| Index: tests/standalone/io/hash_utils.dart
|
| diff --git a/tests/standalone/io/hash_utils.dart b/tests/standalone/io/hash_utils.dart
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..8c87a215d6d6707b32f2d8f3af09ad662bee3e13
|
| --- /dev/null
|
| +++ b/tests/standalone/io/hash_utils.dart
|
| @@ -0,0 +1,217 @@
|
| +// Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file
|
| +// for details. All rights reserved. Use of this source code is governed by a
|
| +// BSD-style license that can be found in the LICENSE file.
|
| +
|
| +/// Hash routines copied from private helpers in dart:io.
|
| +library hashes;
|
| +
|
| +// Constants.
|
| +const _MASK_8 = 0xff;
|
| +const _MASK_32 = 0xffffffff;
|
| +const _BITS_PER_BYTE = 8;
|
| +const _BYTES_PER_WORD = 4;
|
| +const _pow2_32 = 0x100000000;
|
| +
|
| +// Base class encapsulating common behavior for cryptographic hash
|
| +// functions.
|
| +abstract class _HashBase {
|
| + // Hasher state.
|
| + final int _chunkSizeInWords;
|
| + final int _digestSizeInWords;
|
| + final bool _bigEndianWords;
|
| + int _lengthInBytes = 0;
|
| + List<int> _pendingData;
|
| + List<int> _currentChunk;
|
| + List<int> _h;
|
| + bool _digestCalled = false;
|
| +
|
| + _HashBase(
|
| + this._chunkSizeInWords, this._digestSizeInWords, this._bigEndianWords)
|
| + : _pendingData = [] {
|
| + _currentChunk = new List(_chunkSizeInWords);
|
| + _h = new List(_digestSizeInWords);
|
| + }
|
| +
|
| + // Update the hasher with more data.
|
| + add(List<int> data) {
|
| + if (_digestCalled) {
|
| + throw new StateError(
|
| + 'Hash update method called after digest was retrieved');
|
| + }
|
| + _lengthInBytes += data.length;
|
| + _pendingData.addAll(data);
|
| + _iterate();
|
| + }
|
| +
|
| + // Finish the hash computation and return the digest string.
|
| + List<int> close() {
|
| + if (_digestCalled) {
|
| + return _resultAsBytes();
|
| + }
|
| + _digestCalled = true;
|
| + _finalizeData();
|
| + _iterate();
|
| + assert(_pendingData.length == 0);
|
| + return _resultAsBytes();
|
| + }
|
| +
|
| + // Returns the block size of the hash in bytes.
|
| + int get blockSize {
|
| + return _chunkSizeInWords * _BYTES_PER_WORD;
|
| + }
|
| +
|
| + // Create a fresh instance of this Hash.
|
| + newInstance();
|
| +
|
| + // One round of the hash computation.
|
| + _updateHash(List<int> m);
|
| +
|
| + // Helper methods.
|
| + _add32(x, y) => (x + y) & _MASK_32;
|
| + _roundUp(val, n) => (val + n - 1) & -n;
|
| +
|
| + // Rotate left limiting to unsigned 32-bit values.
|
| + int _rotl32(int val, int shift) {
|
| + var mod_shift = shift & 31;
|
| + return ((val << mod_shift) & _MASK_32) |
|
| + ((val & _MASK_32) >> (32 - mod_shift));
|
| + }
|
| +
|
| + // Compute the final result as a list of bytes from the hash words.
|
| + List<int> _resultAsBytes() {
|
| + var result = <int>[];
|
| + for (var i = 0; i < _h.length; i++) {
|
| + result.addAll(_wordToBytes(_h[i]));
|
| + }
|
| + return result;
|
| + }
|
| +
|
| + // Converts a list of bytes to a chunk of 32-bit words.
|
| + _bytesToChunk(List<int> data, int dataIndex) {
|
| + assert((data.length - dataIndex) >= (_chunkSizeInWords * _BYTES_PER_WORD));
|
| +
|
| + for (var wordIndex = 0; wordIndex < _chunkSizeInWords; wordIndex++) {
|
| + var w3 = _bigEndianWords ? data[dataIndex] : data[dataIndex + 3];
|
| + var w2 = _bigEndianWords ? data[dataIndex + 1] : data[dataIndex + 2];
|
| + var w1 = _bigEndianWords ? data[dataIndex + 2] : data[dataIndex + 1];
|
| + var w0 = _bigEndianWords ? data[dataIndex + 3] : data[dataIndex];
|
| + dataIndex += 4;
|
| + var word = (w3 & 0xff) << 24;
|
| + word |= (w2 & _MASK_8) << 16;
|
| + word |= (w1 & _MASK_8) << 8;
|
| + word |= (w0 & _MASK_8);
|
| + _currentChunk[wordIndex] = word;
|
| + }
|
| + }
|
| +
|
| + // Convert a 32-bit word to four bytes.
|
| + List<int> _wordToBytes(int word) {
|
| + List<int> bytes = new List(_BYTES_PER_WORD);
|
| + bytes[0] = (word >> (_bigEndianWords ? 24 : 0)) & _MASK_8;
|
| + bytes[1] = (word >> (_bigEndianWords ? 16 : 8)) & _MASK_8;
|
| + bytes[2] = (word >> (_bigEndianWords ? 8 : 16)) & _MASK_8;
|
| + bytes[3] = (word >> (_bigEndianWords ? 0 : 24)) & _MASK_8;
|
| + return bytes;
|
| + }
|
| +
|
| + // Iterate through data updating the hash computation for each
|
| + // chunk.
|
| + _iterate() {
|
| + var len = _pendingData.length;
|
| + var chunkSizeInBytes = _chunkSizeInWords * _BYTES_PER_WORD;
|
| + if (len >= chunkSizeInBytes) {
|
| + var index = 0;
|
| + for (; (len - index) >= chunkSizeInBytes; index += chunkSizeInBytes) {
|
| + _bytesToChunk(_pendingData, index);
|
| + _updateHash(_currentChunk);
|
| + }
|
| + _pendingData = _pendingData.sublist(index, len);
|
| + }
|
| + }
|
| +
|
| + // Finalize the data. Add a 1 bit to the end of the message. Expand with
|
| + // 0 bits and add the length of the message.
|
| + _finalizeData() {
|
| + _pendingData.add(0x80);
|
| + var contentsLength = _lengthInBytes + 9;
|
| + var chunkSizeInBytes = _chunkSizeInWords * _BYTES_PER_WORD;
|
| + var finalizedLength = _roundUp(contentsLength, chunkSizeInBytes);
|
| + var zeroPadding = finalizedLength - contentsLength;
|
| + for (var i = 0; i < zeroPadding; i++) {
|
| + _pendingData.add(0);
|
| + }
|
| + var lengthInBits = _lengthInBytes * _BITS_PER_BYTE;
|
| + assert(lengthInBits < _pow2_32);
|
| + if (_bigEndianWords) {
|
| + _pendingData.addAll(_wordToBytes(0));
|
| + _pendingData.addAll(_wordToBytes(lengthInBits & _MASK_32));
|
| + } else {
|
| + _pendingData.addAll(_wordToBytes(lengthInBits & _MASK_32));
|
| + _pendingData.addAll(_wordToBytes(0));
|
| + }
|
| + }
|
| +}
|
| +
|
| +// The SHA1 hasher is used to compute an SHA1 message digest.
|
| +class SHA1 extends _HashBase {
|
| + // Construct a SHA1 hasher object.
|
| + SHA1()
|
| + : _w = new List(80),
|
| + super(16, 5, true) {
|
| + _h[0] = 0x67452301;
|
| + _h[1] = 0xEFCDAB89;
|
| + _h[2] = 0x98BADCFE;
|
| + _h[3] = 0x10325476;
|
| + _h[4] = 0xC3D2E1F0;
|
| + }
|
| +
|
| + // Returns a new instance of this Hash.
|
| + SHA1 newInstance() {
|
| + return new SHA1();
|
| + }
|
| +
|
| + // Compute one iteration of the SHA1 algorithm with a chunk of
|
| + // 16 32-bit pieces.
|
| + void _updateHash(List<int> m) {
|
| + assert(m.length == 16);
|
| +
|
| + var a = _h[0];
|
| + var b = _h[1];
|
| + var c = _h[2];
|
| + var d = _h[3];
|
| + var e = _h[4];
|
| +
|
| + for (var i = 0; i < 80; i++) {
|
| + if (i < 16) {
|
| + _w[i] = m[i];
|
| + } else {
|
| + var n = _w[i - 3] ^ _w[i - 8] ^ _w[i - 14] ^ _w[i - 16];
|
| + _w[i] = _rotl32(n, 1);
|
| + }
|
| + var t = _add32(_add32(_rotl32(a, 5), e), _w[i]);
|
| + if (i < 20) {
|
| + t = _add32(_add32(t, (b & c) | (~b & d)), 0x5A827999);
|
| + } else if (i < 40) {
|
| + t = _add32(_add32(t, (b ^ c ^ d)), 0x6ED9EBA1);
|
| + } else if (i < 60) {
|
| + t = _add32(_add32(t, (b & c) | (b & d) | (c & d)), 0x8F1BBCDC);
|
| + } else {
|
| + t = _add32(_add32(t, b ^ c ^ d), 0xCA62C1D6);
|
| + }
|
| +
|
| + e = d;
|
| + d = c;
|
| + c = _rotl32(b, 30);
|
| + b = a;
|
| + a = t & _MASK_32;
|
| + }
|
| +
|
| + _h[0] = _add32(a, _h[0]);
|
| + _h[1] = _add32(b, _h[1]);
|
| + _h[2] = _add32(c, _h[2]);
|
| + _h[3] = _add32(d, _h[3]);
|
| + _h[4] = _add32(e, _h[4]);
|
| + }
|
| +
|
| + List<int> _w;
|
| +}
|
|
|