r3;
|
|
|
| - double denom = dot00 * dot11 - dot01 * dot01;
|
| -
|
| - double v = (dot11 * dot20 - dot01 * dot21) / denom;
|
| - double w = (dot00 * dot21 - dot01 * dot20) / denom;
|
| - double u = 1 - v - w;
|
| + float denom = r32.y() * r31.x() - r32.x() * r31.y();
|
| + float u = (r32.y() * r3p.x() - r32.x() * r3p.y()) / denom;
|
| + float v = (r31.x() * r3p.y() - r31.y() * r3p.x()) / denom;
|
| + float w = 1.f - u - v;
|
|
|
| // Use the barycentric coordinates to test if |point| is inside the
|
| // triangle (r1, r2, r2).
|
| - return (v >= 0) && (w >= 0) && (u >= 0);
|
| + return (u >= 0) && (v >= 0) && (w >= 0);
|
| }
|
|
|
| bool QuadF::Contains(const PointF& point) const {
|
|
|