| Index: net/cert/internal/verify_certificate_chain.cc
|
| diff --git a/net/cert/internal/verify_certificate_chain.cc b/net/cert/internal/verify_certificate_chain.cc
|
| index 2560b9422754501e38bc4488ea1d0d9d27b48ba2..3985cd8a327d48c0e87d709b7aa682d4d7163def 100644
|
| --- a/net/cert/internal/verify_certificate_chain.cc
|
| +++ b/net/cert/internal/verify_certificate_chain.cc
|
| @@ -4,6 +4,7 @@
|
|
|
| #include "net/cert/internal/verify_certificate_chain.h"
|
|
|
| +#include <algorithm>
|
| #include <memory>
|
|
|
| #include "base/logging.h"
|
| @@ -63,6 +64,9 @@ DEFINE_CERT_ERROR_ID(kEkuLacksClientAuth,
|
| "The extended key usage does not include client auth");
|
| DEFINE_CERT_ERROR_ID(kCertIsNotTrustAnchor,
|
| "Certificate is not a trust anchor");
|
| +DEFINE_CERT_ERROR_ID(kNoValidPolicy, "No valid policy");
|
| +DEFINE_CERT_ERROR_ID(kPolicyMappingAnyPolicy,
|
| + "PolicyMappings must not map anyPolicy");
|
|
|
| bool IsHandledCriticalExtensionOid(const der::Input& oid) {
|
| if (oid == BasicConstraintsOid())
|
| @@ -78,8 +82,19 @@ bool IsHandledCriticalExtensionOid(const der::Input& oid) {
|
| return true;
|
| if (oid == SubjectAltNameOid())
|
| return true;
|
| + // TODO(eroman): The policy qualifiers are not processed (or in some cases
|
| + // even parsed). This is fine when the policies extension is non-critical,
|
| + // however if it is critical the code should also ensure that the policy
|
| + // qualifiers are only recognized ones (CPS and User Notice).
|
| + if (oid == CertificatePoliciesOid())
|
| + return true;
|
| + if (oid == PolicyMappingsOid())
|
| + return true;
|
| + if (oid == PolicyConstraintsOid())
|
| + return true;
|
| + if (oid == InhibitAnyPolicyOid())
|
| + return true;
|
|
|
| - // TODO(eroman): Make this more complete.
|
| return false;
|
| }
|
|
|
| @@ -120,7 +135,7 @@ WARN_UNUSED_RESULT bool IsSelfIssued(const ParsedCertificate& cert) {
|
| // The validity period for a certificate is the period of time from
|
| // notBefore through notAfter, inclusive.
|
| void VerifyTimeValidity(const ParsedCertificate& cert,
|
| - const der::GeneralizedTime time,
|
| + const der::GeneralizedTime& time,
|
| CertErrors* errors) {
|
| if (time < cert.tbs().validity_not_before)
|
| errors->AddError(kValidityFailedNotBefore);
|
| @@ -216,16 +231,545 @@ void VerifyExtendedKeyUsage(const ParsedCertificate& cert,
|
| }
|
| }
|
|
|
| -// This function corresponds to RFC 5280 section 6.1.3's "Basic Certificate
|
| -// Processing" procedure.
|
| -void BasicCertificateProcessing(
|
| +// Returns |true| if |policies| contains the OID |search_oid|.
|
| +bool SetContains(const std::set<der::Input>& policies,
|
| + const der::Input& search_oid) {
|
| + return policies.count(search_oid) > 0;
|
| +}
|
| +
|
| +// Representation of RFC 5280's "valid_policy_tree", used to keep track of the
|
| +// valid policies and policy re-mappings.
|
| +//
|
| +// ValidPolicyTree differs slightly from RFC 5280's description in that:
|
| +//
|
| +// (1) It does not track "qualifier_set". This is not needed as it is not
|
| +// output by this implementation.
|
| +//
|
| +// (2) It only stores the most recent level of the policy tree rather than
|
| +// the full tree of nodes.
|
| +class ValidPolicyTree {
|
| + public:
|
| + ValidPolicyTree() {}
|
| +
|
| + struct Node {
|
| + // |root_policy| is equivalent to |valid_policy|, but in the domain of the
|
| + // caller.
|
| + //
|
| + // The reason for this distinction is the Policy Mappings extension.
|
| + //
|
| + // So whereas |valid_policy| is in the remapped domain defined by the
|
| + // issuing certificate, |root_policy| is in the fixed domain of the caller.
|
| + //
|
| + // OIDs in "user_initial_policy_set" and "user_constrained_policy_set" are
|
| + // directly comparable to |root_policy| values, but not necessarily to
|
| + // |valid_policy|.
|
| + //
|
| + // In terms of the valid policy tree, |root_policy| can be found by
|
| + // starting at the node's root ancestor, and finding the first node with a
|
| + // valid_policy other than anyPolicy. This is effectively the same process
|
| + // as used during policy tree intersection in RFC 5280 6.1.5.g.iii.1
|
| + der::Input root_policy;
|
| +
|
| + // The same as RFC 5280's "valid_policy" variable.
|
| + der::Input valid_policy;
|
| +
|
| + // The same as RFC 5280s "expected_policy_set" variable.
|
| + std::set<der::Input> expected_policy_set;
|
| +
|
| + // Note that RFC 5280's "qualifier_set" is omitted.
|
| + };
|
| +
|
| + // Level represents all the nodes at depth "i" in the valid_policy_tree.
|
| + using Level = std::vector<Node>;
|
| +
|
| + // Initializes the ValidPolicyTree for the given "user_initial_policy_set".
|
| + //
|
| + // In RFC 5280, the valid_policy_tree is initialized to a root node at depth
|
| + // 0 of "anyPolicy"; the intersection with the "user_initial_policy_set" is
|
| + // done at the end (Wrap Up) as described in section 6.1.5 step g.
|
| + //
|
| + // Whereas in this implementation, the restriction on policies is added here,
|
| + // and intersecting the valid policy tree during Wrap Up is no longer needed.
|
| + //
|
| + // The final "user_constrained_policy_set" obtained will be the same. The
|
| + // advantages of this approach is simpler code.
|
| + void Init(const std::set<der::Input>& user_initial_policy_set) {
|
| + Clear();
|
| + for (const der::Input& policy_oid : user_initial_policy_set)
|
| + AddRootNode(policy_oid);
|
| + }
|
| +
|
| + // Returns the current level (i.e. all nodes at depth i in the valid
|
| + // policy tree).
|
| + const Level& current_level() const { return current_level_; }
|
| + Level& current_level() { return current_level_; }
|
| +
|
| + // In RFC 5280 valid_policy_tree may be set to null. That is represented here
|
| + // by emptiness.
|
| + bool IsNull() const { return current_level_.empty(); }
|
| + void SetNull() { Clear(); }
|
| +
|
| + // This implementation keeps only the last level of the valid policy
|
| + // tree. Calling StartLevel() returns the nodes for the previous
|
| + // level, and starts a new level.
|
| + Level StartLevel() {
|
| + Level prev_level;
|
| + std::swap(prev_level, current_level_);
|
| + return prev_level;
|
| + }
|
| +
|
| + // Gets the set of policies (in terms of root authority's policy domain) that
|
| + // are valid at the curent level of the policy tree.
|
| + //
|
| + // For example:
|
| + //
|
| + // * If the valid policy tree was initialized with anyPolicy, then this
|
| + // function returns what X.509 calls "authorities-constrained-policy-set".
|
| + //
|
| + // * If the valid policy tree was instead initialized with the
|
| + // "user-initial-policy_set", then this function returns what X.509
|
| + // calls "user-constrained-policy-set"
|
| + // ("authorities-constrained-policy-set" intersected with the
|
| + // "user-initial-policy-set").
|
| + void GetValidRootPolicySet(std::set<der::Input>* policy_set) {
|
| + policy_set->clear();
|
| + for (const Node& node : current_level_)
|
| + policy_set->insert(node.root_policy);
|
| +
|
| + // If the result includes anyPolicy, simplify it to a set of size 1.
|
| + if (policy_set->size() > 1 && SetContains(*policy_set, AnyPolicy()))
|
| + *policy_set = {AnyPolicy()};
|
| + }
|
| +
|
| + // Adds a node |n| to the current level which is a child of |parent|
|
| + // such that:
|
| + // * n.valid_policy = policy_oid
|
| + // * n.expected_policy_set = {policy_oid}
|
| + void AddNode(const Node& parent, const der::Input& policy_oid) {
|
| + AddNodeWithExpectedPolicySet(parent, policy_oid, {policy_oid});
|
| + }
|
| +
|
| + // Adds a node |n| to the current level which is a child of |parent|
|
| + // such that:
|
| + // * n.valid_policy = policy_oid
|
| + // * n.expected_policy_set = expected_policy_set
|
| + void AddNodeWithExpectedPolicySet(
|
| + const Node& parent,
|
| + const der::Input& policy_oid,
|
| + const std::set<der::Input>& expected_policy_set) {
|
| + Node new_node;
|
| + new_node.valid_policy = policy_oid;
|
| + new_node.expected_policy_set = expected_policy_set;
|
| +
|
| + // Consider the root policy as the first policy other than anyPolicy (or
|
| + // anyPolicy if it hasn't been restricted yet).
|
| + new_node.root_policy =
|
| + (parent.root_policy == AnyPolicy()) ? policy_oid : parent.root_policy;
|
| +
|
| + current_level_.push_back(std::move(new_node));
|
| + }
|
| +
|
| + // Returns the first node having valid_policy == anyPolicy in |level|, or
|
| + // nullptr if there is none.
|
| + static const Node* FindAnyPolicyNode(const Level& level) {
|
| + for (const Node& node : level) {
|
| + if (node.valid_policy == AnyPolicy())
|
| + return &node;
|
| + }
|
| + return nullptr;
|
| + }
|
| +
|
| + // Deletes all nodes |n| in |level| where |n.valid_policy| matches the given
|
| + // |valid_policy|. This may re-order the nodes in |level|.
|
| + static void DeleteNodesMatchingValidPolicy(const der::Input& valid_policy,
|
| + Level* level) {
|
| + // This works by swapping nodes to the end of the vector, and then doing a
|
| + // single resize to delete them all.
|
| + auto cur = level->begin();
|
| + auto end = level->end();
|
| + while (cur != end) {
|
| + bool should_delete_node = cur->valid_policy == valid_policy;
|
| + if (should_delete_node) {
|
| + end = std::prev(end);
|
| + std::iter_swap(cur, end);
|
| + } else {
|
| + ++cur;
|
| + }
|
| + }
|
| + level->erase(end, level->end());
|
| + }
|
| +
|
| + private:
|
| + // Deletes all nodes in the valid policy tree.
|
| + void Clear() { current_level_.clear(); }
|
| +
|
| + // Adds a node to the current level for OID |policy_oid|. The current level
|
| + // is assumed to be the root level.
|
| + void AddRootNode(const der::Input& policy_oid) {
|
| + Node new_node;
|
| + new_node.root_policy = policy_oid;
|
| + new_node.valid_policy = policy_oid;
|
| + new_node.expected_policy_set = {policy_oid};
|
| + current_level_.push_back(std::move(new_node));
|
| + }
|
| +
|
| + Level current_level_;
|
| +
|
| + DISALLOW_COPY_AND_ASSIGN(ValidPolicyTree);
|
| +};
|
| +
|
| +// Class that encapsulates the state variables used by certificate path
|
| +// validation.
|
| +class PathVerifier {
|
| + public:
|
| + // Same parameters and meaning as VerifyCertificateChain().
|
| + void Run(const ParsedCertificateList& certs,
|
| + const CertificateTrust& last_cert_trust,
|
| + const SignaturePolicy* signature_policy,
|
| + const der::GeneralizedTime& time,
|
| + KeyPurpose required_key_purpose,
|
| + InitialExplicitPolicy initial_explicit_policy,
|
| + const std::set<der::Input>& user_initial_policy_set,
|
| + InitialPolicyMappingInhibit initial_policy_mapping_inhibit,
|
| + InitialAnyPolicyInhibit initial_any_policy_inhibit,
|
| + std::set<der::Input>* user_constrained_policy_set,
|
| + CertPathErrors* errors);
|
| +
|
| + private:
|
| + // Verifies and updates the valid policies. This corresponds with RFC 5280
|
| + // section 6.1.3 steps d-f.
|
| + void VerifyPolicies(const ParsedCertificate& cert,
|
| + bool is_target_cert,
|
| + CertErrors* errors);
|
| +
|
| + // Applies the policy mappings. This corresponds with RFC 5280 section 6.1.4
|
| + // steps a-b.
|
| + void VerifyPolicyMappings(const ParsedCertificate& cert, CertErrors* errors);
|
| +
|
| + // This function corresponds to RFC 5280 section 6.1.3's "Basic Certificate
|
| + // Processing" procedure.
|
| + void BasicCertificateProcessing(const ParsedCertificate& cert,
|
| + bool is_target_cert,
|
| + const SignaturePolicy* signature_policy,
|
| + const der::GeneralizedTime& time,
|
| + KeyPurpose required_key_purpose,
|
| + CertErrors* errors);
|
| +
|
| + // This function corresponds to RFC 5280 section 6.1.4's "Preparation for
|
| + // Certificate i+1" procedure. |cert| is expected to be an intermediate.
|
| + void PrepareForNextCertificate(const ParsedCertificate& cert,
|
| + CertErrors* errors);
|
| +
|
| + // This function corresponds with RFC 5280 section 6.1.5's "Wrap-Up
|
| + // Procedure". It does processing for the final certificate (the target cert).
|
| + void WrapUp(const ParsedCertificate& cert, CertErrors* errors);
|
| +
|
| + // Enforces trust anchor constraints compatibile with RFC 5937.
|
| + //
|
| + // Note that the anchor constraints are encoded via the attached certificate
|
| + // itself.
|
| + void ApplyTrustAnchorConstraints(const ParsedCertificate& cert,
|
| + KeyPurpose required_key_purpose,
|
| + CertErrors* errors);
|
| +
|
| + // Initializes the path validation algorithm given anchor constraints. This
|
| + // follows the description in RFC 5937
|
| + void ProcessRootCertificate(const ParsedCertificate& cert,
|
| + const CertificateTrust& trust,
|
| + KeyPurpose required_key_purpose,
|
| + CertErrors* errors);
|
| +
|
| + ValidPolicyTree valid_policy_tree_;
|
| +
|
| + // Will contain a NameConstraints for each previous cert in the chain which
|
| + // had nameConstraints. This corresponds to the permitted_subtrees and
|
| + // excluded_subtrees state variables from RFC 5280.
|
| + std::vector<const NameConstraints*> name_constraints_list_;
|
| +
|
| + // |explicit_policy_| corresponds with the same named variable from RFC 5280
|
| + // section 6.1.2:
|
| + //
|
| + // explicit_policy: an integer that indicates if a non-NULL
|
| + // valid_policy_tree is required. The integer indicates the
|
| + // number of non-self-issued certificates to be processed before
|
| + // this requirement is imposed. Once set, this variable may be
|
| + // decreased, but may not be increased. That is, if a certificate in the
|
| + // path requires a non-NULL valid_policy_tree, a later certificate cannot
|
| + // remove this requirement. If initial-explicit-policy is set, then the
|
| + // initial value is 0, otherwise the initial value is n+1.
|
| + size_t explicit_policy_;
|
| +
|
| + // |inhibit_any_policy_| corresponds with the same named variable from RFC
|
| + // 5280 section 6.1.2:
|
| + //
|
| + // inhibit_anyPolicy: an integer that indicates whether the
|
| + // anyPolicy policy identifier is considered a match. The
|
| + // integer indicates the number of non-self-issued certificates
|
| + // to be processed before the anyPolicy OID, if asserted in a
|
| + // certificate other than an intermediate self-issued
|
| + // certificate, is ignored. Once set, this variable may be
|
| + // decreased, but may not be increased. That is, if a
|
| + // certificate in the path inhibits processing of anyPolicy, a
|
| + // later certificate cannot permit it. If initial-any-policy-
|
| + // inhibit is set, then the initial value is 0, otherwise the
|
| + // initial value is n+1.
|
| + size_t inhibit_any_policy_;
|
| +
|
| + // |policy_mapping_| corresponds with the same named variable from RFC 5280
|
| + // section 6.1.2:
|
| + //
|
| + // policy_mapping: an integer that indicates if policy mapping
|
| + // is permitted. The integer indicates the number of non-self-
|
| + // issued certificates to be processed before policy mapping is
|
| + // inhibited. Once set, this variable may be decreased, but may
|
| + // not be increased. That is, if a certificate in the path
|
| + // specifies that policy mapping is not permitted, it cannot be
|
| + // overridden by a later certificate. If initial-policy-
|
| + // mapping-inhibit is set, then the initial value is 0,
|
| + // otherwise the initial value is n+1.
|
| + size_t policy_mapping_;
|
| +
|
| + // |working_spki_| is an amalgamation of 3 separate variables from RFC 5280:
|
| + // * working_public_key
|
| + // * working_public_key_algorithm
|
| + // * working_public_key_parameters
|
| + //
|
| + // They are combined for simplicity since the signature verification takes an
|
| + // SPKI, and the parameter inheritence is not applicable for the supported
|
| + // key types.
|
| + //
|
| + // An approximate explanation of |working_spki| is this description from RFC
|
| + // 5280 section 6.1.2:
|
| + //
|
| + // working_public_key: the public key used to verify the
|
| + // signature of a certificate.
|
| + der::Input working_spki_;
|
| +
|
| + // |working_normalized_issuer_name_| is the normalized value of the
|
| + // working_issuer_name variable in RFC 5280 section 6.1.2:
|
| + //
|
| + // working_issuer_name: the issuer distinguished name expected
|
| + // in the next certificate in the chain.
|
| + der::Input working_normalized_issuer_name_;
|
| +
|
| + // |max_path_length_| corresponds with the same named variable in RFC 5280
|
| + // section 6.1.2.
|
| + //
|
| + // max_path_length: this integer is initialized to n, is
|
| + // decremented for each non-self-issued certificate in the path,
|
| + // and may be reduced to the value in the path length constraint
|
| + // field within the basic constraints extension of a CA
|
| + // certificate.
|
| + size_t max_path_length_;
|
| +};
|
| +
|
| +void PathVerifier::VerifyPolicies(const ParsedCertificate& cert,
|
| + bool is_target_cert,
|
| + CertErrors* errors) {
|
| + // From RFC 5280 section 6.1.3:
|
| + //
|
| + // (d) If the certificate policies extension is present in the
|
| + // certificate and the valid_policy_tree is not NULL, process
|
| + // the policy information by performing the following steps in
|
| + // order:
|
| + if (cert.has_policy_oids() && !valid_policy_tree_.IsNull()) {
|
| + ValidPolicyTree::Level previous_level = valid_policy_tree_.StartLevel();
|
| +
|
| + // Identify if there was a node with valid_policy == anyPolicy at depth i-1.
|
| + const ValidPolicyTree::Node* any_policy_node_prev_level =
|
| + ValidPolicyTree::FindAnyPolicyNode(previous_level);
|
| +
|
| + // (1) For each policy P not equal to anyPolicy in the
|
| + // certificate policies extension, let P-OID denote the OID
|
| + // for policy P and P-Q denote the qualifier set for policy
|
| + // P. Perform the following steps in order:
|
| + bool cert_has_any_policy = false;
|
| + for (const der::Input& p_oid : cert.policy_oids()) {
|
| + if (p_oid == AnyPolicy()) {
|
| + cert_has_any_policy = true;
|
| + continue;
|
| + }
|
| +
|
| + // (i) For each node of depth i-1 in the valid_policy_tree
|
| + // where P-OID is in the expected_policy_set, create a
|
| + // child node as follows: set the valid_policy to P-OID,
|
| + // set the qualifier_set to P-Q, and set the
|
| + // expected_policy_set to {P-OID}.
|
| + bool found_match = false;
|
| + for (const ValidPolicyTree::Node& prev_node : previous_level) {
|
| + if (SetContains(prev_node.expected_policy_set, p_oid)) {
|
| + valid_policy_tree_.AddNode(prev_node, p_oid);
|
| + found_match = true;
|
| + }
|
| + }
|
| +
|
| + // (ii) If there was no match in step (i) and the
|
| + // valid_policy_tree includes a node of depth i-1 with
|
| + // the valid_policy anyPolicy, generate a child node with
|
| + // the following values: set the valid_policy to P-OID,
|
| + // set the qualifier_set to P-Q, and set the
|
| + // expected_policy_set to {P-OID}.
|
| + if (!found_match && any_policy_node_prev_level)
|
| + valid_policy_tree_.AddNode(*any_policy_node_prev_level, p_oid);
|
| + }
|
| +
|
| + // (2) If the certificate policies extension includes the policy
|
| + // anyPolicy with the qualifier set AP-Q and either (a)
|
| + // inhibit_anyPolicy is greater than 0 or (b) i<n and the
|
| + // certificate is self-issued, then:
|
| + //
|
| + // For each node in the valid_policy_tree of depth i-1, for
|
| + // each value in the expected_policy_set (including
|
| + // anyPolicy) that does not appear in a child node, create a
|
| + // child node with the following values: set the valid_policy
|
| + // to the value from the expected_policy_set in the parent
|
| + // node, set the qualifier_set to AP-Q, and set the
|
| + // expected_policy_set to the value in the valid_policy from
|
| + // this node.
|
| + if (cert_has_any_policy && ((inhibit_any_policy_ > 0) ||
|
| + (!is_target_cert && IsSelfIssued(cert)))) {
|
| + // Keep track of the existing policies at depth i.
|
| + std::set<der::Input> child_node_policies;
|
| + for (const ValidPolicyTree::Node& node :
|
| + valid_policy_tree_.current_level())
|
| + child_node_policies.insert(node.valid_policy);
|
| +
|
| + for (const ValidPolicyTree::Node& prev_node : previous_level) {
|
| + for (const der::Input& expected_policy :
|
| + prev_node.expected_policy_set) {
|
| + if (!SetContains(child_node_policies, expected_policy)) {
|
| + child_node_policies.insert(expected_policy);
|
| + valid_policy_tree_.AddNode(prev_node, expected_policy);
|
| + }
|
| + }
|
| + }
|
| + }
|
| +
|
| + // (3) If there is a node in the valid_policy_tree of depth i-1
|
| + // or less without any child nodes, delete that node. Repeat
|
| + // this step until there are no nodes of depth i-1 or less
|
| + // without children.
|
| + //
|
| + // Nothing needs to be done for this step, since this implementation only
|
| + // stores the nodes at depth i, and the entire level has already been
|
| + // calculated.
|
| + }
|
| +
|
| + // (e) If the certificate policies extension is not present, set the
|
| + // valid_policy_tree to NULL.
|
| + if (!cert.has_policy_oids())
|
| + valid_policy_tree_.SetNull();
|
| +
|
| + // (f) Verify that either explicit_policy is greater than 0 or the
|
| + // valid_policy_tree is not equal to NULL;
|
| + if (!((explicit_policy_ > 0) || !valid_policy_tree_.IsNull()))
|
| + errors->AddError(kNoValidPolicy);
|
| +}
|
| +
|
| +void PathVerifier::VerifyPolicyMappings(const ParsedCertificate& cert,
|
| + CertErrors* errors) {
|
| + if (!cert.has_policy_mappings())
|
| + return;
|
| +
|
| + // From RFC 5280 section 6.1.4:
|
| + //
|
| + // (a) If a policy mappings extension is present, verify that the
|
| + // special value anyPolicy does not appear as an
|
| + // issuerDomainPolicy or a subjectDomainPolicy.
|
| + for (const ParsedPolicyMapping& mapping : cert.policy_mappings()) {
|
| + if (mapping.issuer_domain_policy == AnyPolicy() ||
|
| + mapping.subject_domain_policy == AnyPolicy()) {
|
| + // Because this implementation continues processing certificates after
|
| + // this error, clear the valid policy tree to ensure the
|
| + // "user_constrained_policy_set" output upon failure is empty.
|
| + valid_policy_tree_.SetNull();
|
| + errors->AddError(kPolicyMappingAnyPolicy);
|
| + }
|
| + }
|
| +
|
| + // (b) If a policy mappings extension is present, then for each
|
| + // issuerDomainPolicy ID-P in the policy mappings extension:
|
| + //
|
| + // (1) If the policy_mapping variable is greater than 0, for each
|
| + // node in the valid_policy_tree of depth i where ID-P is the
|
| + // valid_policy, set expected_policy_set to the set of
|
| + // subjectDomainPolicy values that are specified as
|
| + // equivalent to ID-P by the policy mappings extension.
|
| + //
|
| + // If no node of depth i in the valid_policy_tree has a
|
| + // valid_policy of ID-P but there is a node of depth i with a
|
| + // valid_policy of anyPolicy, then generate a child node of
|
| + // the node of depth i-1 that has a valid_policy of anyPolicy
|
| + // as follows:
|
| + //
|
| + // (i) set the valid_policy to ID-P;
|
| + //
|
| + // (ii) set the qualifier_set to the qualifier set of the
|
| + // policy anyPolicy in the certificate policies
|
| + // extension of certificate i; and
|
| + //
|
| + // (iii) set the expected_policy_set to the set of
|
| + // subjectDomainPolicy values that are specified as
|
| + // equivalent to ID-P by the policy mappings extension.
|
| + //
|
| + if (policy_mapping_ > 0) {
|
| + const ValidPolicyTree::Node* any_policy_node =
|
| + ValidPolicyTree::FindAnyPolicyNode(valid_policy_tree_.current_level());
|
| +
|
| + // Group mappings by issuer domain policy.
|
| + std::map<der::Input, std::set<der::Input>> mappings;
|
| + for (const ParsedPolicyMapping& mapping : cert.policy_mappings()) {
|
| + mappings[mapping.issuer_domain_policy].insert(
|
| + mapping.subject_domain_policy);
|
| + }
|
| +
|
| + for (const auto& it : mappings) {
|
| + const der::Input& issuer_domain_policy = it.first;
|
| + const std::set<der::Input>& subject_domain_policies = it.second;
|
| + bool found_node = false;
|
| +
|
| + for (ValidPolicyTree::Node& node : valid_policy_tree_.current_level()) {
|
| + if (node.valid_policy == issuer_domain_policy) {
|
| + node.expected_policy_set = subject_domain_policies;
|
| + found_node = true;
|
| + }
|
| + }
|
| +
|
| + if (!found_node && any_policy_node) {
|
| + valid_policy_tree_.AddNodeWithExpectedPolicySet(
|
| + *any_policy_node, issuer_domain_policy, subject_domain_policies);
|
| + }
|
| + }
|
| + }
|
| +
|
| + // (b) If a policy mappings extension is present, then for each
|
| + // issuerDomainPolicy ID-P in the policy mappings extension:
|
| + //
|
| + // ...
|
| + //
|
| + // (2) If the policy_mapping variable is equal to 0:
|
| + //
|
| + // (i) delete each node of depth i in the valid_policy_tree
|
| + // where ID-P is the valid_policy.
|
| + //
|
| + // (ii) If there is a node in the valid_policy_tree of depth
|
| + // i-1 or less without any child nodes, delete that
|
| + // node. Repeat this step until there are no nodes of
|
| + // depth i-1 or less without children.
|
| + if (policy_mapping_ == 0) {
|
| + for (const ParsedPolicyMapping& mapping : cert.policy_mappings()) {
|
| + ValidPolicyTree::DeleteNodesMatchingValidPolicy(
|
| + mapping.issuer_domain_policy, &valid_policy_tree_.current_level());
|
| + }
|
| + }
|
| +}
|
| +
|
| +void PathVerifier::BasicCertificateProcessing(
|
| const ParsedCertificate& cert,
|
| bool is_target_cert,
|
| const SignaturePolicy* signature_policy,
|
| const der::GeneralizedTime& time,
|
| - const der::Input& working_spki,
|
| - const der::Input& working_normalized_issuer_name,
|
| - const std::vector<const NameConstraints*>& name_constraints_list,
|
| + KeyPurpose required_key_purpose,
|
| CertErrors* errors) {
|
| // Check that the signature algorithms in Certificate vs TBSCertificate
|
| // match. This isn't part of RFC 5280 section 6.1.3, but is mandated by
|
| @@ -235,7 +779,7 @@ void BasicCertificateProcessing(
|
| // Verify the digital signature using the previous certificate's key (RFC
|
| // 5280 section 6.1.3 step a.1).
|
| if (!VerifySignedData(cert.signature_algorithm(), cert.tbs_certificate_tlv(),
|
| - cert.signature_value(), working_spki, signature_policy,
|
| + cert.signature_value(), working_spki_, signature_policy,
|
| errors)) {
|
| errors->AddError(kVerifySignedDataFailed);
|
| }
|
| @@ -249,15 +793,15 @@ void BasicCertificateProcessing(
|
|
|
| // Verify the certificate's issuer name matches the issuing certificate's
|
| // subject name. (RFC 5280 section 6.1.3 step a.4)
|
| - if (cert.normalized_issuer() != working_normalized_issuer_name)
|
| + if (cert.normalized_issuer() != working_normalized_issuer_name_)
|
| errors->AddError(kSubjectDoesNotMatchIssuer);
|
|
|
| // Name constraints (RFC 5280 section 6.1.3 step b & c)
|
| // If certificate i is self-issued and it is not the final certificate in the
|
| // path, skip this step for certificate i.
|
| - if (!name_constraints_list.empty() &&
|
| + if (!name_constraints_list_.empty() &&
|
| (!IsSelfIssued(cert) || is_target_cert)) {
|
| - for (const NameConstraints* nc : name_constraints_list) {
|
| + for (const NameConstraints* nc : name_constraints_list_) {
|
| if (!nc->IsPermittedCert(cert.normalized_subject(),
|
| cert.subject_alt_names())) {
|
| errors->AddError(kNotPermittedByNameConstraints);
|
| @@ -265,31 +809,30 @@ void BasicCertificateProcessing(
|
| }
|
| }
|
|
|
| - // TODO(eroman): Steps d-f are omitted, as policy constraints are not yet
|
| - // implemented.
|
| + // RFC 5280 section 6.1.3 step d - f.
|
| + VerifyPolicies(cert, is_target_cert, errors);
|
| +
|
| + // The key purpose is checked not just for the end-entity certificate, but
|
| + // also interpreted as a constraint when it appears in intermediates. This
|
| + // goes beyond what RFC 5280 describes, but is the de-facto standard. See
|
| + // https://wiki.mozilla.org/CA:CertificatePolicyV2.1#Frequently_Asked_Questions
|
| + VerifyExtendedKeyUsage(cert, required_key_purpose, errors);
|
| }
|
|
|
| -// This function corresponds to RFC 5280 section 6.1.4's "Preparation for
|
| -// Certificate i+1" procedure. |cert| is expected to be an intermediate.
|
| -void PrepareForNextCertificate(
|
| - const ParsedCertificate& cert,
|
| - size_t* max_path_length_ptr,
|
| - der::Input* working_spki,
|
| - der::Input* working_normalized_issuer_name,
|
| - std::vector<const NameConstraints*>* name_constraints_list,
|
| - CertErrors* errors) {
|
| - // TODO(crbug.com/634456): Steps a-b are omitted, as policy mappings are not
|
| - // yet implemented.
|
| +void PathVerifier::PrepareForNextCertificate(const ParsedCertificate& cert,
|
| + CertErrors* errors) {
|
| + // RFC 5280 section 6.1.4 step a-b
|
| + VerifyPolicyMappings(cert, errors);
|
|
|
| // From RFC 5280 section 6.1.4 step c:
|
| //
|
| // Assign the certificate subject name to working_normalized_issuer_name.
|
| - *working_normalized_issuer_name = cert.normalized_subject();
|
| + working_normalized_issuer_name_ = cert.normalized_subject();
|
|
|
| // From RFC 5280 section 6.1.4 step d:
|
| //
|
| // Assign the certificate subjectPublicKey to working_public_key.
|
| - *working_spki = cert.tbs().spki_tlv;
|
| + working_spki_ = cert.tbs().spki_tlv;
|
|
|
| // Note that steps e and f are omitted as they are handled by
|
| // the assignment to |working_spki| above. See the definition
|
| @@ -297,10 +840,53 @@ void PrepareForNextCertificate(
|
|
|
| // From RFC 5280 section 6.1.4 step g:
|
| if (cert.has_name_constraints())
|
| - name_constraints_list->push_back(&cert.name_constraints());
|
| + name_constraints_list_.push_back(&cert.name_constraints());
|
|
|
| - // TODO(eroman): Steps h-j are omitted as policy
|
| - // constraints/mappings/inhibitAnyPolicy are not yet implemented.
|
| + // (h) If certificate i is not self-issued:
|
| + if (!IsSelfIssued(cert)) {
|
| + // (1) If explicit_policy is not 0, decrement explicit_policy by
|
| + // 1.
|
| + if (explicit_policy_ > 0)
|
| + explicit_policy_ -= 1;
|
| +
|
| + // (2) If policy_mapping is not 0, decrement policy_mapping by 1.
|
| + if (policy_mapping_ > 0)
|
| + policy_mapping_ -= 1;
|
| +
|
| + // (3) If inhibit_anyPolicy is not 0, decrement inhibit_anyPolicy
|
| + // by 1.
|
| + if (inhibit_any_policy_ > 0)
|
| + inhibit_any_policy_ -= 1;
|
| + }
|
| +
|
| + // (i) If a policy constraints extension is included in the
|
| + // certificate, modify the explicit_policy and policy_mapping
|
| + // state variables as follows:
|
| + if (cert.has_policy_constraints()) {
|
| + // (1) If requireExplicitPolicy is present and is less than
|
| + // explicit_policy, set explicit_policy to the value of
|
| + // requireExplicitPolicy.
|
| + if (cert.policy_constraints().has_require_explicit_policy &&
|
| + cert.policy_constraints().require_explicit_policy < explicit_policy_) {
|
| + explicit_policy_ = cert.policy_constraints().require_explicit_policy;
|
| + }
|
| +
|
| + // (2) If inhibitPolicyMapping is present and is less than
|
| + // policy_mapping, set policy_mapping to the value of
|
| + // inhibitPolicyMapping.
|
| + if (cert.policy_constraints().has_inhibit_policy_mapping &&
|
| + cert.policy_constraints().inhibit_policy_mapping < policy_mapping_) {
|
| + policy_mapping_ = cert.policy_constraints().inhibit_policy_mapping;
|
| + }
|
| + }
|
| +
|
| + // (j) If the inhibitAnyPolicy extension is included in the
|
| + // certificate and is less than inhibit_anyPolicy, set
|
| + // inhibit_anyPolicy to the value of inhibitAnyPolicy.
|
| + if (cert.has_inhibit_any_policy() &&
|
| + cert.inhibit_any_policy() < inhibit_any_policy_) {
|
| + inhibit_any_policy_ = cert.inhibit_any_policy();
|
| + }
|
|
|
| // From RFC 5280 section 6.1.4 step k:
|
| //
|
| @@ -327,10 +913,10 @@ void PrepareForNextCertificate(
|
| // max_path_length is greater than zero and decrement
|
| // max_path_length by 1.
|
| if (!IsSelfIssued(cert)) {
|
| - if (*max_path_length_ptr == 0) {
|
| + if (max_path_length_ == 0) {
|
| errors->AddError(kMaxPathLengthViolated);
|
| } else {
|
| - --(*max_path_length_ptr);
|
| + --max_path_length_;
|
| }
|
| }
|
|
|
| @@ -340,8 +926,8 @@ void PrepareForNextCertificate(
|
| // less than max_path_length, set max_path_length to the value
|
| // of pathLenConstraint.
|
| if (cert.has_basic_constraints() && cert.basic_constraints().has_path_len &&
|
| - cert.basic_constraints().path_len < *max_path_length_ptr) {
|
| - *max_path_length_ptr = cert.basic_constraints().path_len;
|
| + cert.basic_constraints().path_len < max_path_length_) {
|
| + max_path_length_ = cert.basic_constraints().path_len;
|
| }
|
|
|
| // From RFC 5280 section 6.1.4 step n:
|
| @@ -408,13 +994,22 @@ void VerifyTargetCertHasConsistentCaBits(const ParsedCertificate& cert,
|
| }
|
| }
|
|
|
| -// This function corresponds with RFC 5280 section 6.1.5's "Wrap-Up Procedure".
|
| -// It does processing for the final certificate (the target cert).
|
| -void WrapUp(const ParsedCertificate& cert, CertErrors* errors) {
|
| - // TODO(crbug.com/634452): Steps a-b are omitted as policy constraints are not
|
| - // yet implemented.
|
| +void PathVerifier::WrapUp(const ParsedCertificate& cert, CertErrors* errors) {
|
| + // From RFC 5280 section 6.1.5:
|
| + // (a) If explicit_policy is not 0, decrement explicit_policy by 1.
|
| + if (explicit_policy_ > 0)
|
| + explicit_policy_ -= 1;
|
| +
|
| + // (b) If a policy constraints extension is included in the
|
| + // certificate and requireExplicitPolicy is present and has a
|
| + // value of 0, set the explicit_policy state variable to 0.
|
| + if (cert.has_policy_constraints() &&
|
| + cert.policy_constraints().has_require_explicit_policy &&
|
| + cert.policy_constraints().require_explicit_policy == 0) {
|
| + explicit_policy_ = 0;
|
| + }
|
|
|
| - // Note step c-e are omitted the verification function does
|
| + // Note step c-e are omitted as the verification function does
|
| // not output the working public key.
|
|
|
| // From RFC 5280 section 6.1.5 step f:
|
| @@ -428,24 +1023,24 @@ void WrapUp(const ParsedCertificate& cert, CertErrors* errors) {
|
| // directly match the procedures in RFC 5280's section 6.1.
|
| VerifyNoUnconsumedCriticalExtensions(cert, errors);
|
|
|
| - // TODO(eroman): Step g is omitted, as policy constraints are not yet
|
| - // implemented.
|
| + // RFC 5280 section 6.1.5 step g is skipped, as the intersection of valid
|
| + // policies was computed during previous steps.
|
| + //
|
| + // If either (1) the value of explicit_policy variable is greater than
|
| + // zero or (2) the valid_policy_tree is not NULL, then path processing
|
| + // has succeeded.
|
| + if (!(explicit_policy_ > 0 || !valid_policy_tree_.IsNull())) {
|
| + errors->AddError(kNoValidPolicy);
|
| + }
|
|
|
| // The following check is NOT part of RFC 5280 6.1.5's "Wrap-Up Procedure",
|
| // however is implied by RFC 5280 section 4.2.1.9.
|
| VerifyTargetCertHasConsistentCaBits(cert, errors);
|
| }
|
|
|
| -// Enforces trust anchor constraints compatibile with RFC 5937.
|
| -//
|
| -// Note that the anchor constraints are encoded via the attached certificate
|
| -// itself.
|
| -void ApplyTrustAnchorConstraints(
|
| - const ParsedCertificate& cert,
|
| - KeyPurpose required_key_purpose,
|
| - size_t* max_path_length_ptr,
|
| - std::vector<const NameConstraints*>* name_constraints_list,
|
| - CertErrors* errors) {
|
| +void PathVerifier::ApplyTrustAnchorConstraints(const ParsedCertificate& cert,
|
| + KeyPurpose required_key_purpose,
|
| + CertErrors* errors) {
|
| // This is not part of RFC 5937 nor RFC 5280, but matches the EKU handling
|
| // done for intermediates (described in Web PKI's Baseline Requirements).
|
| VerifyExtendedKeyUsage(cert, required_key_purpose, errors);
|
| @@ -454,7 +1049,7 @@ void ApplyTrustAnchorConstraints(
|
|
|
| // Initialize name constraints initial-permitted/excluded-subtrees.
|
| if (cert.has_name_constraints())
|
| - name_constraints_list->push_back(&cert.name_constraints());
|
| + name_constraints_list_.push_back(&cert.name_constraints());
|
|
|
| // TODO(eroman): Initialize user-initial-policy-set based on anchor
|
| // constraints.
|
| @@ -477,7 +1072,7 @@ void ApplyTrustAnchorConstraints(
|
| // NOTE: RFC 5937 does not say to enforce the CA=true part of basic
|
| // constraints.
|
| if (cert.has_basic_constraints() && cert.basic_constraints().has_path_len)
|
| - *max_path_length_ptr = cert.basic_constraints().path_len;
|
| + max_path_length_ = cert.basic_constraints().path_len;
|
|
|
| // From RFC 5937 section 2:
|
| //
|
| @@ -487,22 +1082,15 @@ void ApplyTrustAnchorConstraints(
|
| VerifyNoUnconsumedCriticalExtensions(cert, errors);
|
| }
|
|
|
| -// Initializes the path validation algorithm given anchor constraints. This
|
| -// follows the description in RFC 5937
|
| -void ProcessRootCertificate(
|
| - const ParsedCertificate& cert,
|
| - const CertificateTrust& trust,
|
| - KeyPurpose required_key_purpose,
|
| - size_t* max_path_length_ptr,
|
| - std::vector<const NameConstraints*>* name_constraints_list,
|
| - der::Input* working_spki,
|
| - der::Input* working_normalized_issuer_name,
|
| - CertErrors* errors) {
|
| +void PathVerifier::ProcessRootCertificate(const ParsedCertificate& cert,
|
| + const CertificateTrust& trust,
|
| + KeyPurpose required_key_purpose,
|
| + CertErrors* errors) {
|
| // Use the certificate's SPKI and subject when verifying the next certificate.
|
| // Note this is initialized even in the case of untrusted roots (they already
|
| // emit an error for the distrust).
|
| - *working_spki = cert.tbs().spki_tlv;
|
| - *working_normalized_issuer_name = cert.normalized_subject();
|
| + working_spki_ = cert.tbs().spki_tlv;
|
| + working_normalized_issuer_name_ = cert.normalized_subject();
|
|
|
| switch (trust.type) {
|
| case CertificateTrustType::UNSPECIFIED:
|
| @@ -517,24 +1105,26 @@ void ProcessRootCertificate(
|
| case CertificateTrustType::TRUSTED_ANCHOR_WITH_CONSTRAINTS:
|
| // If the trust anchor has constraints, enforce them.
|
| if (trust.type == CertificateTrustType::TRUSTED_ANCHOR_WITH_CONSTRAINTS) {
|
| - ApplyTrustAnchorConstraints(cert, required_key_purpose,
|
| - max_path_length_ptr, name_constraints_list,
|
| - errors);
|
| + ApplyTrustAnchorConstraints(cert, required_key_purpose, errors);
|
| }
|
| break;
|
| }
|
| }
|
|
|
| -} // namespace
|
| -
|
| -// This implementation is structured to mimic the description of certificate
|
| -// path verification given by RFC 5280 section 6.1.
|
| -void VerifyCertificateChain(const ParsedCertificateList& certs,
|
| - const CertificateTrust& last_cert_trust,
|
| - const SignaturePolicy* signature_policy,
|
| - const der::GeneralizedTime& time,
|
| - KeyPurpose required_key_purpose,
|
| - CertPathErrors* errors) {
|
| +void PathVerifier::Run(
|
| + const ParsedCertificateList& certs,
|
| + const CertificateTrust& last_cert_trust,
|
| + const SignaturePolicy* signature_policy,
|
| + const der::GeneralizedTime& time,
|
| + KeyPurpose required_key_purpose,
|
| + InitialExplicitPolicy initial_explicit_policy,
|
| + const std::set<der::Input>& user_initial_policy_set,
|
| + InitialPolicyMappingInhibit initial_policy_mapping_inhibit,
|
| + InitialAnyPolicyInhibit initial_any_policy_inhibit,
|
| + std::set<der::Input>* user_constrained_policy_set,
|
| + CertPathErrors* errors) {
|
| + // This implementation is structured to mimic the description of certificate
|
| + // path verification given by RFC 5280 section 6.1.
|
| DCHECK(signature_policy);
|
| DCHECK(errors);
|
|
|
| @@ -551,50 +1141,48 @@ void VerifyCertificateChain(const ParsedCertificateList& certs,
|
| return;
|
| }
|
|
|
| - // Will contain a NameConstraints for each previous cert in the chain which
|
| - // had nameConstraints. This corresponds to the permitted_subtrees and
|
| - // excluded_subtrees state variables from RFC 5280.
|
| - std::vector<const NameConstraints*> name_constraints_list;
|
| + // RFC 5280's "n" variable is the length of the path, which does not count
|
| + // the trust anchor. (Although in practice it doesn't really change behaviors
|
| + // if n is used in place of n+1).
|
| + const size_t n = certs.size() - 1;
|
|
|
| - // |working_spki| is an amalgamation of 3 separate variables from RFC 5280:
|
| - // * working_public_key
|
| - // * working_public_key_algorithm
|
| - // * working_public_key_parameters
|
| - //
|
| - // They are combined for simplicity since the signature verification takes an
|
| - // SPKI, and the parameter inheritence is not applicable for the supported
|
| - // key types.
|
| - //
|
| - // An approximate explanation of |working_spki| is this description from RFC
|
| - // 5280 section 6.1.2:
|
| + valid_policy_tree_.Init(user_initial_policy_set);
|
| +
|
| + // RFC 5280 section section 6.1.2:
|
| //
|
| - // working_public_key: the public key used to verify the
|
| - // signature of a certificate.
|
| - der::Input working_spki;
|
| + // If initial-explicit-policy is set, then the initial value
|
| + // [of explicit_policy] is 0, otherwise the initial value is n+1.
|
| + explicit_policy_ =
|
| + initial_explicit_policy == InitialExplicitPolicy::kTrue ? 0 : n + 1;
|
|
|
| - // |working_normalized_issuer_name| is the normalized value of the
|
| - // working_issuer_name variable in RFC 5280 section 6.1.2:
|
| + // RFC 5280 section section 6.1.2:
|
| //
|
| - // working_issuer_name: the issuer distinguished name expected
|
| - // in the next certificate in the chain.
|
| - der::Input working_normalized_issuer_name;
|
| + // If initial-any-policy-inhibit is set, then the initial value
|
| + // [of inhibit_anyPolicy] is 0, otherwise the initial value is n+1.
|
| + inhibit_any_policy_ =
|
| + initial_any_policy_inhibit == InitialAnyPolicyInhibit::kTrue ? 0 : n + 1;
|
|
|
| - // |max_path_length| corresponds with the same named variable in RFC 5280
|
| - // section 6.1.2:
|
| + // RFC 5280 section section 6.1.2:
|
| //
|
| - // max_path_length: this integer is initialized to n, is
|
| - // decremented for each non-self-issued certificate in the path,
|
| - // and may be reduced to the value in the path length constraint
|
| - // field within the basic constraints extension of a CA
|
| - // certificate.
|
| - size_t max_path_length = certs.size();
|
| + // If initial-policy-mapping-inhibit is set, then the initial value
|
| + // [of policy_mapping] is 0, otherwise the initial value is n+1.
|
| + policy_mapping_ =
|
| + initial_policy_mapping_inhibit == InitialPolicyMappingInhibit::kTrue
|
| + ? 0
|
| + : n + 1;
|
| +
|
| + // RFC 5280 section section 6.1.2:
|
| + //
|
| + // max_path_length: this integer is initialized to n, ...
|
| + max_path_length_ = n;
|
|
|
| // Iterate over all the certificates in the reverse direction: starting from
|
| // the root certificate and progressing towards the target certificate.
|
| //
|
| - // * i=0 : Root certificate (i.e. trust anchor)
|
| - // * i=1 : Certificated signed by the root certificate
|
| - // * i=certs.size()-1 : Target certificate.
|
| + // * i=0 : Root certificate (i.e. trust anchor)
|
| + // * i=1 : Certificate issued by root
|
| + // * i=x : Certificate i=x is issued by certificate i=x-1
|
| + // * i=n : Target certificate.
|
| for (size_t i = 0; i < certs.size(); ++i) {
|
| const size_t index_into_certs = certs.size() - i - 1;
|
|
|
| @@ -612,8 +1200,6 @@ void VerifyCertificateChain(const ParsedCertificateList& certs,
|
|
|
| if (is_root_cert) {
|
| ProcessRootCertificate(cert, last_cert_trust, required_key_purpose,
|
| - &max_path_length, &name_constraints_list,
|
| - &working_spki, &working_normalized_issuer_name,
|
| cert_errors);
|
|
|
| // Don't do any other checks for root certificates.
|
| @@ -626,28 +1212,45 @@ void VerifyCertificateChain(const ParsedCertificateList& certs,
|
| // - Then run "Wrap up"
|
| // - Otherwise run "Prepare for Next cert"
|
| BasicCertificateProcessing(cert, is_target_cert, signature_policy, time,
|
| - working_spki, working_normalized_issuer_name,
|
| - name_constraints_list, cert_errors);
|
| -
|
| - // The key purpose is checked not just for the end-entity certificate, but
|
| - // also interpreted as a constraint when it appears in intermediates. This
|
| - // goes beyond what RFC 5280 describes, but is the de-facto standard. See
|
| - // https://wiki.mozilla.org/CA:CertificatePolicyV2.1#Frequently_Asked_Questions
|
| - VerifyExtendedKeyUsage(cert, required_key_purpose, cert_errors);
|
| -
|
| + required_key_purpose, cert_errors);
|
| if (!is_target_cert) {
|
| - PrepareForNextCertificate(cert, &max_path_length, &working_spki,
|
| - &working_normalized_issuer_name,
|
| - &name_constraints_list, cert_errors);
|
| + PrepareForNextCertificate(cert, cert_errors);
|
| } else {
|
| WrapUp(cert, cert_errors);
|
| }
|
| }
|
|
|
| + if (user_constrained_policy_set) {
|
| + // valid_policy_tree_ already contains the intersection of valid policies
|
| + // with user_initial_policy_set.
|
| + valid_policy_tree_.GetValidRootPolicySet(user_constrained_policy_set);
|
| + }
|
| +
|
| // TODO(eroman): RFC 5280 forbids duplicate certificates per section 6.1:
|
| //
|
| // A certificate MUST NOT appear more than once in a prospective
|
| // certification path.
|
| }
|
|
|
| +} // namespace
|
| +
|
| +void VerifyCertificateChain(
|
| + const ParsedCertificateList& certs,
|
| + const CertificateTrust& last_cert_trust,
|
| + const SignaturePolicy* signature_policy,
|
| + const der::GeneralizedTime& time,
|
| + KeyPurpose required_key_purpose,
|
| + InitialExplicitPolicy initial_explicit_policy,
|
| + const std::set<der::Input>& user_initial_policy_set,
|
| + InitialPolicyMappingInhibit initial_policy_mapping_inhibit,
|
| + InitialAnyPolicyInhibit initial_any_policy_inhibit,
|
| + std::set<der::Input>* user_constrained_policy_set,
|
| + CertPathErrors* errors) {
|
| + PathVerifier verifier;
|
| + verifier.Run(certs, last_cert_trust, signature_policy, time,
|
| + required_key_purpose, initial_explicit_policy,
|
| + user_initial_policy_set, initial_policy_mapping_inhibit,
|
| + initial_any_policy_inhibit, user_constrained_policy_set, errors);
|
| +}
|
| +
|
| } // namespace net
|
|
|