Index: src/arm64/simulator-logic-arm64.cc |
diff --git a/src/arm64/simulator-logic-arm64.cc b/src/arm64/simulator-logic-arm64.cc |
new file mode 100644 |
index 0000000000000000000000000000000000000000..44a31c4097631beaa2da63950b4adb5b6ecd2e7c |
--- /dev/null |
+++ b/src/arm64/simulator-logic-arm64.cc |
@@ -0,0 +1,4191 @@ |
+// Copyright 2016 the V8 project authors. All rights reserved. |
+// Use of this source code is governed by a BSD-style license that can be |
+// found in the LICENSE file. |
+ |
+#if V8_TARGET_ARCH_ARM64 |
+ |
+#include <cmath> |
+#include "src/arm64/simulator-arm64.h" |
+ |
+namespace v8 { |
+namespace internal { |
+ |
+#if defined(USE_SIMULATOR) |
+ |
+namespace { |
+ |
+// See FPRound for a description of this function. |
+inline double FPRoundToDouble(int64_t sign, int64_t exponent, uint64_t mantissa, |
+ FPRounding round_mode) { |
+ uint64_t bits = FPRound<uint64_t, kDoubleExponentBits, kDoubleMantissaBits>( |
+ sign, exponent, mantissa, round_mode); |
+ return bit_cast<double>(bits); |
+} |
+ |
+// See FPRound for a description of this function. |
+inline float FPRoundToFloat(int64_t sign, int64_t exponent, uint64_t mantissa, |
+ FPRounding round_mode) { |
+ uint32_t bits = FPRound<uint32_t, kFloatExponentBits, kFloatMantissaBits>( |
+ sign, exponent, mantissa, round_mode); |
+ return bit_cast<float>(bits); |
+} |
+ |
+// See FPRound for a description of this function. |
+inline float16 FPRoundToFloat16(int64_t sign, int64_t exponent, |
+ uint64_t mantissa, FPRounding round_mode) { |
+ return FPRound<float16, kFloat16ExponentBits, kFloat16MantissaBits>( |
+ sign, exponent, mantissa, round_mode); |
+} |
+ |
+} // namespace |
+ |
+double Simulator::FixedToDouble(int64_t src, int fbits, FPRounding round) { |
+ if (src >= 0) { |
+ return UFixedToDouble(src, fbits, round); |
+ } else if (src == INT64_MIN) { |
+ return -UFixedToDouble(src, fbits, round); |
+ } else { |
+ return -UFixedToDouble(-src, fbits, round); |
+ } |
+} |
+ |
+double Simulator::UFixedToDouble(uint64_t src, int fbits, FPRounding round) { |
+ // An input of 0 is a special case because the result is effectively |
+ // subnormal: The exponent is encoded as 0 and there is no implicit 1 bit. |
+ if (src == 0) { |
+ return 0.0; |
+ } |
+ |
+ // Calculate the exponent. The highest significant bit will have the value |
+ // 2^exponent. |
+ const int highest_significant_bit = 63 - CountLeadingZeros(src, 64); |
+ const int64_t exponent = highest_significant_bit - fbits; |
+ |
+ return FPRoundToDouble(0, exponent, src, round); |
+} |
+ |
+float Simulator::FixedToFloat(int64_t src, int fbits, FPRounding round) { |
+ if (src >= 0) { |
+ return UFixedToFloat(src, fbits, round); |
+ } else if (src == INT64_MIN) { |
+ return -UFixedToFloat(src, fbits, round); |
+ } else { |
+ return -UFixedToFloat(-src, fbits, round); |
+ } |
+} |
+ |
+float Simulator::UFixedToFloat(uint64_t src, int fbits, FPRounding round) { |
+ // An input of 0 is a special case because the result is effectively |
+ // subnormal: The exponent is encoded as 0 and there is no implicit 1 bit. |
+ if (src == 0) { |
+ return 0.0f; |
+ } |
+ |
+ // Calculate the exponent. The highest significant bit will have the value |
+ // 2^exponent. |
+ const int highest_significant_bit = 63 - CountLeadingZeros(src, 64); |
+ const int32_t exponent = highest_significant_bit - fbits; |
+ |
+ return FPRoundToFloat(0, exponent, src, round); |
+} |
+ |
+double Simulator::FPToDouble(float value) { |
+ switch (std::fpclassify(value)) { |
+ case FP_NAN: { |
+ if (IsSignallingNaN(value)) { |
+ FPProcessException(); |
+ } |
+ if (DN()) return kFP64DefaultNaN; |
+ |
+ // Convert NaNs as the processor would: |
+ // - The sign is propagated. |
+ // - The mantissa is transferred entirely, except that the top bit is |
+ // forced to '1', making the result a quiet NaN. The unused (low-order) |
+ // mantissa bits are set to 0. |
+ uint32_t raw = bit_cast<uint32_t>(value); |
+ |
+ uint64_t sign = raw >> 31; |
+ uint64_t exponent = (1 << kDoubleExponentBits) - 1; |
+ uint64_t mantissa = unsigned_bitextract_64(21, 0, raw); |
+ |
+ // Unused low-order bits remain zero. |
+ mantissa <<= (kDoubleMantissaBits - kFloatMantissaBits); |
+ |
+ // Force a quiet NaN. |
+ mantissa |= (UINT64_C(1) << (kDoubleMantissaBits - 1)); |
+ |
+ return double_pack(sign, exponent, mantissa); |
+ } |
+ |
+ case FP_ZERO: |
+ case FP_NORMAL: |
+ case FP_SUBNORMAL: |
+ case FP_INFINITE: { |
+ // All other inputs are preserved in a standard cast, because every value |
+ // representable using an IEEE-754 float is also representable using an |
+ // IEEE-754 double. |
+ return static_cast<double>(value); |
+ } |
+ } |
+ |
+ UNREACHABLE(); |
+} |
+ |
+float Simulator::FPToFloat(float16 value) { |
+ uint32_t sign = value >> 15; |
+ uint32_t exponent = |
+ unsigned_bitextract_32(kFloat16MantissaBits + kFloat16ExponentBits - 1, |
+ kFloat16MantissaBits, value); |
+ uint32_t mantissa = |
+ unsigned_bitextract_32(kFloat16MantissaBits - 1, 0, value); |
+ |
+ switch (float16classify(value)) { |
+ case FP_ZERO: |
+ return (sign == 0) ? 0.0f : -0.0f; |
+ |
+ case FP_INFINITE: |
+ return (sign == 0) ? kFP32PositiveInfinity : kFP32NegativeInfinity; |
+ |
+ case FP_SUBNORMAL: { |
+ // Calculate shift required to put mantissa into the most-significant bits |
+ // of the destination mantissa. |
+ int shift = CountLeadingZeros(mantissa << (32 - 10), 32); |
+ |
+ // Shift mantissa and discard implicit '1'. |
+ mantissa <<= (kFloatMantissaBits - kFloat16MantissaBits) + shift + 1; |
+ mantissa &= (1 << kFloatMantissaBits) - 1; |
+ |
+ // Adjust the exponent for the shift applied, and rebias. |
+ exponent = exponent - shift + (kFloatExponentBias - kFloat16ExponentBias); |
+ break; |
+ } |
+ |
+ case FP_NAN: { |
+ if (IsSignallingNaN(value)) { |
+ FPProcessException(); |
+ } |
+ if (DN()) return kFP32DefaultNaN; |
+ |
+ // Convert NaNs as the processor would: |
+ // - The sign is propagated. |
+ // - The mantissa is transferred entirely, except that the top bit is |
+ // forced to '1', making the result a quiet NaN. The unused (low-order) |
+ // mantissa bits are set to 0. |
+ exponent = (1 << kFloatExponentBits) - 1; |
+ |
+ // Increase bits in mantissa, making low-order bits 0. |
+ mantissa <<= (kFloatMantissaBits - kFloat16MantissaBits); |
+ mantissa |= 1 << (kFloatMantissaBits - 1); // Force a quiet NaN. |
+ break; |
+ } |
+ |
+ case FP_NORMAL: { |
+ // Increase bits in mantissa, making low-order bits 0. |
+ mantissa <<= (kFloatMantissaBits - kFloat16MantissaBits); |
+ |
+ // Change exponent bias. |
+ exponent += (kFloatExponentBias - kFloat16ExponentBias); |
+ break; |
+ } |
+ |
+ default: |
+ UNREACHABLE(); |
+ } |
+ return float_pack(sign, exponent, mantissa); |
+} |
+ |
+float16 Simulator::FPToFloat16(float value, FPRounding round_mode) { |
+ // Only the FPTieEven rounding mode is implemented. |
+ DCHECK_EQ(round_mode, FPTieEven); |
+ USE(round_mode); |
+ |
+ int64_t sign = float_sign(value); |
+ int64_t exponent = |
+ static_cast<int64_t>(float_exp(value)) - kFloatExponentBias; |
+ uint32_t mantissa = float_mantissa(value); |
+ |
+ switch (std::fpclassify(value)) { |
+ case FP_NAN: { |
+ if (IsSignallingNaN(value)) { |
+ FPProcessException(); |
+ } |
+ if (DN()) return kFP16DefaultNaN; |
+ |
+ // Convert NaNs as the processor would: |
+ // - The sign is propagated. |
+ // - The mantissa is transferred as much as possible, except that the top |
+ // bit is forced to '1', making the result a quiet NaN. |
+ float16 result = |
+ (sign == 0) ? kFP16PositiveInfinity : kFP16NegativeInfinity; |
+ result |= mantissa >> (kFloatMantissaBits - kFloat16MantissaBits); |
+ result |= (1 << (kFloat16MantissaBits - 1)); // Force a quiet NaN; |
+ return result; |
+ } |
+ |
+ case FP_ZERO: |
+ return (sign == 0) ? 0 : 0x8000; |
+ |
+ case FP_INFINITE: |
+ return (sign == 0) ? kFP16PositiveInfinity : kFP16NegativeInfinity; |
+ |
+ case FP_NORMAL: |
+ case FP_SUBNORMAL: { |
+ // Convert float-to-half as the processor would, assuming that FPCR.FZ |
+ // (flush-to-zero) is not set. |
+ |
+ // Add the implicit '1' bit to the mantissa. |
+ mantissa += (1 << kFloatMantissaBits); |
+ return FPRoundToFloat16(sign, exponent, mantissa, round_mode); |
+ } |
+ } |
+ |
+ UNREACHABLE(); |
+} |
+ |
+float16 Simulator::FPToFloat16(double value, FPRounding round_mode) { |
+ // Only the FPTieEven rounding mode is implemented. |
+ DCHECK_EQ(round_mode, FPTieEven); |
+ USE(round_mode); |
+ |
+ int64_t sign = double_sign(value); |
+ int64_t exponent = |
+ static_cast<int64_t>(double_exp(value)) - kDoubleExponentBias; |
+ uint64_t mantissa = double_mantissa(value); |
+ |
+ switch (std::fpclassify(value)) { |
+ case FP_NAN: { |
+ if (IsSignallingNaN(value)) { |
+ FPProcessException(); |
+ } |
+ if (DN()) return kFP16DefaultNaN; |
+ |
+ // Convert NaNs as the processor would: |
+ // - The sign is propagated. |
+ // - The mantissa is transferred as much as possible, except that the top |
+ // bit is forced to '1', making the result a quiet NaN. |
+ float16 result = |
+ (sign == 0) ? kFP16PositiveInfinity : kFP16NegativeInfinity; |
+ result |= mantissa >> (kDoubleMantissaBits - kFloat16MantissaBits); |
+ result |= (1 << (kFloat16MantissaBits - 1)); // Force a quiet NaN; |
+ return result; |
+ } |
+ |
+ case FP_ZERO: |
+ return (sign == 0) ? 0 : 0x8000; |
+ |
+ case FP_INFINITE: |
+ return (sign == 0) ? kFP16PositiveInfinity : kFP16NegativeInfinity; |
+ |
+ case FP_NORMAL: |
+ case FP_SUBNORMAL: { |
+ // Convert double-to-half as the processor would, assuming that FPCR.FZ |
+ // (flush-to-zero) is not set. |
+ |
+ // Add the implicit '1' bit to the mantissa. |
+ mantissa += (UINT64_C(1) << kDoubleMantissaBits); |
+ return FPRoundToFloat16(sign, exponent, mantissa, round_mode); |
+ } |
+ } |
+ |
+ UNREACHABLE(); |
+} |
+ |
+float Simulator::FPToFloat(double value, FPRounding round_mode) { |
+ // Only the FPTieEven rounding mode is implemented. |
+ DCHECK((round_mode == FPTieEven) || (round_mode == FPRoundOdd)); |
+ USE(round_mode); |
+ |
+ switch (std::fpclassify(value)) { |
+ case FP_NAN: { |
+ if (IsSignallingNaN(value)) { |
+ FPProcessException(); |
+ } |
+ if (DN()) return kFP32DefaultNaN; |
+ |
+ // Convert NaNs as the processor would: |
+ // - The sign is propagated. |
+ // - The mantissa is transferred as much as possible, except that the |
+ // top bit is forced to '1', making the result a quiet NaN. |
+ |
+ uint64_t raw = bit_cast<uint64_t>(value); |
+ |
+ uint32_t sign = raw >> 63; |
+ uint32_t exponent = (1 << 8) - 1; |
+ uint32_t mantissa = static_cast<uint32_t>(unsigned_bitextract_64( |
+ 50, kDoubleMantissaBits - kFloatMantissaBits, raw)); |
+ mantissa |= (1 << (kFloatMantissaBits - 1)); // Force a quiet NaN. |
+ |
+ return float_pack(sign, exponent, mantissa); |
+ } |
+ |
+ case FP_ZERO: |
+ case FP_INFINITE: { |
+ // In a C++ cast, any value representable in the target type will be |
+ // unchanged. This is always the case for +/-0.0 and infinities. |
+ return static_cast<float>(value); |
+ } |
+ |
+ case FP_NORMAL: |
+ case FP_SUBNORMAL: { |
+ // Convert double-to-float as the processor would, assuming that FPCR.FZ |
+ // (flush-to-zero) is not set. |
+ uint32_t sign = double_sign(value); |
+ int64_t exponent = |
+ static_cast<int64_t>(double_exp(value)) - kDoubleExponentBias; |
+ uint64_t mantissa = double_mantissa(value); |
+ if (std::fpclassify(value) == FP_NORMAL) { |
+ // For normal FP values, add the hidden bit. |
+ mantissa |= (UINT64_C(1) << kDoubleMantissaBits); |
+ } |
+ return FPRoundToFloat(sign, exponent, mantissa, round_mode); |
+ } |
+ } |
+ |
+ UNREACHABLE(); |
+} |
+ |
+void Simulator::ld1(VectorFormat vform, LogicVRegister dst, uint64_t addr) { |
+ dst.ClearForWrite(vform); |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ dst.ReadUintFromMem(vform, i, addr); |
+ addr += LaneSizeInBytesFromFormat(vform); |
+ } |
+} |
+ |
+void Simulator::ld1(VectorFormat vform, LogicVRegister dst, int index, |
+ uint64_t addr) { |
+ dst.ReadUintFromMem(vform, index, addr); |
+} |
+ |
+void Simulator::ld1r(VectorFormat vform, LogicVRegister dst, uint64_t addr) { |
+ dst.ClearForWrite(vform); |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ dst.ReadUintFromMem(vform, i, addr); |
+ } |
+} |
+ |
+void Simulator::ld2(VectorFormat vform, LogicVRegister dst1, |
+ LogicVRegister dst2, uint64_t addr1) { |
+ dst1.ClearForWrite(vform); |
+ dst2.ClearForWrite(vform); |
+ int esize = LaneSizeInBytesFromFormat(vform); |
+ uint64_t addr2 = addr1 + esize; |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ dst1.ReadUintFromMem(vform, i, addr1); |
+ dst2.ReadUintFromMem(vform, i, addr2); |
+ addr1 += 2 * esize; |
+ addr2 += 2 * esize; |
+ } |
+} |
+ |
+void Simulator::ld2(VectorFormat vform, LogicVRegister dst1, |
+ LogicVRegister dst2, int index, uint64_t addr1) { |
+ dst1.ClearForWrite(vform); |
+ dst2.ClearForWrite(vform); |
+ uint64_t addr2 = addr1 + LaneSizeInBytesFromFormat(vform); |
+ dst1.ReadUintFromMem(vform, index, addr1); |
+ dst2.ReadUintFromMem(vform, index, addr2); |
+} |
+ |
+void Simulator::ld2r(VectorFormat vform, LogicVRegister dst1, |
+ LogicVRegister dst2, uint64_t addr) { |
+ dst1.ClearForWrite(vform); |
+ dst2.ClearForWrite(vform); |
+ uint64_t addr2 = addr + LaneSizeInBytesFromFormat(vform); |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ dst1.ReadUintFromMem(vform, i, addr); |
+ dst2.ReadUintFromMem(vform, i, addr2); |
+ } |
+} |
+ |
+void Simulator::ld3(VectorFormat vform, LogicVRegister dst1, |
+ LogicVRegister dst2, LogicVRegister dst3, uint64_t addr1) { |
+ dst1.ClearForWrite(vform); |
+ dst2.ClearForWrite(vform); |
+ dst3.ClearForWrite(vform); |
+ int esize = LaneSizeInBytesFromFormat(vform); |
+ uint64_t addr2 = addr1 + esize; |
+ uint64_t addr3 = addr2 + esize; |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ dst1.ReadUintFromMem(vform, i, addr1); |
+ dst2.ReadUintFromMem(vform, i, addr2); |
+ dst3.ReadUintFromMem(vform, i, addr3); |
+ addr1 += 3 * esize; |
+ addr2 += 3 * esize; |
+ addr3 += 3 * esize; |
+ } |
+} |
+ |
+void Simulator::ld3(VectorFormat vform, LogicVRegister dst1, |
+ LogicVRegister dst2, LogicVRegister dst3, int index, |
+ uint64_t addr1) { |
+ dst1.ClearForWrite(vform); |
+ dst2.ClearForWrite(vform); |
+ dst3.ClearForWrite(vform); |
+ uint64_t addr2 = addr1 + LaneSizeInBytesFromFormat(vform); |
+ uint64_t addr3 = addr2 + LaneSizeInBytesFromFormat(vform); |
+ dst1.ReadUintFromMem(vform, index, addr1); |
+ dst2.ReadUintFromMem(vform, index, addr2); |
+ dst3.ReadUintFromMem(vform, index, addr3); |
+} |
+ |
+void Simulator::ld3r(VectorFormat vform, LogicVRegister dst1, |
+ LogicVRegister dst2, LogicVRegister dst3, uint64_t addr) { |
+ dst1.ClearForWrite(vform); |
+ dst2.ClearForWrite(vform); |
+ dst3.ClearForWrite(vform); |
+ uint64_t addr2 = addr + LaneSizeInBytesFromFormat(vform); |
+ uint64_t addr3 = addr2 + LaneSizeInBytesFromFormat(vform); |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ dst1.ReadUintFromMem(vform, i, addr); |
+ dst2.ReadUintFromMem(vform, i, addr2); |
+ dst3.ReadUintFromMem(vform, i, addr3); |
+ } |
+} |
+ |
+void Simulator::ld4(VectorFormat vform, LogicVRegister dst1, |
+ LogicVRegister dst2, LogicVRegister dst3, |
+ LogicVRegister dst4, uint64_t addr1) { |
+ dst1.ClearForWrite(vform); |
+ dst2.ClearForWrite(vform); |
+ dst3.ClearForWrite(vform); |
+ dst4.ClearForWrite(vform); |
+ int esize = LaneSizeInBytesFromFormat(vform); |
+ uint64_t addr2 = addr1 + esize; |
+ uint64_t addr3 = addr2 + esize; |
+ uint64_t addr4 = addr3 + esize; |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ dst1.ReadUintFromMem(vform, i, addr1); |
+ dst2.ReadUintFromMem(vform, i, addr2); |
+ dst3.ReadUintFromMem(vform, i, addr3); |
+ dst4.ReadUintFromMem(vform, i, addr4); |
+ addr1 += 4 * esize; |
+ addr2 += 4 * esize; |
+ addr3 += 4 * esize; |
+ addr4 += 4 * esize; |
+ } |
+} |
+ |
+void Simulator::ld4(VectorFormat vform, LogicVRegister dst1, |
+ LogicVRegister dst2, LogicVRegister dst3, |
+ LogicVRegister dst4, int index, uint64_t addr1) { |
+ dst1.ClearForWrite(vform); |
+ dst2.ClearForWrite(vform); |
+ dst3.ClearForWrite(vform); |
+ dst4.ClearForWrite(vform); |
+ uint64_t addr2 = addr1 + LaneSizeInBytesFromFormat(vform); |
+ uint64_t addr3 = addr2 + LaneSizeInBytesFromFormat(vform); |
+ uint64_t addr4 = addr3 + LaneSizeInBytesFromFormat(vform); |
+ dst1.ReadUintFromMem(vform, index, addr1); |
+ dst2.ReadUintFromMem(vform, index, addr2); |
+ dst3.ReadUintFromMem(vform, index, addr3); |
+ dst4.ReadUintFromMem(vform, index, addr4); |
+} |
+ |
+void Simulator::ld4r(VectorFormat vform, LogicVRegister dst1, |
+ LogicVRegister dst2, LogicVRegister dst3, |
+ LogicVRegister dst4, uint64_t addr) { |
+ dst1.ClearForWrite(vform); |
+ dst2.ClearForWrite(vform); |
+ dst3.ClearForWrite(vform); |
+ dst4.ClearForWrite(vform); |
+ uint64_t addr2 = addr + LaneSizeInBytesFromFormat(vform); |
+ uint64_t addr3 = addr2 + LaneSizeInBytesFromFormat(vform); |
+ uint64_t addr4 = addr3 + LaneSizeInBytesFromFormat(vform); |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ dst1.ReadUintFromMem(vform, i, addr); |
+ dst2.ReadUintFromMem(vform, i, addr2); |
+ dst3.ReadUintFromMem(vform, i, addr3); |
+ dst4.ReadUintFromMem(vform, i, addr4); |
+ } |
+} |
+ |
+void Simulator::st1(VectorFormat vform, LogicVRegister src, uint64_t addr) { |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ src.WriteUintToMem(vform, i, addr); |
+ addr += LaneSizeInBytesFromFormat(vform); |
+ } |
+} |
+ |
+void Simulator::st1(VectorFormat vform, LogicVRegister src, int index, |
+ uint64_t addr) { |
+ src.WriteUintToMem(vform, index, addr); |
+} |
+ |
+void Simulator::st2(VectorFormat vform, LogicVRegister dst, LogicVRegister dst2, |
+ uint64_t addr) { |
+ int esize = LaneSizeInBytesFromFormat(vform); |
+ uint64_t addr2 = addr + esize; |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ dst.WriteUintToMem(vform, i, addr); |
+ dst2.WriteUintToMem(vform, i, addr2); |
+ addr += 2 * esize; |
+ addr2 += 2 * esize; |
+ } |
+} |
+ |
+void Simulator::st2(VectorFormat vform, LogicVRegister dst, LogicVRegister dst2, |
+ int index, uint64_t addr) { |
+ int esize = LaneSizeInBytesFromFormat(vform); |
+ dst.WriteUintToMem(vform, index, addr); |
+ dst2.WriteUintToMem(vform, index, addr + 1 * esize); |
+} |
+ |
+void Simulator::st3(VectorFormat vform, LogicVRegister dst, LogicVRegister dst2, |
+ LogicVRegister dst3, uint64_t addr) { |
+ int esize = LaneSizeInBytesFromFormat(vform); |
+ uint64_t addr2 = addr + esize; |
+ uint64_t addr3 = addr2 + esize; |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ dst.WriteUintToMem(vform, i, addr); |
+ dst2.WriteUintToMem(vform, i, addr2); |
+ dst3.WriteUintToMem(vform, i, addr3); |
+ addr += 3 * esize; |
+ addr2 += 3 * esize; |
+ addr3 += 3 * esize; |
+ } |
+} |
+ |
+void Simulator::st3(VectorFormat vform, LogicVRegister dst, LogicVRegister dst2, |
+ LogicVRegister dst3, int index, uint64_t addr) { |
+ int esize = LaneSizeInBytesFromFormat(vform); |
+ dst.WriteUintToMem(vform, index, addr); |
+ dst2.WriteUintToMem(vform, index, addr + 1 * esize); |
+ dst3.WriteUintToMem(vform, index, addr + 2 * esize); |
+} |
+ |
+void Simulator::st4(VectorFormat vform, LogicVRegister dst, LogicVRegister dst2, |
+ LogicVRegister dst3, LogicVRegister dst4, uint64_t addr) { |
+ int esize = LaneSizeInBytesFromFormat(vform); |
+ uint64_t addr2 = addr + esize; |
+ uint64_t addr3 = addr2 + esize; |
+ uint64_t addr4 = addr3 + esize; |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ dst.WriteUintToMem(vform, i, addr); |
+ dst2.WriteUintToMem(vform, i, addr2); |
+ dst3.WriteUintToMem(vform, i, addr3); |
+ dst4.WriteUintToMem(vform, i, addr4); |
+ addr += 4 * esize; |
+ addr2 += 4 * esize; |
+ addr3 += 4 * esize; |
+ addr4 += 4 * esize; |
+ } |
+} |
+ |
+void Simulator::st4(VectorFormat vform, LogicVRegister dst, LogicVRegister dst2, |
+ LogicVRegister dst3, LogicVRegister dst4, int index, |
+ uint64_t addr) { |
+ int esize = LaneSizeInBytesFromFormat(vform); |
+ dst.WriteUintToMem(vform, index, addr); |
+ dst2.WriteUintToMem(vform, index, addr + 1 * esize); |
+ dst3.WriteUintToMem(vform, index, addr + 2 * esize); |
+ dst4.WriteUintToMem(vform, index, addr + 3 * esize); |
+} |
+ |
+LogicVRegister Simulator::cmp(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2, Condition cond) { |
+ dst.ClearForWrite(vform); |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ int64_t sa = src1.Int(vform, i); |
+ int64_t sb = src2.Int(vform, i); |
+ uint64_t ua = src1.Uint(vform, i); |
+ uint64_t ub = src2.Uint(vform, i); |
+ bool result = false; |
+ switch (cond) { |
+ case eq: |
+ result = (ua == ub); |
+ break; |
+ case ge: |
+ result = (sa >= sb); |
+ break; |
+ case gt: |
+ result = (sa > sb); |
+ break; |
+ case hi: |
+ result = (ua > ub); |
+ break; |
+ case hs: |
+ result = (ua >= ub); |
+ break; |
+ case lt: |
+ result = (sa < sb); |
+ break; |
+ case le: |
+ result = (sa <= sb); |
+ break; |
+ default: |
+ UNREACHABLE(); |
+ } |
+ dst.SetUint(vform, i, result ? MaxUintFromFormat(vform) : 0); |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::cmp(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, int imm, |
+ Condition cond) { |
+ SimVRegister temp; |
+ LogicVRegister imm_reg = dup_immediate(vform, temp, imm); |
+ return cmp(vform, dst, src1, imm_reg, cond); |
+} |
+ |
+LogicVRegister Simulator::cmptst(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ dst.ClearForWrite(vform); |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ uint64_t ua = src1.Uint(vform, i); |
+ uint64_t ub = src2.Uint(vform, i); |
+ dst.SetUint(vform, i, ((ua & ub) != 0) ? MaxUintFromFormat(vform) : 0); |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::add(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ int lane_size = LaneSizeInBitsFromFormat(vform); |
+ dst.ClearForWrite(vform); |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ // Test for unsigned saturation. |
+ uint64_t ua = src1.UintLeftJustified(vform, i); |
+ uint64_t ub = src2.UintLeftJustified(vform, i); |
+ uint64_t ur = ua + ub; |
+ if (ur < ua) { |
+ dst.SetUnsignedSat(i, true); |
+ } |
+ |
+ // Test for signed saturation. |
+ bool pos_a = (ua >> 63) == 0; |
+ bool pos_b = (ub >> 63) == 0; |
+ bool pos_r = (ur >> 63) == 0; |
+ // If the signs of the operands are the same, but different from the result, |
+ // there was an overflow. |
+ if ((pos_a == pos_b) && (pos_a != pos_r)) { |
+ dst.SetSignedSat(i, pos_a); |
+ } |
+ |
+ dst.SetInt(vform, i, ur >> (64 - lane_size)); |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::addp(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ SimVRegister temp1, temp2; |
+ uzp1(vform, temp1, src1, src2); |
+ uzp2(vform, temp2, src1, src2); |
+ add(vform, dst, temp1, temp2); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::mla(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ SimVRegister temp; |
+ mul(vform, temp, src1, src2); |
+ add(vform, dst, dst, temp); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::mls(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ SimVRegister temp; |
+ mul(vform, temp, src1, src2); |
+ sub(vform, dst, dst, temp); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::mul(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ dst.ClearForWrite(vform); |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ dst.SetUint(vform, i, src1.Uint(vform, i) * src2.Uint(vform, i)); |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::mul(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2, int index) { |
+ SimVRegister temp; |
+ VectorFormat indexform = VectorFormatFillQ(vform); |
+ return mul(vform, dst, src1, dup_element(indexform, temp, src2, index)); |
+} |
+ |
+LogicVRegister Simulator::mla(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2, int index) { |
+ SimVRegister temp; |
+ VectorFormat indexform = VectorFormatFillQ(vform); |
+ return mla(vform, dst, src1, dup_element(indexform, temp, src2, index)); |
+} |
+ |
+LogicVRegister Simulator::mls(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2, int index) { |
+ SimVRegister temp; |
+ VectorFormat indexform = VectorFormatFillQ(vform); |
+ return mls(vform, dst, src1, dup_element(indexform, temp, src2, index)); |
+} |
+ |
+LogicVRegister Simulator::smull(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2, int index) { |
+ SimVRegister temp; |
+ VectorFormat indexform = |
+ VectorFormatHalfWidthDoubleLanes(VectorFormatFillQ(vform)); |
+ return smull(vform, dst, src1, dup_element(indexform, temp, src2, index)); |
+} |
+ |
+LogicVRegister Simulator::smull2(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2, int index) { |
+ SimVRegister temp; |
+ VectorFormat indexform = |
+ VectorFormatHalfWidthDoubleLanes(VectorFormatFillQ(vform)); |
+ return smull2(vform, dst, src1, dup_element(indexform, temp, src2, index)); |
+} |
+ |
+LogicVRegister Simulator::umull(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2, int index) { |
+ SimVRegister temp; |
+ VectorFormat indexform = |
+ VectorFormatHalfWidthDoubleLanes(VectorFormatFillQ(vform)); |
+ return umull(vform, dst, src1, dup_element(indexform, temp, src2, index)); |
+} |
+ |
+LogicVRegister Simulator::umull2(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2, int index) { |
+ SimVRegister temp; |
+ VectorFormat indexform = |
+ VectorFormatHalfWidthDoubleLanes(VectorFormatFillQ(vform)); |
+ return umull2(vform, dst, src1, dup_element(indexform, temp, src2, index)); |
+} |
+ |
+LogicVRegister Simulator::smlal(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2, int index) { |
+ SimVRegister temp; |
+ VectorFormat indexform = |
+ VectorFormatHalfWidthDoubleLanes(VectorFormatFillQ(vform)); |
+ return smlal(vform, dst, src1, dup_element(indexform, temp, src2, index)); |
+} |
+ |
+LogicVRegister Simulator::smlal2(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2, int index) { |
+ SimVRegister temp; |
+ VectorFormat indexform = |
+ VectorFormatHalfWidthDoubleLanes(VectorFormatFillQ(vform)); |
+ return smlal2(vform, dst, src1, dup_element(indexform, temp, src2, index)); |
+} |
+ |
+LogicVRegister Simulator::umlal(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2, int index) { |
+ SimVRegister temp; |
+ VectorFormat indexform = |
+ VectorFormatHalfWidthDoubleLanes(VectorFormatFillQ(vform)); |
+ return umlal(vform, dst, src1, dup_element(indexform, temp, src2, index)); |
+} |
+ |
+LogicVRegister Simulator::umlal2(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2, int index) { |
+ SimVRegister temp; |
+ VectorFormat indexform = |
+ VectorFormatHalfWidthDoubleLanes(VectorFormatFillQ(vform)); |
+ return umlal2(vform, dst, src1, dup_element(indexform, temp, src2, index)); |
+} |
+ |
+LogicVRegister Simulator::smlsl(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2, int index) { |
+ SimVRegister temp; |
+ VectorFormat indexform = |
+ VectorFormatHalfWidthDoubleLanes(VectorFormatFillQ(vform)); |
+ return smlsl(vform, dst, src1, dup_element(indexform, temp, src2, index)); |
+} |
+ |
+LogicVRegister Simulator::smlsl2(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2, int index) { |
+ SimVRegister temp; |
+ VectorFormat indexform = |
+ VectorFormatHalfWidthDoubleLanes(VectorFormatFillQ(vform)); |
+ return smlsl2(vform, dst, src1, dup_element(indexform, temp, src2, index)); |
+} |
+ |
+LogicVRegister Simulator::umlsl(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2, int index) { |
+ SimVRegister temp; |
+ VectorFormat indexform = |
+ VectorFormatHalfWidthDoubleLanes(VectorFormatFillQ(vform)); |
+ return umlsl(vform, dst, src1, dup_element(indexform, temp, src2, index)); |
+} |
+ |
+LogicVRegister Simulator::umlsl2(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2, int index) { |
+ SimVRegister temp; |
+ VectorFormat indexform = |
+ VectorFormatHalfWidthDoubleLanes(VectorFormatFillQ(vform)); |
+ return umlsl2(vform, dst, src1, dup_element(indexform, temp, src2, index)); |
+} |
+ |
+LogicVRegister Simulator::sqdmull(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2, int index) { |
+ SimVRegister temp; |
+ VectorFormat indexform = |
+ VectorFormatHalfWidthDoubleLanes(VectorFormatFillQ(vform)); |
+ return sqdmull(vform, dst, src1, dup_element(indexform, temp, src2, index)); |
+} |
+ |
+LogicVRegister Simulator::sqdmull2(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2, int index) { |
+ SimVRegister temp; |
+ VectorFormat indexform = |
+ VectorFormatHalfWidthDoubleLanes(VectorFormatFillQ(vform)); |
+ return sqdmull2(vform, dst, src1, dup_element(indexform, temp, src2, index)); |
+} |
+ |
+LogicVRegister Simulator::sqdmlal(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2, int index) { |
+ SimVRegister temp; |
+ VectorFormat indexform = |
+ VectorFormatHalfWidthDoubleLanes(VectorFormatFillQ(vform)); |
+ return sqdmlal(vform, dst, src1, dup_element(indexform, temp, src2, index)); |
+} |
+ |
+LogicVRegister Simulator::sqdmlal2(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2, int index) { |
+ SimVRegister temp; |
+ VectorFormat indexform = |
+ VectorFormatHalfWidthDoubleLanes(VectorFormatFillQ(vform)); |
+ return sqdmlal2(vform, dst, src1, dup_element(indexform, temp, src2, index)); |
+} |
+ |
+LogicVRegister Simulator::sqdmlsl(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2, int index) { |
+ SimVRegister temp; |
+ VectorFormat indexform = |
+ VectorFormatHalfWidthDoubleLanes(VectorFormatFillQ(vform)); |
+ return sqdmlsl(vform, dst, src1, dup_element(indexform, temp, src2, index)); |
+} |
+ |
+LogicVRegister Simulator::sqdmlsl2(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2, int index) { |
+ SimVRegister temp; |
+ VectorFormat indexform = |
+ VectorFormatHalfWidthDoubleLanes(VectorFormatFillQ(vform)); |
+ return sqdmlsl2(vform, dst, src1, dup_element(indexform, temp, src2, index)); |
+} |
+ |
+LogicVRegister Simulator::sqdmulh(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2, int index) { |
+ SimVRegister temp; |
+ VectorFormat indexform = VectorFormatFillQ(vform); |
+ return sqdmulh(vform, dst, src1, dup_element(indexform, temp, src2, index)); |
+} |
+ |
+LogicVRegister Simulator::sqrdmulh(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2, int index) { |
+ SimVRegister temp; |
+ VectorFormat indexform = VectorFormatFillQ(vform); |
+ return sqrdmulh(vform, dst, src1, dup_element(indexform, temp, src2, index)); |
+} |
+ |
+uint16_t Simulator::PolynomialMult(uint8_t op1, uint8_t op2) { |
+ uint16_t result = 0; |
+ uint16_t extended_op2 = op2; |
+ for (int i = 0; i < 8; ++i) { |
+ if ((op1 >> i) & 1) { |
+ result = result ^ (extended_op2 << i); |
+ } |
+ } |
+ return result; |
+} |
+ |
+LogicVRegister Simulator::pmul(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ dst.ClearForWrite(vform); |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ dst.SetUint(vform, i, |
+ PolynomialMult(src1.Uint(vform, i), src2.Uint(vform, i))); |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::pmull(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ VectorFormat vform_src = VectorFormatHalfWidth(vform); |
+ dst.ClearForWrite(vform); |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ dst.SetUint( |
+ vform, i, |
+ PolynomialMult(src1.Uint(vform_src, i), src2.Uint(vform_src, i))); |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::pmull2(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ VectorFormat vform_src = VectorFormatHalfWidthDoubleLanes(vform); |
+ dst.ClearForWrite(vform); |
+ int lane_count = LaneCountFromFormat(vform); |
+ for (int i = 0; i < lane_count; i++) { |
+ dst.SetUint(vform, i, |
+ PolynomialMult(src1.Uint(vform_src, lane_count + i), |
+ src2.Uint(vform_src, lane_count + i))); |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::sub(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ int lane_size = LaneSizeInBitsFromFormat(vform); |
+ dst.ClearForWrite(vform); |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ // Test for unsigned saturation. |
+ uint64_t ua = src1.UintLeftJustified(vform, i); |
+ uint64_t ub = src2.UintLeftJustified(vform, i); |
+ uint64_t ur = ua - ub; |
+ if (ub > ua) { |
+ dst.SetUnsignedSat(i, false); |
+ } |
+ |
+ // Test for signed saturation. |
+ bool pos_a = (ua >> 63) == 0; |
+ bool pos_b = (ub >> 63) == 0; |
+ bool pos_r = (ur >> 63) == 0; |
+ // If the signs of the operands are different, and the sign of the first |
+ // operand doesn't match the result, there was an overflow. |
+ if ((pos_a != pos_b) && (pos_a != pos_r)) { |
+ dst.SetSignedSat(i, pos_a); |
+ } |
+ |
+ dst.SetInt(vform, i, ur >> (64 - lane_size)); |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::and_(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ dst.ClearForWrite(vform); |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ dst.SetUint(vform, i, src1.Uint(vform, i) & src2.Uint(vform, i)); |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::orr(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ dst.ClearForWrite(vform); |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ dst.SetUint(vform, i, src1.Uint(vform, i) | src2.Uint(vform, i)); |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::orn(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ dst.ClearForWrite(vform); |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ dst.SetUint(vform, i, src1.Uint(vform, i) | ~src2.Uint(vform, i)); |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::eor(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ dst.ClearForWrite(vform); |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ dst.SetUint(vform, i, src1.Uint(vform, i) ^ src2.Uint(vform, i)); |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::bic(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ dst.ClearForWrite(vform); |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ dst.SetUint(vform, i, src1.Uint(vform, i) & ~src2.Uint(vform, i)); |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::bic(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src, uint64_t imm) { |
+ uint64_t result[16]; |
+ int laneCount = LaneCountFromFormat(vform); |
+ for (int i = 0; i < laneCount; ++i) { |
+ result[i] = src.Uint(vform, i) & ~imm; |
+ } |
+ dst.SetUintArray(vform, result); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::bif(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ dst.ClearForWrite(vform); |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ uint64_t operand1 = dst.Uint(vform, i); |
+ uint64_t operand2 = ~src2.Uint(vform, i); |
+ uint64_t operand3 = src1.Uint(vform, i); |
+ uint64_t result = operand1 ^ ((operand1 ^ operand3) & operand2); |
+ dst.SetUint(vform, i, result); |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::bit(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ dst.ClearForWrite(vform); |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ uint64_t operand1 = dst.Uint(vform, i); |
+ uint64_t operand2 = src2.Uint(vform, i); |
+ uint64_t operand3 = src1.Uint(vform, i); |
+ uint64_t result = operand1 ^ ((operand1 ^ operand3) & operand2); |
+ dst.SetUint(vform, i, result); |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::bsl(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ dst.ClearForWrite(vform); |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ uint64_t operand1 = src2.Uint(vform, i); |
+ uint64_t operand2 = dst.Uint(vform, i); |
+ uint64_t operand3 = src1.Uint(vform, i); |
+ uint64_t result = operand1 ^ ((operand1 ^ operand3) & operand2); |
+ dst.SetUint(vform, i, result); |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::SMinMax(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2, bool max) { |
+ dst.ClearForWrite(vform); |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ int64_t src1_val = src1.Int(vform, i); |
+ int64_t src2_val = src2.Int(vform, i); |
+ int64_t dst_val; |
+ if (max) { |
+ dst_val = (src1_val > src2_val) ? src1_val : src2_val; |
+ } else { |
+ dst_val = (src1_val < src2_val) ? src1_val : src2_val; |
+ } |
+ dst.SetInt(vform, i, dst_val); |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::smax(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ return SMinMax(vform, dst, src1, src2, true); |
+} |
+ |
+LogicVRegister Simulator::smin(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ return SMinMax(vform, dst, src1, src2, false); |
+} |
+ |
+LogicVRegister Simulator::SMinMaxP(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2, bool max) { |
+ int lanes = LaneCountFromFormat(vform); |
+ int64_t result[kMaxLanesPerVector]; |
+ const LogicVRegister* src = &src1; |
+ for (int j = 0; j < 2; j++) { |
+ for (int i = 0; i < lanes; i += 2) { |
+ int64_t first_val = src->Int(vform, i); |
+ int64_t second_val = src->Int(vform, i + 1); |
+ int64_t dst_val; |
+ if (max) { |
+ dst_val = (first_val > second_val) ? first_val : second_val; |
+ } else { |
+ dst_val = (first_val < second_val) ? first_val : second_val; |
+ } |
+ DCHECK_LT((i >> 1) + (j * lanes / 2), kMaxLanesPerVector); |
+ result[(i >> 1) + (j * lanes / 2)] = dst_val; |
+ } |
+ src = &src2; |
+ } |
+ dst.SetIntArray(vform, result); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::smaxp(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ return SMinMaxP(vform, dst, src1, src2, true); |
+} |
+ |
+LogicVRegister Simulator::sminp(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ return SMinMaxP(vform, dst, src1, src2, false); |
+} |
+ |
+LogicVRegister Simulator::addp(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src) { |
+ DCHECK_EQ(vform, kFormatD); |
+ |
+ uint64_t dst_val = src.Uint(kFormat2D, 0) + src.Uint(kFormat2D, 1); |
+ dst.ClearForWrite(vform); |
+ dst.SetUint(vform, 0, dst_val); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::addv(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src) { |
+ VectorFormat vform_dst = |
+ ScalarFormatFromLaneSize(LaneSizeInBitsFromFormat(vform)); |
+ |
+ int64_t dst_val = 0; |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ dst_val += src.Int(vform, i); |
+ } |
+ |
+ dst.ClearForWrite(vform_dst); |
+ dst.SetInt(vform_dst, 0, dst_val); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::saddlv(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src) { |
+ VectorFormat vform_dst = |
+ ScalarFormatFromLaneSize(LaneSizeInBitsFromFormat(vform) * 2); |
+ |
+ int64_t dst_val = 0; |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ dst_val += src.Int(vform, i); |
+ } |
+ |
+ dst.ClearForWrite(vform_dst); |
+ dst.SetInt(vform_dst, 0, dst_val); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::uaddlv(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src) { |
+ VectorFormat vform_dst = |
+ ScalarFormatFromLaneSize(LaneSizeInBitsFromFormat(vform) * 2); |
+ |
+ uint64_t dst_val = 0; |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ dst_val += src.Uint(vform, i); |
+ } |
+ |
+ dst.ClearForWrite(vform_dst); |
+ dst.SetUint(vform_dst, 0, dst_val); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::SMinMaxV(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src, bool max) { |
+ int64_t dst_val = max ? INT64_MIN : INT64_MAX; |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ int64_t src_val = src.Int(vform, i); |
+ if (max) { |
+ dst_val = (src_val > dst_val) ? src_val : dst_val; |
+ } else { |
+ dst_val = (src_val < dst_val) ? src_val : dst_val; |
+ } |
+ } |
+ dst.ClearForWrite(ScalarFormatFromFormat(vform)); |
+ dst.SetInt(vform, 0, dst_val); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::smaxv(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src) { |
+ SMinMaxV(vform, dst, src, true); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::sminv(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src) { |
+ SMinMaxV(vform, dst, src, false); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::UMinMax(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2, bool max) { |
+ dst.ClearForWrite(vform); |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ uint64_t src1_val = src1.Uint(vform, i); |
+ uint64_t src2_val = src2.Uint(vform, i); |
+ uint64_t dst_val; |
+ if (max) { |
+ dst_val = (src1_val > src2_val) ? src1_val : src2_val; |
+ } else { |
+ dst_val = (src1_val < src2_val) ? src1_val : src2_val; |
+ } |
+ dst.SetUint(vform, i, dst_val); |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::umax(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ return UMinMax(vform, dst, src1, src2, true); |
+} |
+ |
+LogicVRegister Simulator::umin(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ return UMinMax(vform, dst, src1, src2, false); |
+} |
+ |
+LogicVRegister Simulator::UMinMaxP(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2, bool max) { |
+ int lanes = LaneCountFromFormat(vform); |
+ uint64_t result[kMaxLanesPerVector]; |
+ const LogicVRegister* src = &src1; |
+ for (int j = 0; j < 2; j++) { |
+ for (int i = 0; i < LaneCountFromFormat(vform); i += 2) { |
+ uint64_t first_val = src->Uint(vform, i); |
+ uint64_t second_val = src->Uint(vform, i + 1); |
+ uint64_t dst_val; |
+ if (max) { |
+ dst_val = (first_val > second_val) ? first_val : second_val; |
+ } else { |
+ dst_val = (first_val < second_val) ? first_val : second_val; |
+ } |
+ DCHECK_LT((i >> 1) + (j * lanes / 2), kMaxLanesPerVector); |
+ result[(i >> 1) + (j * lanes / 2)] = dst_val; |
+ } |
+ src = &src2; |
+ } |
+ dst.SetUintArray(vform, result); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::umaxp(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ return UMinMaxP(vform, dst, src1, src2, true); |
+} |
+ |
+LogicVRegister Simulator::uminp(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ return UMinMaxP(vform, dst, src1, src2, false); |
+} |
+ |
+LogicVRegister Simulator::UMinMaxV(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src, bool max) { |
+ uint64_t dst_val = max ? 0 : UINT64_MAX; |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ uint64_t src_val = src.Uint(vform, i); |
+ if (max) { |
+ dst_val = (src_val > dst_val) ? src_val : dst_val; |
+ } else { |
+ dst_val = (src_val < dst_val) ? src_val : dst_val; |
+ } |
+ } |
+ dst.ClearForWrite(ScalarFormatFromFormat(vform)); |
+ dst.SetUint(vform, 0, dst_val); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::umaxv(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src) { |
+ UMinMaxV(vform, dst, src, true); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::uminv(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src) { |
+ UMinMaxV(vform, dst, src, false); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::shl(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src, int shift) { |
+ DCHECK_GE(shift, 0); |
+ SimVRegister temp; |
+ LogicVRegister shiftreg = dup_immediate(vform, temp, shift); |
+ return ushl(vform, dst, src, shiftreg); |
+} |
+ |
+LogicVRegister Simulator::sshll(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src, int shift) { |
+ DCHECK_GE(shift, 0); |
+ SimVRegister temp1, temp2; |
+ LogicVRegister shiftreg = dup_immediate(vform, temp1, shift); |
+ LogicVRegister extendedreg = sxtl(vform, temp2, src); |
+ return sshl(vform, dst, extendedreg, shiftreg); |
+} |
+ |
+LogicVRegister Simulator::sshll2(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src, int shift) { |
+ DCHECK_GE(shift, 0); |
+ SimVRegister temp1, temp2; |
+ LogicVRegister shiftreg = dup_immediate(vform, temp1, shift); |
+ LogicVRegister extendedreg = sxtl2(vform, temp2, src); |
+ return sshl(vform, dst, extendedreg, shiftreg); |
+} |
+ |
+LogicVRegister Simulator::shll(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src) { |
+ int shift = LaneSizeInBitsFromFormat(vform) / 2; |
+ return sshll(vform, dst, src, shift); |
+} |
+ |
+LogicVRegister Simulator::shll2(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src) { |
+ int shift = LaneSizeInBitsFromFormat(vform) / 2; |
+ return sshll2(vform, dst, src, shift); |
+} |
+ |
+LogicVRegister Simulator::ushll(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src, int shift) { |
+ DCHECK_GE(shift, 0); |
+ SimVRegister temp1, temp2; |
+ LogicVRegister shiftreg = dup_immediate(vform, temp1, shift); |
+ LogicVRegister extendedreg = uxtl(vform, temp2, src); |
+ return ushl(vform, dst, extendedreg, shiftreg); |
+} |
+ |
+LogicVRegister Simulator::ushll2(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src, int shift) { |
+ DCHECK_GE(shift, 0); |
+ SimVRegister temp1, temp2; |
+ LogicVRegister shiftreg = dup_immediate(vform, temp1, shift); |
+ LogicVRegister extendedreg = uxtl2(vform, temp2, src); |
+ return ushl(vform, dst, extendedreg, shiftreg); |
+} |
+ |
+LogicVRegister Simulator::sli(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src, int shift) { |
+ dst.ClearForWrite(vform); |
+ int laneCount = LaneCountFromFormat(vform); |
+ for (int i = 0; i < laneCount; i++) { |
+ uint64_t src_lane = src.Uint(vform, i); |
+ uint64_t dst_lane = dst.Uint(vform, i); |
+ uint64_t shifted = src_lane << shift; |
+ uint64_t mask = MaxUintFromFormat(vform) << shift; |
+ dst.SetUint(vform, i, (dst_lane & ~mask) | shifted); |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::sqshl(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src, int shift) { |
+ DCHECK_GE(shift, 0); |
+ SimVRegister temp; |
+ LogicVRegister shiftreg = dup_immediate(vform, temp, shift); |
+ return sshl(vform, dst, src, shiftreg).SignedSaturate(vform); |
+} |
+ |
+LogicVRegister Simulator::uqshl(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src, int shift) { |
+ DCHECK_GE(shift, 0); |
+ SimVRegister temp; |
+ LogicVRegister shiftreg = dup_immediate(vform, temp, shift); |
+ return ushl(vform, dst, src, shiftreg).UnsignedSaturate(vform); |
+} |
+ |
+LogicVRegister Simulator::sqshlu(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src, int shift) { |
+ DCHECK_GE(shift, 0); |
+ SimVRegister temp; |
+ LogicVRegister shiftreg = dup_immediate(vform, temp, shift); |
+ return sshl(vform, dst, src, shiftreg).UnsignedSaturate(vform); |
+} |
+ |
+LogicVRegister Simulator::sri(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src, int shift) { |
+ dst.ClearForWrite(vform); |
+ int laneCount = LaneCountFromFormat(vform); |
+ DCHECK((shift > 0) && |
+ (shift <= static_cast<int>(LaneSizeInBitsFromFormat(vform)))); |
+ for (int i = 0; i < laneCount; i++) { |
+ uint64_t src_lane = src.Uint(vform, i); |
+ uint64_t dst_lane = dst.Uint(vform, i); |
+ uint64_t shifted; |
+ uint64_t mask; |
+ if (shift == 64) { |
+ shifted = 0; |
+ mask = 0; |
+ } else { |
+ shifted = src_lane >> shift; |
+ mask = MaxUintFromFormat(vform) >> shift; |
+ } |
+ dst.SetUint(vform, i, (dst_lane & ~mask) | shifted); |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::ushr(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src, int shift) { |
+ DCHECK_GE(shift, 0); |
+ SimVRegister temp; |
+ LogicVRegister shiftreg = dup_immediate(vform, temp, -shift); |
+ return ushl(vform, dst, src, shiftreg); |
+} |
+ |
+LogicVRegister Simulator::sshr(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src, int shift) { |
+ DCHECK_GE(shift, 0); |
+ SimVRegister temp; |
+ LogicVRegister shiftreg = dup_immediate(vform, temp, -shift); |
+ return sshl(vform, dst, src, shiftreg); |
+} |
+ |
+LogicVRegister Simulator::ssra(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src, int shift) { |
+ SimVRegister temp; |
+ LogicVRegister shifted_reg = sshr(vform, temp, src, shift); |
+ return add(vform, dst, dst, shifted_reg); |
+} |
+ |
+LogicVRegister Simulator::usra(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src, int shift) { |
+ SimVRegister temp; |
+ LogicVRegister shifted_reg = ushr(vform, temp, src, shift); |
+ return add(vform, dst, dst, shifted_reg); |
+} |
+ |
+LogicVRegister Simulator::srsra(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src, int shift) { |
+ SimVRegister temp; |
+ LogicVRegister shifted_reg = sshr(vform, temp, src, shift).Round(vform); |
+ return add(vform, dst, dst, shifted_reg); |
+} |
+ |
+LogicVRegister Simulator::ursra(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src, int shift) { |
+ SimVRegister temp; |
+ LogicVRegister shifted_reg = ushr(vform, temp, src, shift).Round(vform); |
+ return add(vform, dst, dst, shifted_reg); |
+} |
+ |
+LogicVRegister Simulator::cls(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src) { |
+ uint64_t result[16]; |
+ int laneSizeInBits = LaneSizeInBitsFromFormat(vform); |
+ int laneCount = LaneCountFromFormat(vform); |
+ for (int i = 0; i < laneCount; i++) { |
+ result[i] = CountLeadingSignBits(src.Int(vform, i), laneSizeInBits); |
+ } |
+ |
+ dst.SetUintArray(vform, result); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::clz(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src) { |
+ uint64_t result[16]; |
+ int laneSizeInBits = LaneSizeInBitsFromFormat(vform); |
+ int laneCount = LaneCountFromFormat(vform); |
+ for (int i = 0; i < laneCount; i++) { |
+ result[i] = CountLeadingZeros(src.Uint(vform, i), laneSizeInBits); |
+ } |
+ |
+ dst.SetUintArray(vform, result); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::cnt(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src) { |
+ uint64_t result[16]; |
+ int laneSizeInBits = LaneSizeInBitsFromFormat(vform); |
+ int laneCount = LaneCountFromFormat(vform); |
+ for (int i = 0; i < laneCount; i++) { |
+ uint64_t value = src.Uint(vform, i); |
+ result[i] = 0; |
+ for (int j = 0; j < laneSizeInBits; j++) { |
+ result[i] += (value & 1); |
+ value >>= 1; |
+ } |
+ } |
+ |
+ dst.SetUintArray(vform, result); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::sshl(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ dst.ClearForWrite(vform); |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ int8_t shift_val = src2.Int(vform, i); |
+ int64_t lj_src_val = src1.IntLeftJustified(vform, i); |
+ |
+ // Set signed saturation state. |
+ if ((shift_val > CountLeadingSignBits(lj_src_val, 64)) && |
+ (lj_src_val != 0)) { |
+ dst.SetSignedSat(i, lj_src_val >= 0); |
+ } |
+ |
+ // Set unsigned saturation state. |
+ if (lj_src_val < 0) { |
+ dst.SetUnsignedSat(i, false); |
+ } else if ((shift_val > CountLeadingZeros(lj_src_val, 64)) && |
+ (lj_src_val != 0)) { |
+ dst.SetUnsignedSat(i, true); |
+ } |
+ |
+ int64_t src_val = src1.Int(vform, i); |
+ bool src_is_negative = src_val < 0; |
+ if (shift_val > 63) { |
+ dst.SetInt(vform, i, 0); |
+ } else if (shift_val < -63) { |
+ dst.SetRounding(i, src_is_negative); |
+ dst.SetInt(vform, i, src_is_negative ? -1 : 0); |
+ } else { |
+ // Use unsigned types for shifts, as behaviour is undefined for signed |
+ // lhs. |
+ uint64_t usrc_val = static_cast<uint64_t>(src_val); |
+ |
+ if (shift_val < 0) { |
+ // Convert to right shift. |
+ shift_val = -shift_val; |
+ |
+ // Set rounding state by testing most-significant bit shifted out. |
+ // Rounding only needed on right shifts. |
+ if (((usrc_val >> (shift_val - 1)) & 1) == 1) { |
+ dst.SetRounding(i, true); |
+ } |
+ |
+ usrc_val >>= shift_val; |
+ |
+ if (src_is_negative) { |
+ // Simulate sign-extension. |
+ usrc_val |= (~UINT64_C(0) << (64 - shift_val)); |
+ } |
+ } else { |
+ usrc_val <<= shift_val; |
+ } |
+ dst.SetUint(vform, i, usrc_val); |
+ } |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::ushl(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ dst.ClearForWrite(vform); |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ int8_t shift_val = src2.Int(vform, i); |
+ uint64_t lj_src_val = src1.UintLeftJustified(vform, i); |
+ |
+ // Set saturation state. |
+ if ((shift_val > CountLeadingZeros(lj_src_val, 64)) && (lj_src_val != 0)) { |
+ dst.SetUnsignedSat(i, true); |
+ } |
+ |
+ uint64_t src_val = src1.Uint(vform, i); |
+ if ((shift_val > 63) || (shift_val < -64)) { |
+ dst.SetUint(vform, i, 0); |
+ } else { |
+ if (shift_val < 0) { |
+ // Set rounding state. Rounding only needed on right shifts. |
+ if (((src_val >> (-shift_val - 1)) & 1) == 1) { |
+ dst.SetRounding(i, true); |
+ } |
+ |
+ if (shift_val == -64) { |
+ src_val = 0; |
+ } else { |
+ src_val >>= -shift_val; |
+ } |
+ } else { |
+ src_val <<= shift_val; |
+ } |
+ dst.SetUint(vform, i, src_val); |
+ } |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::neg(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src) { |
+ dst.ClearForWrite(vform); |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ // Test for signed saturation. |
+ int64_t sa = src.Int(vform, i); |
+ if (sa == MinIntFromFormat(vform)) { |
+ dst.SetSignedSat(i, true); |
+ } |
+ dst.SetInt(vform, i, (sa == INT64_MIN) ? sa : -sa); |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::suqadd(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src) { |
+ dst.ClearForWrite(vform); |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ int64_t sa = dst.IntLeftJustified(vform, i); |
+ uint64_t ub = src.UintLeftJustified(vform, i); |
+ uint64_t ur = sa + ub; |
+ |
+ int64_t sr = bit_cast<int64_t>(ur); |
+ if (sr < sa) { // Test for signed positive saturation. |
+ dst.SetInt(vform, i, MaxIntFromFormat(vform)); |
+ } else { |
+ dst.SetUint(vform, i, dst.Int(vform, i) + src.Uint(vform, i)); |
+ } |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::usqadd(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src) { |
+ dst.ClearForWrite(vform); |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ uint64_t ua = dst.UintLeftJustified(vform, i); |
+ int64_t sb = src.IntLeftJustified(vform, i); |
+ uint64_t ur = ua + sb; |
+ |
+ if ((sb > 0) && (ur <= ua)) { |
+ dst.SetUint(vform, i, MaxUintFromFormat(vform)); // Positive saturation. |
+ } else if ((sb < 0) && (ur >= ua)) { |
+ dst.SetUint(vform, i, 0); // Negative saturation. |
+ } else { |
+ dst.SetUint(vform, i, dst.Uint(vform, i) + src.Int(vform, i)); |
+ } |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::abs(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src) { |
+ dst.ClearForWrite(vform); |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ // Test for signed saturation. |
+ int64_t sa = src.Int(vform, i); |
+ if (sa == MinIntFromFormat(vform)) { |
+ dst.SetSignedSat(i, true); |
+ } |
+ if (sa < 0) { |
+ dst.SetInt(vform, i, (sa == INT64_MIN) ? sa : -sa); |
+ } else { |
+ dst.SetInt(vform, i, sa); |
+ } |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::ExtractNarrow(VectorFormat dstform, |
+ LogicVRegister dst, bool dstIsSigned, |
+ const LogicVRegister& src, |
+ bool srcIsSigned) { |
+ bool upperhalf = false; |
+ VectorFormat srcform = kFormatUndefined; |
+ int64_t ssrc[8]; |
+ uint64_t usrc[8]; |
+ |
+ switch (dstform) { |
+ case kFormat8B: |
+ upperhalf = false; |
+ srcform = kFormat8H; |
+ break; |
+ case kFormat16B: |
+ upperhalf = true; |
+ srcform = kFormat8H; |
+ break; |
+ case kFormat4H: |
+ upperhalf = false; |
+ srcform = kFormat4S; |
+ break; |
+ case kFormat8H: |
+ upperhalf = true; |
+ srcform = kFormat4S; |
+ break; |
+ case kFormat2S: |
+ upperhalf = false; |
+ srcform = kFormat2D; |
+ break; |
+ case kFormat4S: |
+ upperhalf = true; |
+ srcform = kFormat2D; |
+ break; |
+ case kFormatB: |
+ upperhalf = false; |
+ srcform = kFormatH; |
+ break; |
+ case kFormatH: |
+ upperhalf = false; |
+ srcform = kFormatS; |
+ break; |
+ case kFormatS: |
+ upperhalf = false; |
+ srcform = kFormatD; |
+ break; |
+ default: |
+ UNIMPLEMENTED(); |
+ } |
+ |
+ for (int i = 0; i < LaneCountFromFormat(srcform); i++) { |
+ ssrc[i] = src.Int(srcform, i); |
+ usrc[i] = src.Uint(srcform, i); |
+ } |
+ |
+ int offset; |
+ if (upperhalf) { |
+ offset = LaneCountFromFormat(dstform) / 2; |
+ } else { |
+ offset = 0; |
+ dst.ClearForWrite(dstform); |
+ } |
+ |
+ for (int i = 0; i < LaneCountFromFormat(srcform); i++) { |
+ // Test for signed saturation |
+ if (ssrc[i] > MaxIntFromFormat(dstform)) { |
+ dst.SetSignedSat(offset + i, true); |
+ } else if (ssrc[i] < MinIntFromFormat(dstform)) { |
+ dst.SetSignedSat(offset + i, false); |
+ } |
+ |
+ // Test for unsigned saturation |
+ if (srcIsSigned) { |
+ if (ssrc[i] > static_cast<int64_t>(MaxUintFromFormat(dstform))) { |
+ dst.SetUnsignedSat(offset + i, true); |
+ } else if (ssrc[i] < 0) { |
+ dst.SetUnsignedSat(offset + i, false); |
+ } |
+ } else { |
+ if (usrc[i] > MaxUintFromFormat(dstform)) { |
+ dst.SetUnsignedSat(offset + i, true); |
+ } |
+ } |
+ |
+ int64_t result; |
+ if (srcIsSigned) { |
+ result = ssrc[i] & MaxUintFromFormat(dstform); |
+ } else { |
+ result = usrc[i] & MaxUintFromFormat(dstform); |
+ } |
+ |
+ if (dstIsSigned) { |
+ dst.SetInt(dstform, offset + i, result); |
+ } else { |
+ dst.SetUint(dstform, offset + i, result); |
+ } |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::xtn(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src) { |
+ return ExtractNarrow(vform, dst, true, src, true); |
+} |
+ |
+LogicVRegister Simulator::sqxtn(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src) { |
+ return ExtractNarrow(vform, dst, true, src, true).SignedSaturate(vform); |
+} |
+ |
+LogicVRegister Simulator::sqxtun(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src) { |
+ return ExtractNarrow(vform, dst, false, src, true).UnsignedSaturate(vform); |
+} |
+ |
+LogicVRegister Simulator::uqxtn(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src) { |
+ return ExtractNarrow(vform, dst, false, src, false).UnsignedSaturate(vform); |
+} |
+ |
+LogicVRegister Simulator::AbsDiff(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2, bool issigned) { |
+ dst.ClearForWrite(vform); |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ if (issigned) { |
+ int64_t sr = src1.Int(vform, i) - src2.Int(vform, i); |
+ sr = sr > 0 ? sr : -sr; |
+ dst.SetInt(vform, i, sr); |
+ } else { |
+ int64_t sr = src1.Uint(vform, i) - src2.Uint(vform, i); |
+ sr = sr > 0 ? sr : -sr; |
+ dst.SetUint(vform, i, sr); |
+ } |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::saba(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ SimVRegister temp; |
+ dst.ClearForWrite(vform); |
+ AbsDiff(vform, temp, src1, src2, true); |
+ add(vform, dst, dst, temp); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::uaba(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ SimVRegister temp; |
+ dst.ClearForWrite(vform); |
+ AbsDiff(vform, temp, src1, src2, false); |
+ add(vform, dst, dst, temp); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::not_(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src) { |
+ dst.ClearForWrite(vform); |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ dst.SetUint(vform, i, ~src.Uint(vform, i)); |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::rbit(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src) { |
+ uint64_t result[16]; |
+ int laneCount = LaneCountFromFormat(vform); |
+ int laneSizeInBits = LaneSizeInBitsFromFormat(vform); |
+ uint64_t reversed_value; |
+ uint64_t value; |
+ for (int i = 0; i < laneCount; i++) { |
+ value = src.Uint(vform, i); |
+ reversed_value = 0; |
+ for (int j = 0; j < laneSizeInBits; j++) { |
+ reversed_value = (reversed_value << 1) | (value & 1); |
+ value >>= 1; |
+ } |
+ result[i] = reversed_value; |
+ } |
+ |
+ dst.SetUintArray(vform, result); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::rev(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src, int revSize) { |
+ uint64_t result[16]; |
+ int laneCount = LaneCountFromFormat(vform); |
+ int laneSize = LaneSizeInBytesFromFormat(vform); |
+ int lanesPerLoop = revSize / laneSize; |
+ for (int i = 0; i < laneCount; i += lanesPerLoop) { |
+ for (int j = 0; j < lanesPerLoop; j++) { |
+ result[i + lanesPerLoop - 1 - j] = src.Uint(vform, i + j); |
+ } |
+ } |
+ dst.SetUintArray(vform, result); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::rev16(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src) { |
+ return rev(vform, dst, src, 2); |
+} |
+ |
+LogicVRegister Simulator::rev32(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src) { |
+ return rev(vform, dst, src, 4); |
+} |
+ |
+LogicVRegister Simulator::rev64(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src) { |
+ return rev(vform, dst, src, 8); |
+} |
+ |
+LogicVRegister Simulator::addlp(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src, bool is_signed, |
+ bool do_accumulate) { |
+ VectorFormat vformsrc = VectorFormatHalfWidthDoubleLanes(vform); |
+ DCHECK_LE(LaneSizeInBitsFromFormat(vformsrc), 32U); |
+ DCHECK_LE(LaneCountFromFormat(vform), 8); |
+ |
+ uint64_t result[8]; |
+ int lane_count = LaneCountFromFormat(vform); |
+ for (int i = 0; i < lane_count; i++) { |
+ if (is_signed) { |
+ result[i] = static_cast<uint64_t>(src.Int(vformsrc, 2 * i) + |
+ src.Int(vformsrc, 2 * i + 1)); |
+ } else { |
+ result[i] = src.Uint(vformsrc, 2 * i) + src.Uint(vformsrc, 2 * i + 1); |
+ } |
+ } |
+ |
+ dst.ClearForWrite(vform); |
+ for (int i = 0; i < lane_count; ++i) { |
+ if (do_accumulate) { |
+ result[i] += dst.Uint(vform, i); |
+ } |
+ dst.SetUint(vform, i, result[i]); |
+ } |
+ |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::saddlp(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src) { |
+ return addlp(vform, dst, src, true, false); |
+} |
+ |
+LogicVRegister Simulator::uaddlp(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src) { |
+ return addlp(vform, dst, src, false, false); |
+} |
+ |
+LogicVRegister Simulator::sadalp(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src) { |
+ return addlp(vform, dst, src, true, true); |
+} |
+ |
+LogicVRegister Simulator::uadalp(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src) { |
+ return addlp(vform, dst, src, false, true); |
+} |
+ |
+LogicVRegister Simulator::ext(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2, int index) { |
+ uint8_t result[16]; |
+ int laneCount = LaneCountFromFormat(vform); |
+ for (int i = 0; i < laneCount - index; ++i) { |
+ result[i] = src1.Uint(vform, i + index); |
+ } |
+ for (int i = 0; i < index; ++i) { |
+ result[laneCount - index + i] = src2.Uint(vform, i); |
+ } |
+ dst.ClearForWrite(vform); |
+ for (int i = 0; i < laneCount; ++i) { |
+ dst.SetUint(vform, i, result[i]); |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::dup_element(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src, |
+ int src_index) { |
+ int laneCount = LaneCountFromFormat(vform); |
+ uint64_t value = src.Uint(vform, src_index); |
+ dst.ClearForWrite(vform); |
+ for (int i = 0; i < laneCount; ++i) { |
+ dst.SetUint(vform, i, value); |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::dup_immediate(VectorFormat vform, LogicVRegister dst, |
+ uint64_t imm) { |
+ int laneCount = LaneCountFromFormat(vform); |
+ uint64_t value = imm & MaxUintFromFormat(vform); |
+ dst.ClearForWrite(vform); |
+ for (int i = 0; i < laneCount; ++i) { |
+ dst.SetUint(vform, i, value); |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::ins_element(VectorFormat vform, LogicVRegister dst, |
+ int dst_index, const LogicVRegister& src, |
+ int src_index) { |
+ dst.SetUint(vform, dst_index, src.Uint(vform, src_index)); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::ins_immediate(VectorFormat vform, LogicVRegister dst, |
+ int dst_index, uint64_t imm) { |
+ uint64_t value = imm & MaxUintFromFormat(vform); |
+ dst.SetUint(vform, dst_index, value); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::movi(VectorFormat vform, LogicVRegister dst, |
+ uint64_t imm) { |
+ int laneCount = LaneCountFromFormat(vform); |
+ dst.ClearForWrite(vform); |
+ for (int i = 0; i < laneCount; ++i) { |
+ dst.SetUint(vform, i, imm); |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::mvni(VectorFormat vform, LogicVRegister dst, |
+ uint64_t imm) { |
+ int laneCount = LaneCountFromFormat(vform); |
+ dst.ClearForWrite(vform); |
+ for (int i = 0; i < laneCount; ++i) { |
+ dst.SetUint(vform, i, ~imm); |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::orr(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src, uint64_t imm) { |
+ uint64_t result[16]; |
+ int laneCount = LaneCountFromFormat(vform); |
+ for (int i = 0; i < laneCount; ++i) { |
+ result[i] = src.Uint(vform, i) | imm; |
+ } |
+ dst.SetUintArray(vform, result); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::uxtl(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src) { |
+ VectorFormat vform_half = VectorFormatHalfWidth(vform); |
+ |
+ dst.ClearForWrite(vform); |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ dst.SetUint(vform, i, src.Uint(vform_half, i)); |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::sxtl(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src) { |
+ VectorFormat vform_half = VectorFormatHalfWidth(vform); |
+ |
+ dst.ClearForWrite(vform); |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ dst.SetInt(vform, i, src.Int(vform_half, i)); |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::uxtl2(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src) { |
+ VectorFormat vform_half = VectorFormatHalfWidth(vform); |
+ int lane_count = LaneCountFromFormat(vform); |
+ |
+ dst.ClearForWrite(vform); |
+ for (int i = 0; i < lane_count; i++) { |
+ dst.SetUint(vform, i, src.Uint(vform_half, lane_count + i)); |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::sxtl2(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src) { |
+ VectorFormat vform_half = VectorFormatHalfWidth(vform); |
+ int lane_count = LaneCountFromFormat(vform); |
+ |
+ dst.ClearForWrite(vform); |
+ for (int i = 0; i < lane_count; i++) { |
+ dst.SetInt(vform, i, src.Int(vform_half, lane_count + i)); |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::shrn(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src, int shift) { |
+ SimVRegister temp; |
+ VectorFormat vform_src = VectorFormatDoubleWidth(vform); |
+ VectorFormat vform_dst = vform; |
+ LogicVRegister shifted_src = ushr(vform_src, temp, src, shift); |
+ return ExtractNarrow(vform_dst, dst, false, shifted_src, false); |
+} |
+ |
+LogicVRegister Simulator::shrn2(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src, int shift) { |
+ SimVRegister temp; |
+ VectorFormat vformsrc = VectorFormatDoubleWidth(VectorFormatHalfLanes(vform)); |
+ VectorFormat vformdst = vform; |
+ LogicVRegister shifted_src = ushr(vformsrc, temp, src, shift); |
+ return ExtractNarrow(vformdst, dst, false, shifted_src, false); |
+} |
+ |
+LogicVRegister Simulator::rshrn(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src, int shift) { |
+ SimVRegister temp; |
+ VectorFormat vformsrc = VectorFormatDoubleWidth(vform); |
+ VectorFormat vformdst = vform; |
+ LogicVRegister shifted_src = ushr(vformsrc, temp, src, shift).Round(vformsrc); |
+ return ExtractNarrow(vformdst, dst, false, shifted_src, false); |
+} |
+ |
+LogicVRegister Simulator::rshrn2(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src, int shift) { |
+ SimVRegister temp; |
+ VectorFormat vformsrc = VectorFormatDoubleWidth(VectorFormatHalfLanes(vform)); |
+ VectorFormat vformdst = vform; |
+ LogicVRegister shifted_src = ushr(vformsrc, temp, src, shift).Round(vformsrc); |
+ return ExtractNarrow(vformdst, dst, false, shifted_src, false); |
+} |
+ |
+LogicVRegister Simulator::Table(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& ind, |
+ bool zero_out_of_bounds, |
+ const LogicVRegister* tab1, |
+ const LogicVRegister* tab2, |
+ const LogicVRegister* tab3, |
+ const LogicVRegister* tab4) { |
+ DCHECK_NOT_NULL(tab1); |
+ const LogicVRegister* tab[4] = {tab1, tab2, tab3, tab4}; |
+ uint64_t result[kMaxLanesPerVector]; |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ result[i] = zero_out_of_bounds ? 0 : dst.Uint(kFormat16B, i); |
+ } |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ uint64_t j = ind.Uint(vform, i); |
+ int tab_idx = static_cast<int>(j >> 4); |
+ int j_idx = static_cast<int>(j & 15); |
+ if ((tab_idx < 4) && (tab[tab_idx] != NULL)) { |
+ result[i] = tab[tab_idx]->Uint(kFormat16B, j_idx); |
+ } |
+ } |
+ dst.SetUintArray(vform, result); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::tbl(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& tab, |
+ const LogicVRegister& ind) { |
+ return Table(vform, dst, ind, true, &tab); |
+} |
+ |
+LogicVRegister Simulator::tbl(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& tab, |
+ const LogicVRegister& tab2, |
+ const LogicVRegister& ind) { |
+ return Table(vform, dst, ind, true, &tab, &tab2); |
+} |
+ |
+LogicVRegister Simulator::tbl(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& tab, |
+ const LogicVRegister& tab2, |
+ const LogicVRegister& tab3, |
+ const LogicVRegister& ind) { |
+ return Table(vform, dst, ind, true, &tab, &tab2, &tab3); |
+} |
+ |
+LogicVRegister Simulator::tbl(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& tab, |
+ const LogicVRegister& tab2, |
+ const LogicVRegister& tab3, |
+ const LogicVRegister& tab4, |
+ const LogicVRegister& ind) { |
+ return Table(vform, dst, ind, true, &tab, &tab2, &tab3, &tab4); |
+} |
+ |
+LogicVRegister Simulator::tbx(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& tab, |
+ const LogicVRegister& ind) { |
+ return Table(vform, dst, ind, false, &tab); |
+} |
+ |
+LogicVRegister Simulator::tbx(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& tab, |
+ const LogicVRegister& tab2, |
+ const LogicVRegister& ind) { |
+ return Table(vform, dst, ind, false, &tab, &tab2); |
+} |
+ |
+LogicVRegister Simulator::tbx(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& tab, |
+ const LogicVRegister& tab2, |
+ const LogicVRegister& tab3, |
+ const LogicVRegister& ind) { |
+ return Table(vform, dst, ind, false, &tab, &tab2, &tab3); |
+} |
+ |
+LogicVRegister Simulator::tbx(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& tab, |
+ const LogicVRegister& tab2, |
+ const LogicVRegister& tab3, |
+ const LogicVRegister& tab4, |
+ const LogicVRegister& ind) { |
+ return Table(vform, dst, ind, false, &tab, &tab2, &tab3, &tab4); |
+} |
+ |
+LogicVRegister Simulator::uqshrn(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src, int shift) { |
+ return shrn(vform, dst, src, shift).UnsignedSaturate(vform); |
+} |
+ |
+LogicVRegister Simulator::uqshrn2(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src, int shift) { |
+ return shrn2(vform, dst, src, shift).UnsignedSaturate(vform); |
+} |
+ |
+LogicVRegister Simulator::uqrshrn(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src, int shift) { |
+ return rshrn(vform, dst, src, shift).UnsignedSaturate(vform); |
+} |
+ |
+LogicVRegister Simulator::uqrshrn2(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src, int shift) { |
+ return rshrn2(vform, dst, src, shift).UnsignedSaturate(vform); |
+} |
+ |
+LogicVRegister Simulator::sqshrn(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src, int shift) { |
+ SimVRegister temp; |
+ VectorFormat vformsrc = VectorFormatDoubleWidth(vform); |
+ VectorFormat vformdst = vform; |
+ LogicVRegister shifted_src = sshr(vformsrc, temp, src, shift); |
+ return sqxtn(vformdst, dst, shifted_src); |
+} |
+ |
+LogicVRegister Simulator::sqshrn2(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src, int shift) { |
+ SimVRegister temp; |
+ VectorFormat vformsrc = VectorFormatDoubleWidth(VectorFormatHalfLanes(vform)); |
+ VectorFormat vformdst = vform; |
+ LogicVRegister shifted_src = sshr(vformsrc, temp, src, shift); |
+ return sqxtn(vformdst, dst, shifted_src); |
+} |
+ |
+LogicVRegister Simulator::sqrshrn(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src, int shift) { |
+ SimVRegister temp; |
+ VectorFormat vformsrc = VectorFormatDoubleWidth(vform); |
+ VectorFormat vformdst = vform; |
+ LogicVRegister shifted_src = sshr(vformsrc, temp, src, shift).Round(vformsrc); |
+ return sqxtn(vformdst, dst, shifted_src); |
+} |
+ |
+LogicVRegister Simulator::sqrshrn2(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src, int shift) { |
+ SimVRegister temp; |
+ VectorFormat vformsrc = VectorFormatDoubleWidth(VectorFormatHalfLanes(vform)); |
+ VectorFormat vformdst = vform; |
+ LogicVRegister shifted_src = sshr(vformsrc, temp, src, shift).Round(vformsrc); |
+ return sqxtn(vformdst, dst, shifted_src); |
+} |
+ |
+LogicVRegister Simulator::sqshrun(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src, int shift) { |
+ SimVRegister temp; |
+ VectorFormat vformsrc = VectorFormatDoubleWidth(vform); |
+ VectorFormat vformdst = vform; |
+ LogicVRegister shifted_src = sshr(vformsrc, temp, src, shift); |
+ return sqxtun(vformdst, dst, shifted_src); |
+} |
+ |
+LogicVRegister Simulator::sqshrun2(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src, int shift) { |
+ SimVRegister temp; |
+ VectorFormat vformsrc = VectorFormatDoubleWidth(VectorFormatHalfLanes(vform)); |
+ VectorFormat vformdst = vform; |
+ LogicVRegister shifted_src = sshr(vformsrc, temp, src, shift); |
+ return sqxtun(vformdst, dst, shifted_src); |
+} |
+ |
+LogicVRegister Simulator::sqrshrun(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src, int shift) { |
+ SimVRegister temp; |
+ VectorFormat vformsrc = VectorFormatDoubleWidth(vform); |
+ VectorFormat vformdst = vform; |
+ LogicVRegister shifted_src = sshr(vformsrc, temp, src, shift).Round(vformsrc); |
+ return sqxtun(vformdst, dst, shifted_src); |
+} |
+ |
+LogicVRegister Simulator::sqrshrun2(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src, int shift) { |
+ SimVRegister temp; |
+ VectorFormat vformsrc = VectorFormatDoubleWidth(VectorFormatHalfLanes(vform)); |
+ VectorFormat vformdst = vform; |
+ LogicVRegister shifted_src = sshr(vformsrc, temp, src, shift).Round(vformsrc); |
+ return sqxtun(vformdst, dst, shifted_src); |
+} |
+ |
+LogicVRegister Simulator::uaddl(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ SimVRegister temp1, temp2; |
+ uxtl(vform, temp1, src1); |
+ uxtl(vform, temp2, src2); |
+ add(vform, dst, temp1, temp2); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::uaddl2(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ SimVRegister temp1, temp2; |
+ uxtl2(vform, temp1, src1); |
+ uxtl2(vform, temp2, src2); |
+ add(vform, dst, temp1, temp2); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::uaddw(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ SimVRegister temp; |
+ uxtl(vform, temp, src2); |
+ add(vform, dst, src1, temp); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::uaddw2(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ SimVRegister temp; |
+ uxtl2(vform, temp, src2); |
+ add(vform, dst, src1, temp); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::saddl(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ SimVRegister temp1, temp2; |
+ sxtl(vform, temp1, src1); |
+ sxtl(vform, temp2, src2); |
+ add(vform, dst, temp1, temp2); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::saddl2(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ SimVRegister temp1, temp2; |
+ sxtl2(vform, temp1, src1); |
+ sxtl2(vform, temp2, src2); |
+ add(vform, dst, temp1, temp2); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::saddw(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ SimVRegister temp; |
+ sxtl(vform, temp, src2); |
+ add(vform, dst, src1, temp); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::saddw2(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ SimVRegister temp; |
+ sxtl2(vform, temp, src2); |
+ add(vform, dst, src1, temp); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::usubl(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ SimVRegister temp1, temp2; |
+ uxtl(vform, temp1, src1); |
+ uxtl(vform, temp2, src2); |
+ sub(vform, dst, temp1, temp2); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::usubl2(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ SimVRegister temp1, temp2; |
+ uxtl2(vform, temp1, src1); |
+ uxtl2(vform, temp2, src2); |
+ sub(vform, dst, temp1, temp2); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::usubw(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ SimVRegister temp; |
+ uxtl(vform, temp, src2); |
+ sub(vform, dst, src1, temp); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::usubw2(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ SimVRegister temp; |
+ uxtl2(vform, temp, src2); |
+ sub(vform, dst, src1, temp); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::ssubl(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ SimVRegister temp1, temp2; |
+ sxtl(vform, temp1, src1); |
+ sxtl(vform, temp2, src2); |
+ sub(vform, dst, temp1, temp2); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::ssubl2(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ SimVRegister temp1, temp2; |
+ sxtl2(vform, temp1, src1); |
+ sxtl2(vform, temp2, src2); |
+ sub(vform, dst, temp1, temp2); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::ssubw(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ SimVRegister temp; |
+ sxtl(vform, temp, src2); |
+ sub(vform, dst, src1, temp); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::ssubw2(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ SimVRegister temp; |
+ sxtl2(vform, temp, src2); |
+ sub(vform, dst, src1, temp); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::uabal(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ SimVRegister temp1, temp2; |
+ uxtl(vform, temp1, src1); |
+ uxtl(vform, temp2, src2); |
+ uaba(vform, dst, temp1, temp2); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::uabal2(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ SimVRegister temp1, temp2; |
+ uxtl2(vform, temp1, src1); |
+ uxtl2(vform, temp2, src2); |
+ uaba(vform, dst, temp1, temp2); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::sabal(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ SimVRegister temp1, temp2; |
+ sxtl(vform, temp1, src1); |
+ sxtl(vform, temp2, src2); |
+ saba(vform, dst, temp1, temp2); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::sabal2(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ SimVRegister temp1, temp2; |
+ sxtl2(vform, temp1, src1); |
+ sxtl2(vform, temp2, src2); |
+ saba(vform, dst, temp1, temp2); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::uabdl(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ SimVRegister temp1, temp2; |
+ uxtl(vform, temp1, src1); |
+ uxtl(vform, temp2, src2); |
+ AbsDiff(vform, dst, temp1, temp2, false); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::uabdl2(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ SimVRegister temp1, temp2; |
+ uxtl2(vform, temp1, src1); |
+ uxtl2(vform, temp2, src2); |
+ AbsDiff(vform, dst, temp1, temp2, false); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::sabdl(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ SimVRegister temp1, temp2; |
+ sxtl(vform, temp1, src1); |
+ sxtl(vform, temp2, src2); |
+ AbsDiff(vform, dst, temp1, temp2, true); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::sabdl2(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ SimVRegister temp1, temp2; |
+ sxtl2(vform, temp1, src1); |
+ sxtl2(vform, temp2, src2); |
+ AbsDiff(vform, dst, temp1, temp2, true); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::umull(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ SimVRegister temp1, temp2; |
+ uxtl(vform, temp1, src1); |
+ uxtl(vform, temp2, src2); |
+ mul(vform, dst, temp1, temp2); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::umull2(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ SimVRegister temp1, temp2; |
+ uxtl2(vform, temp1, src1); |
+ uxtl2(vform, temp2, src2); |
+ mul(vform, dst, temp1, temp2); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::smull(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ SimVRegister temp1, temp2; |
+ sxtl(vform, temp1, src1); |
+ sxtl(vform, temp2, src2); |
+ mul(vform, dst, temp1, temp2); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::smull2(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ SimVRegister temp1, temp2; |
+ sxtl2(vform, temp1, src1); |
+ sxtl2(vform, temp2, src2); |
+ mul(vform, dst, temp1, temp2); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::umlsl(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ SimVRegister temp1, temp2; |
+ uxtl(vform, temp1, src1); |
+ uxtl(vform, temp2, src2); |
+ mls(vform, dst, temp1, temp2); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::umlsl2(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ SimVRegister temp1, temp2; |
+ uxtl2(vform, temp1, src1); |
+ uxtl2(vform, temp2, src2); |
+ mls(vform, dst, temp1, temp2); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::smlsl(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ SimVRegister temp1, temp2; |
+ sxtl(vform, temp1, src1); |
+ sxtl(vform, temp2, src2); |
+ mls(vform, dst, temp1, temp2); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::smlsl2(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ SimVRegister temp1, temp2; |
+ sxtl2(vform, temp1, src1); |
+ sxtl2(vform, temp2, src2); |
+ mls(vform, dst, temp1, temp2); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::umlal(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ SimVRegister temp1, temp2; |
+ uxtl(vform, temp1, src1); |
+ uxtl(vform, temp2, src2); |
+ mla(vform, dst, temp1, temp2); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::umlal2(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ SimVRegister temp1, temp2; |
+ uxtl2(vform, temp1, src1); |
+ uxtl2(vform, temp2, src2); |
+ mla(vform, dst, temp1, temp2); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::smlal(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ SimVRegister temp1, temp2; |
+ sxtl(vform, temp1, src1); |
+ sxtl(vform, temp2, src2); |
+ mla(vform, dst, temp1, temp2); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::smlal2(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ SimVRegister temp1, temp2; |
+ sxtl2(vform, temp1, src1); |
+ sxtl2(vform, temp2, src2); |
+ mla(vform, dst, temp1, temp2); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::sqdmlal(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ SimVRegister temp; |
+ LogicVRegister product = sqdmull(vform, temp, src1, src2); |
+ return add(vform, dst, dst, product).SignedSaturate(vform); |
+} |
+ |
+LogicVRegister Simulator::sqdmlal2(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ SimVRegister temp; |
+ LogicVRegister product = sqdmull2(vform, temp, src1, src2); |
+ return add(vform, dst, dst, product).SignedSaturate(vform); |
+} |
+ |
+LogicVRegister Simulator::sqdmlsl(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ SimVRegister temp; |
+ LogicVRegister product = sqdmull(vform, temp, src1, src2); |
+ return sub(vform, dst, dst, product).SignedSaturate(vform); |
+} |
+ |
+LogicVRegister Simulator::sqdmlsl2(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ SimVRegister temp; |
+ LogicVRegister product = sqdmull2(vform, temp, src1, src2); |
+ return sub(vform, dst, dst, product).SignedSaturate(vform); |
+} |
+ |
+LogicVRegister Simulator::sqdmull(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ SimVRegister temp; |
+ LogicVRegister product = smull(vform, temp, src1, src2); |
+ return add(vform, dst, product, product).SignedSaturate(vform); |
+} |
+ |
+LogicVRegister Simulator::sqdmull2(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ SimVRegister temp; |
+ LogicVRegister product = smull2(vform, temp, src1, src2); |
+ return add(vform, dst, product, product).SignedSaturate(vform); |
+} |
+ |
+LogicVRegister Simulator::sqrdmulh(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2, bool round) { |
+ // 2 * INT_32_MIN * INT_32_MIN causes int64_t to overflow. |
+ // To avoid this, we use (src1 * src2 + 1 << (esize - 2)) >> (esize - 1) |
+ // which is same as (2 * src1 * src2 + 1 << (esize - 1)) >> esize. |
+ |
+ int esize = LaneSizeInBitsFromFormat(vform); |
+ int round_const = round ? (1 << (esize - 2)) : 0; |
+ int64_t product; |
+ |
+ dst.ClearForWrite(vform); |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ product = src1.Int(vform, i) * src2.Int(vform, i); |
+ product += round_const; |
+ product = product >> (esize - 1); |
+ |
+ if (product > MaxIntFromFormat(vform)) { |
+ product = MaxIntFromFormat(vform); |
+ } else if (product < MinIntFromFormat(vform)) { |
+ product = MinIntFromFormat(vform); |
+ } |
+ dst.SetInt(vform, i, product); |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::sqdmulh(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ return sqrdmulh(vform, dst, src1, src2, false); |
+} |
+ |
+LogicVRegister Simulator::addhn(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ SimVRegister temp; |
+ add(VectorFormatDoubleWidth(vform), temp, src1, src2); |
+ shrn(vform, dst, temp, LaneSizeInBitsFromFormat(vform)); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::addhn2(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ SimVRegister temp; |
+ add(VectorFormatDoubleWidth(VectorFormatHalfLanes(vform)), temp, src1, src2); |
+ shrn2(vform, dst, temp, LaneSizeInBitsFromFormat(vform)); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::raddhn(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ SimVRegister temp; |
+ add(VectorFormatDoubleWidth(vform), temp, src1, src2); |
+ rshrn(vform, dst, temp, LaneSizeInBitsFromFormat(vform)); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::raddhn2(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ SimVRegister temp; |
+ add(VectorFormatDoubleWidth(VectorFormatHalfLanes(vform)), temp, src1, src2); |
+ rshrn2(vform, dst, temp, LaneSizeInBitsFromFormat(vform)); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::subhn(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ SimVRegister temp; |
+ sub(VectorFormatDoubleWidth(vform), temp, src1, src2); |
+ shrn(vform, dst, temp, LaneSizeInBitsFromFormat(vform)); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::subhn2(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ SimVRegister temp; |
+ sub(VectorFormatDoubleWidth(VectorFormatHalfLanes(vform)), temp, src1, src2); |
+ shrn2(vform, dst, temp, LaneSizeInBitsFromFormat(vform)); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::rsubhn(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ SimVRegister temp; |
+ sub(VectorFormatDoubleWidth(vform), temp, src1, src2); |
+ rshrn(vform, dst, temp, LaneSizeInBitsFromFormat(vform)); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::rsubhn2(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ SimVRegister temp; |
+ sub(VectorFormatDoubleWidth(VectorFormatHalfLanes(vform)), temp, src1, src2); |
+ rshrn2(vform, dst, temp, LaneSizeInBitsFromFormat(vform)); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::trn1(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ uint64_t result[16]; |
+ int laneCount = LaneCountFromFormat(vform); |
+ int pairs = laneCount / 2; |
+ for (int i = 0; i < pairs; ++i) { |
+ result[2 * i] = src1.Uint(vform, 2 * i); |
+ result[(2 * i) + 1] = src2.Uint(vform, 2 * i); |
+ } |
+ |
+ dst.SetUintArray(vform, result); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::trn2(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ uint64_t result[16]; |
+ int laneCount = LaneCountFromFormat(vform); |
+ int pairs = laneCount / 2; |
+ for (int i = 0; i < pairs; ++i) { |
+ result[2 * i] = src1.Uint(vform, (2 * i) + 1); |
+ result[(2 * i) + 1] = src2.Uint(vform, (2 * i) + 1); |
+ } |
+ |
+ dst.SetUintArray(vform, result); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::zip1(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ uint64_t result[16]; |
+ int laneCount = LaneCountFromFormat(vform); |
+ int pairs = laneCount / 2; |
+ for (int i = 0; i < pairs; ++i) { |
+ result[2 * i] = src1.Uint(vform, i); |
+ result[(2 * i) + 1] = src2.Uint(vform, i); |
+ } |
+ |
+ dst.SetUintArray(vform, result); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::zip2(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ uint64_t result[16]; |
+ int laneCount = LaneCountFromFormat(vform); |
+ int pairs = laneCount / 2; |
+ for (int i = 0; i < pairs; ++i) { |
+ result[2 * i] = src1.Uint(vform, pairs + i); |
+ result[(2 * i) + 1] = src2.Uint(vform, pairs + i); |
+ } |
+ |
+ dst.SetUintArray(vform, result); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::uzp1(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ uint64_t result[32]; |
+ int laneCount = LaneCountFromFormat(vform); |
+ for (int i = 0; i < laneCount; ++i) { |
+ result[i] = src1.Uint(vform, i); |
+ result[laneCount + i] = src2.Uint(vform, i); |
+ } |
+ |
+ dst.ClearForWrite(vform); |
+ for (int i = 0; i < laneCount; ++i) { |
+ dst.SetUint(vform, i, result[2 * i]); |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::uzp2(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ uint64_t result[32]; |
+ int laneCount = LaneCountFromFormat(vform); |
+ for (int i = 0; i < laneCount; ++i) { |
+ result[i] = src1.Uint(vform, i); |
+ result[laneCount + i] = src2.Uint(vform, i); |
+ } |
+ |
+ dst.ClearForWrite(vform); |
+ for (int i = 0; i < laneCount; ++i) { |
+ dst.SetUint(vform, i, result[(2 * i) + 1]); |
+ } |
+ return dst; |
+} |
+ |
+template <typename T> |
+T Simulator::FPAdd(T op1, T op2) { |
+ T result = FPProcessNaNs(op1, op2); |
+ if (std::isnan(result)) return result; |
+ |
+ if (std::isinf(op1) && std::isinf(op2) && (op1 != op2)) { |
+ // inf + -inf returns the default NaN. |
+ FPProcessException(); |
+ return FPDefaultNaN<T>(); |
+ } else { |
+ // Other cases should be handled by standard arithmetic. |
+ return op1 + op2; |
+ } |
+} |
+ |
+template <typename T> |
+T Simulator::FPSub(T op1, T op2) { |
+ // NaNs should be handled elsewhere. |
+ DCHECK(!std::isnan(op1) && !std::isnan(op2)); |
+ |
+ if (std::isinf(op1) && std::isinf(op2) && (op1 == op2)) { |
+ // inf - inf returns the default NaN. |
+ FPProcessException(); |
+ return FPDefaultNaN<T>(); |
+ } else { |
+ // Other cases should be handled by standard arithmetic. |
+ return op1 - op2; |
+ } |
+} |
+ |
+template <typename T> |
+T Simulator::FPMul(T op1, T op2) { |
+ // NaNs should be handled elsewhere. |
+ DCHECK(!std::isnan(op1) && !std::isnan(op2)); |
+ |
+ if ((std::isinf(op1) && (op2 == 0.0)) || (std::isinf(op2) && (op1 == 0.0))) { |
+ // inf * 0.0 returns the default NaN. |
+ FPProcessException(); |
+ return FPDefaultNaN<T>(); |
+ } else { |
+ // Other cases should be handled by standard arithmetic. |
+ return op1 * op2; |
+ } |
+} |
+ |
+template <typename T> |
+T Simulator::FPMulx(T op1, T op2) { |
+ if ((std::isinf(op1) && (op2 == 0.0)) || (std::isinf(op2) && (op1 == 0.0))) { |
+ // inf * 0.0 returns +/-2.0. |
+ T two = 2.0; |
+ return copysign(1.0, op1) * copysign(1.0, op2) * two; |
+ } |
+ return FPMul(op1, op2); |
+} |
+ |
+template <typename T> |
+T Simulator::FPMulAdd(T a, T op1, T op2) { |
+ T result = FPProcessNaNs3(a, op1, op2); |
+ |
+ T sign_a = copysign(1.0, a); |
+ T sign_prod = copysign(1.0, op1) * copysign(1.0, op2); |
+ bool isinf_prod = std::isinf(op1) || std::isinf(op2); |
+ bool operation_generates_nan = |
+ (std::isinf(op1) && (op2 == 0.0)) || // inf * 0.0 |
+ (std::isinf(op2) && (op1 == 0.0)) || // 0.0 * inf |
+ (std::isinf(a) && isinf_prod && (sign_a != sign_prod)); // inf - inf |
+ |
+ if (std::isnan(result)) { |
+ // Generated NaNs override quiet NaNs propagated from a. |
+ if (operation_generates_nan && IsQuietNaN(a)) { |
+ FPProcessException(); |
+ return FPDefaultNaN<T>(); |
+ } else { |
+ return result; |
+ } |
+ } |
+ |
+ // If the operation would produce a NaN, return the default NaN. |
+ if (operation_generates_nan) { |
+ FPProcessException(); |
+ return FPDefaultNaN<T>(); |
+ } |
+ |
+ // Work around broken fma implementations for exact zero results: The sign of |
+ // exact 0.0 results is positive unless both a and op1 * op2 are negative. |
+ if (((op1 == 0.0) || (op2 == 0.0)) && (a == 0.0)) { |
+ return ((sign_a < 0) && (sign_prod < 0)) ? -0.0 : 0.0; |
+ } |
+ |
+ result = FusedMultiplyAdd(op1, op2, a); |
+ DCHECK(!std::isnan(result)); |
+ |
+ // Work around broken fma implementations for rounded zero results: If a is |
+ // 0.0, the sign of the result is the sign of op1 * op2 before rounding. |
+ if ((a == 0.0) && (result == 0.0)) { |
+ return copysign(0.0, sign_prod); |
+ } |
+ |
+ return result; |
+} |
+ |
+template <typename T> |
+T Simulator::FPDiv(T op1, T op2) { |
+ // NaNs should be handled elsewhere. |
+ DCHECK(!std::isnan(op1) && !std::isnan(op2)); |
+ |
+ if ((std::isinf(op1) && std::isinf(op2)) || ((op1 == 0.0) && (op2 == 0.0))) { |
+ // inf / inf and 0.0 / 0.0 return the default NaN. |
+ FPProcessException(); |
+ return FPDefaultNaN<T>(); |
+ } else { |
+ if (op2 == 0.0) { |
+ FPProcessException(); |
+ if (!std::isnan(op1)) { |
+ double op1_sign = copysign(1.0, op1); |
+ double op2_sign = copysign(1.0, op2); |
+ return static_cast<T>(op1_sign * op2_sign * kFP64PositiveInfinity); |
+ } |
+ } |
+ |
+ // Other cases should be handled by standard arithmetic. |
+ return op1 / op2; |
+ } |
+} |
+ |
+template <typename T> |
+T Simulator::FPSqrt(T op) { |
+ if (std::isnan(op)) { |
+ return FPProcessNaN(op); |
+ } else if (op < 0.0) { |
+ FPProcessException(); |
+ return FPDefaultNaN<T>(); |
+ } else { |
+ return sqrt(op); |
+ } |
+} |
+ |
+template <typename T> |
+T Simulator::FPMax(T a, T b) { |
+ T result = FPProcessNaNs(a, b); |
+ if (std::isnan(result)) return result; |
+ |
+ if ((a == 0.0) && (b == 0.0) && (copysign(1.0, a) != copysign(1.0, b))) { |
+ // a and b are zero, and the sign differs: return +0.0. |
+ return 0.0; |
+ } else { |
+ return (a > b) ? a : b; |
+ } |
+} |
+ |
+template <typename T> |
+T Simulator::FPMaxNM(T a, T b) { |
+ if (IsQuietNaN(a) && !IsQuietNaN(b)) { |
+ a = kFP64NegativeInfinity; |
+ } else if (!IsQuietNaN(a) && IsQuietNaN(b)) { |
+ b = kFP64NegativeInfinity; |
+ } |
+ |
+ T result = FPProcessNaNs(a, b); |
+ return std::isnan(result) ? result : FPMax(a, b); |
+} |
+ |
+template <typename T> |
+T Simulator::FPMin(T a, T b) { |
+ T result = FPProcessNaNs(a, b); |
+ if (std::isnan(result)) return result; |
+ |
+ if ((a == 0.0) && (b == 0.0) && (copysign(1.0, a) != copysign(1.0, b))) { |
+ // a and b are zero, and the sign differs: return -0.0. |
+ return -0.0; |
+ } else { |
+ return (a < b) ? a : b; |
+ } |
+} |
+ |
+template <typename T> |
+T Simulator::FPMinNM(T a, T b) { |
+ if (IsQuietNaN(a) && !IsQuietNaN(b)) { |
+ a = kFP64PositiveInfinity; |
+ } else if (!IsQuietNaN(a) && IsQuietNaN(b)) { |
+ b = kFP64PositiveInfinity; |
+ } |
+ |
+ T result = FPProcessNaNs(a, b); |
+ return std::isnan(result) ? result : FPMin(a, b); |
+} |
+ |
+template <typename T> |
+T Simulator::FPRecipStepFused(T op1, T op2) { |
+ const T two = 2.0; |
+ if ((std::isinf(op1) && (op2 == 0.0)) || |
+ ((op1 == 0.0) && (std::isinf(op2)))) { |
+ return two; |
+ } else if (std::isinf(op1) || std::isinf(op2)) { |
+ // Return +inf if signs match, otherwise -inf. |
+ return ((op1 >= 0.0) == (op2 >= 0.0)) ? kFP64PositiveInfinity |
+ : kFP64NegativeInfinity; |
+ } else { |
+ return FusedMultiplyAdd(op1, op2, two); |
+ } |
+} |
+ |
+template <typename T> |
+T Simulator::FPRSqrtStepFused(T op1, T op2) { |
+ const T one_point_five = 1.5; |
+ const T two = 2.0; |
+ |
+ if ((std::isinf(op1) && (op2 == 0.0)) || |
+ ((op1 == 0.0) && (std::isinf(op2)))) { |
+ return one_point_five; |
+ } else if (std::isinf(op1) || std::isinf(op2)) { |
+ // Return +inf if signs match, otherwise -inf. |
+ return ((op1 >= 0.0) == (op2 >= 0.0)) ? kFP64PositiveInfinity |
+ : kFP64NegativeInfinity; |
+ } else { |
+ // The multiply-add-halve operation must be fully fused, so avoid interim |
+ // rounding by checking which operand can be losslessly divided by two |
+ // before doing the multiply-add. |
+ if (std::isnormal(op1 / two)) { |
+ return FusedMultiplyAdd(op1 / two, op2, one_point_five); |
+ } else if (std::isnormal(op2 / two)) { |
+ return FusedMultiplyAdd(op1, op2 / two, one_point_five); |
+ } else { |
+ // Neither operand is normal after halving: the result is dominated by |
+ // the addition term, so just return that. |
+ return one_point_five; |
+ } |
+ } |
+} |
+ |
+double Simulator::FPRoundInt(double value, FPRounding round_mode) { |
+ if ((value == 0.0) || (value == kFP64PositiveInfinity) || |
+ (value == kFP64NegativeInfinity)) { |
+ return value; |
+ } else if (std::isnan(value)) { |
+ return FPProcessNaN(value); |
+ } |
+ |
+ double int_result = std::floor(value); |
+ double error = value - int_result; |
+ switch (round_mode) { |
+ case FPTieAway: { |
+ // Take care of correctly handling the range ]-0.5, -0.0], which must |
+ // yield -0.0. |
+ if ((-0.5 < value) && (value < 0.0)) { |
+ int_result = -0.0; |
+ |
+ } else if ((error > 0.5) || ((error == 0.5) && (int_result >= 0.0))) { |
+ // If the error is greater than 0.5, or is equal to 0.5 and the integer |
+ // result is positive, round up. |
+ int_result++; |
+ } |
+ break; |
+ } |
+ case FPTieEven: { |
+ // Take care of correctly handling the range [-0.5, -0.0], which must |
+ // yield -0.0. |
+ if ((-0.5 <= value) && (value < 0.0)) { |
+ int_result = -0.0; |
+ |
+ // If the error is greater than 0.5, or is equal to 0.5 and the integer |
+ // result is odd, round up. |
+ } else if ((error > 0.5) || |
+ ((error == 0.5) && (std::fmod(int_result, 2) != 0))) { |
+ int_result++; |
+ } |
+ break; |
+ } |
+ case FPZero: { |
+ // If value>0 then we take floor(value) |
+ // otherwise, ceil(value). |
+ if (value < 0) { |
+ int_result = ceil(value); |
+ } |
+ break; |
+ } |
+ case FPNegativeInfinity: { |
+ // We always use floor(value). |
+ break; |
+ } |
+ case FPPositiveInfinity: { |
+ // Take care of correctly handling the range ]-1.0, -0.0], which must |
+ // yield -0.0. |
+ if ((-1.0 < value) && (value < 0.0)) { |
+ int_result = -0.0; |
+ |
+ // If the error is non-zero, round up. |
+ } else if (error > 0.0) { |
+ int_result++; |
+ } |
+ break; |
+ } |
+ default: |
+ UNIMPLEMENTED(); |
+ } |
+ return int_result; |
+} |
+ |
+int32_t Simulator::FPToInt32(double value, FPRounding rmode) { |
+ value = FPRoundInt(value, rmode); |
+ if (value >= kWMaxInt) { |
+ return kWMaxInt; |
+ } else if (value < kWMinInt) { |
+ return kWMinInt; |
+ } |
+ return std::isnan(value) ? 0 : static_cast<int32_t>(value); |
+} |
+ |
+int64_t Simulator::FPToInt64(double value, FPRounding rmode) { |
+ value = FPRoundInt(value, rmode); |
+ if (value >= kXMaxInt) { |
+ return kXMaxInt; |
+ } else if (value < kXMinInt) { |
+ return kXMinInt; |
+ } |
+ return std::isnan(value) ? 0 : static_cast<int64_t>(value); |
+} |
+ |
+uint32_t Simulator::FPToUInt32(double value, FPRounding rmode) { |
+ value = FPRoundInt(value, rmode); |
+ if (value >= kWMaxUInt) { |
+ return kWMaxUInt; |
+ } else if (value < 0.0) { |
+ return 0; |
+ } |
+ return std::isnan(value) ? 0 : static_cast<uint32_t>(value); |
+} |
+ |
+uint64_t Simulator::FPToUInt64(double value, FPRounding rmode) { |
+ value = FPRoundInt(value, rmode); |
+ if (value >= kXMaxUInt) { |
+ return kXMaxUInt; |
+ } else if (value < 0.0) { |
+ return 0; |
+ } |
+ return std::isnan(value) ? 0 : static_cast<uint64_t>(value); |
+} |
+ |
+#define DEFINE_NEON_FP_VECTOR_OP(FN, OP, PROCNAN) \ |
+ template <typename T> \ |
+ LogicVRegister Simulator::FN(VectorFormat vform, LogicVRegister dst, \ |
+ const LogicVRegister& src1, \ |
+ const LogicVRegister& src2) { \ |
+ dst.ClearForWrite(vform); \ |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { \ |
+ T op1 = src1.Float<T>(i); \ |
+ T op2 = src2.Float<T>(i); \ |
+ T result; \ |
+ if (PROCNAN) { \ |
+ result = FPProcessNaNs(op1, op2); \ |
+ if (!std::isnan(result)) { \ |
+ result = OP(op1, op2); \ |
+ } \ |
+ } else { \ |
+ result = OP(op1, op2); \ |
+ } \ |
+ dst.SetFloat(i, result); \ |
+ } \ |
+ return dst; \ |
+ } \ |
+ \ |
+ LogicVRegister Simulator::FN(VectorFormat vform, LogicVRegister dst, \ |
+ const LogicVRegister& src1, \ |
+ const LogicVRegister& src2) { \ |
+ if (LaneSizeInBytesFromFormat(vform) == kSRegSize) { \ |
+ FN<float>(vform, dst, src1, src2); \ |
+ } else { \ |
+ DCHECK_EQ(LaneSizeInBytesFromFormat(vform), kDRegSize); \ |
+ FN<double>(vform, dst, src1, src2); \ |
+ } \ |
+ return dst; \ |
+ } |
+NEON_FP3SAME_LIST(DEFINE_NEON_FP_VECTOR_OP) |
+#undef DEFINE_NEON_FP_VECTOR_OP |
+ |
+LogicVRegister Simulator::fnmul(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ SimVRegister temp; |
+ LogicVRegister product = fmul(vform, temp, src1, src2); |
+ return fneg(vform, dst, product); |
+} |
+ |
+template <typename T> |
+LogicVRegister Simulator::frecps(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ dst.ClearForWrite(vform); |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ T op1 = -src1.Float<T>(i); |
+ T op2 = src2.Float<T>(i); |
+ T result = FPProcessNaNs(op1, op2); |
+ dst.SetFloat(i, std::isnan(result) ? result : FPRecipStepFused(op1, op2)); |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::frecps(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ if (LaneSizeInBytesFromFormat(vform) == kSRegSize) { |
+ frecps<float>(vform, dst, src1, src2); |
+ } else { |
+ DCHECK_EQ(LaneSizeInBytesFromFormat(vform), kDRegSize); |
+ frecps<double>(vform, dst, src1, src2); |
+ } |
+ return dst; |
+} |
+ |
+template <typename T> |
+LogicVRegister Simulator::frsqrts(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ dst.ClearForWrite(vform); |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ T op1 = -src1.Float<T>(i); |
+ T op2 = src2.Float<T>(i); |
+ T result = FPProcessNaNs(op1, op2); |
+ dst.SetFloat(i, std::isnan(result) ? result : FPRSqrtStepFused(op1, op2)); |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::frsqrts(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ if (LaneSizeInBytesFromFormat(vform) == kSRegSize) { |
+ frsqrts<float>(vform, dst, src1, src2); |
+ } else { |
+ DCHECK_EQ(LaneSizeInBytesFromFormat(vform), kDRegSize); |
+ frsqrts<double>(vform, dst, src1, src2); |
+ } |
+ return dst; |
+} |
+ |
+template <typename T> |
+LogicVRegister Simulator::fcmp(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2, Condition cond) { |
+ dst.ClearForWrite(vform); |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ bool result = false; |
+ T op1 = src1.Float<T>(i); |
+ T op2 = src2.Float<T>(i); |
+ T nan_result = FPProcessNaNs(op1, op2); |
+ if (!std::isnan(nan_result)) { |
+ switch (cond) { |
+ case eq: |
+ result = (op1 == op2); |
+ break; |
+ case ge: |
+ result = (op1 >= op2); |
+ break; |
+ case gt: |
+ result = (op1 > op2); |
+ break; |
+ case le: |
+ result = (op1 <= op2); |
+ break; |
+ case lt: |
+ result = (op1 < op2); |
+ break; |
+ default: |
+ UNREACHABLE(); |
+ } |
+ } |
+ dst.SetUint(vform, i, result ? MaxUintFromFormat(vform) : 0); |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::fcmp(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2, Condition cond) { |
+ if (LaneSizeInBytesFromFormat(vform) == kSRegSize) { |
+ fcmp<float>(vform, dst, src1, src2, cond); |
+ } else { |
+ DCHECK_EQ(LaneSizeInBytesFromFormat(vform), kDRegSize); |
+ fcmp<double>(vform, dst, src1, src2, cond); |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::fcmp_zero(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src, Condition cond) { |
+ SimVRegister temp; |
+ if (LaneSizeInBytesFromFormat(vform) == kSRegSize) { |
+ LogicVRegister zero_reg = |
+ dup_immediate(vform, temp, bit_cast<uint32_t>(0.0f)); |
+ fcmp<float>(vform, dst, src, zero_reg, cond); |
+ } else { |
+ DCHECK_EQ(LaneSizeInBytesFromFormat(vform), kDRegSize); |
+ LogicVRegister zero_reg = |
+ dup_immediate(vform, temp, bit_cast<uint64_t>(0.0)); |
+ fcmp<double>(vform, dst, src, zero_reg, cond); |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::fabscmp(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2, Condition cond) { |
+ SimVRegister temp1, temp2; |
+ if (LaneSizeInBytesFromFormat(vform) == kSRegSize) { |
+ LogicVRegister abs_src1 = fabs_<float>(vform, temp1, src1); |
+ LogicVRegister abs_src2 = fabs_<float>(vform, temp2, src2); |
+ fcmp<float>(vform, dst, abs_src1, abs_src2, cond); |
+ } else { |
+ DCHECK_EQ(LaneSizeInBytesFromFormat(vform), kDRegSize); |
+ LogicVRegister abs_src1 = fabs_<double>(vform, temp1, src1); |
+ LogicVRegister abs_src2 = fabs_<double>(vform, temp2, src2); |
+ fcmp<double>(vform, dst, abs_src1, abs_src2, cond); |
+ } |
+ return dst; |
+} |
+ |
+template <typename T> |
+LogicVRegister Simulator::fmla(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ dst.ClearForWrite(vform); |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ T op1 = src1.Float<T>(i); |
+ T op2 = src2.Float<T>(i); |
+ T acc = dst.Float<T>(i); |
+ T result = FPMulAdd(acc, op1, op2); |
+ dst.SetFloat(i, result); |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::fmla(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ if (LaneSizeInBytesFromFormat(vform) == kSRegSize) { |
+ fmla<float>(vform, dst, src1, src2); |
+ } else { |
+ DCHECK_EQ(LaneSizeInBytesFromFormat(vform), kDRegSize); |
+ fmla<double>(vform, dst, src1, src2); |
+ } |
+ return dst; |
+} |
+ |
+template <typename T> |
+LogicVRegister Simulator::fmls(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ dst.ClearForWrite(vform); |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ T op1 = -src1.Float<T>(i); |
+ T op2 = src2.Float<T>(i); |
+ T acc = dst.Float<T>(i); |
+ T result = FPMulAdd(acc, op1, op2); |
+ dst.SetFloat(i, result); |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::fmls(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ if (LaneSizeInBytesFromFormat(vform) == kSRegSize) { |
+ fmls<float>(vform, dst, src1, src2); |
+ } else { |
+ DCHECK_EQ(LaneSizeInBytesFromFormat(vform), kDRegSize); |
+ fmls<double>(vform, dst, src1, src2); |
+ } |
+ return dst; |
+} |
+ |
+template <typename T> |
+LogicVRegister Simulator::fneg(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src) { |
+ dst.ClearForWrite(vform); |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ T op = src.Float<T>(i); |
+ op = -op; |
+ dst.SetFloat(i, op); |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::fneg(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src) { |
+ if (LaneSizeInBytesFromFormat(vform) == kSRegSize) { |
+ fneg<float>(vform, dst, src); |
+ } else { |
+ DCHECK_EQ(LaneSizeInBytesFromFormat(vform), kDRegSize); |
+ fneg<double>(vform, dst, src); |
+ } |
+ return dst; |
+} |
+ |
+template <typename T> |
+LogicVRegister Simulator::fabs_(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src) { |
+ dst.ClearForWrite(vform); |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ T op = src.Float<T>(i); |
+ if (copysign(1.0, op) < 0.0) { |
+ op = -op; |
+ } |
+ dst.SetFloat(i, op); |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::fabs_(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src) { |
+ if (LaneSizeInBytesFromFormat(vform) == kSRegSize) { |
+ fabs_<float>(vform, dst, src); |
+ } else { |
+ DCHECK_EQ(LaneSizeInBytesFromFormat(vform), kDRegSize); |
+ fabs_<double>(vform, dst, src); |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::fabd(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2) { |
+ SimVRegister temp; |
+ fsub(vform, temp, src1, src2); |
+ fabs_(vform, dst, temp); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::fsqrt(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src) { |
+ dst.ClearForWrite(vform); |
+ if (LaneSizeInBytesFromFormat(vform) == kSRegSize) { |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ float result = FPSqrt(src.Float<float>(i)); |
+ dst.SetFloat(i, result); |
+ } |
+ } else { |
+ DCHECK_EQ(LaneSizeInBytesFromFormat(vform), kDRegSize); |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ double result = FPSqrt(src.Float<double>(i)); |
+ dst.SetFloat(i, result); |
+ } |
+ } |
+ return dst; |
+} |
+ |
+#define DEFINE_NEON_FP_PAIR_OP(FNP, FN, OP) \ |
+ LogicVRegister Simulator::FNP(VectorFormat vform, LogicVRegister dst, \ |
+ const LogicVRegister& src1, \ |
+ const LogicVRegister& src2) { \ |
+ SimVRegister temp1, temp2; \ |
+ uzp1(vform, temp1, src1, src2); \ |
+ uzp2(vform, temp2, src1, src2); \ |
+ FN(vform, dst, temp1, temp2); \ |
+ return dst; \ |
+ } \ |
+ \ |
+ LogicVRegister Simulator::FNP(VectorFormat vform, LogicVRegister dst, \ |
+ const LogicVRegister& src) { \ |
+ if (vform == kFormatS) { \ |
+ float result = OP(src.Float<float>(0), src.Float<float>(1)); \ |
+ dst.SetFloat(0, result); \ |
+ } else { \ |
+ DCHECK_EQ(vform, kFormatD); \ |
+ double result = OP(src.Float<double>(0), src.Float<double>(1)); \ |
+ dst.SetFloat(0, result); \ |
+ } \ |
+ dst.ClearForWrite(vform); \ |
+ return dst; \ |
+ } |
+NEON_FPPAIRWISE_LIST(DEFINE_NEON_FP_PAIR_OP) |
+#undef DEFINE_NEON_FP_PAIR_OP |
+ |
+LogicVRegister Simulator::FMinMaxV(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src, FPMinMaxOp Op) { |
+ DCHECK_EQ(vform, kFormat4S); |
+ USE(vform); |
+ float result1 = (this->*Op)(src.Float<float>(0), src.Float<float>(1)); |
+ float result2 = (this->*Op)(src.Float<float>(2), src.Float<float>(3)); |
+ float result = (this->*Op)(result1, result2); |
+ dst.ClearForWrite(kFormatS); |
+ dst.SetFloat<float>(0, result); |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::fmaxv(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src) { |
+ return FMinMaxV(vform, dst, src, &Simulator::FPMax); |
+} |
+ |
+LogicVRegister Simulator::fminv(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src) { |
+ return FMinMaxV(vform, dst, src, &Simulator::FPMin); |
+} |
+ |
+LogicVRegister Simulator::fmaxnmv(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src) { |
+ return FMinMaxV(vform, dst, src, &Simulator::FPMaxNM); |
+} |
+ |
+LogicVRegister Simulator::fminnmv(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src) { |
+ return FMinMaxV(vform, dst, src, &Simulator::FPMinNM); |
+} |
+ |
+LogicVRegister Simulator::fmul(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2, int index) { |
+ dst.ClearForWrite(vform); |
+ SimVRegister temp; |
+ if (LaneSizeInBytesFromFormat(vform) == kSRegSize) { |
+ LogicVRegister index_reg = dup_element(kFormat4S, temp, src2, index); |
+ fmul<float>(vform, dst, src1, index_reg); |
+ } else { |
+ DCHECK_EQ(LaneSizeInBytesFromFormat(vform), kDRegSize); |
+ LogicVRegister index_reg = dup_element(kFormat2D, temp, src2, index); |
+ fmul<double>(vform, dst, src1, index_reg); |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::fmla(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2, int index) { |
+ dst.ClearForWrite(vform); |
+ SimVRegister temp; |
+ if (LaneSizeInBytesFromFormat(vform) == kSRegSize) { |
+ LogicVRegister index_reg = dup_element(kFormat4S, temp, src2, index); |
+ fmla<float>(vform, dst, src1, index_reg); |
+ } else { |
+ DCHECK_EQ(LaneSizeInBytesFromFormat(vform), kDRegSize); |
+ LogicVRegister index_reg = dup_element(kFormat2D, temp, src2, index); |
+ fmla<double>(vform, dst, src1, index_reg); |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::fmls(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2, int index) { |
+ dst.ClearForWrite(vform); |
+ SimVRegister temp; |
+ if (LaneSizeInBytesFromFormat(vform) == kSRegSize) { |
+ LogicVRegister index_reg = dup_element(kFormat4S, temp, src2, index); |
+ fmls<float>(vform, dst, src1, index_reg); |
+ } else { |
+ DCHECK_EQ(LaneSizeInBytesFromFormat(vform), kDRegSize); |
+ LogicVRegister index_reg = dup_element(kFormat2D, temp, src2, index); |
+ fmls<double>(vform, dst, src1, index_reg); |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::fmulx(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src1, |
+ const LogicVRegister& src2, int index) { |
+ dst.ClearForWrite(vform); |
+ SimVRegister temp; |
+ if (LaneSizeInBytesFromFormat(vform) == kSRegSize) { |
+ LogicVRegister index_reg = dup_element(kFormat4S, temp, src2, index); |
+ fmulx<float>(vform, dst, src1, index_reg); |
+ |
+ } else { |
+ DCHECK_EQ(LaneSizeInBytesFromFormat(vform), kDRegSize); |
+ LogicVRegister index_reg = dup_element(kFormat2D, temp, src2, index); |
+ fmulx<double>(vform, dst, src1, index_reg); |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::frint(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src, |
+ FPRounding rounding_mode, |
+ bool inexact_exception) { |
+ dst.ClearForWrite(vform); |
+ if (LaneSizeInBytesFromFormat(vform) == kSRegSize) { |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ float input = src.Float<float>(i); |
+ float rounded = FPRoundInt(input, rounding_mode); |
+ if (inexact_exception && !std::isnan(input) && (input != rounded)) { |
+ FPProcessException(); |
+ } |
+ dst.SetFloat<float>(i, rounded); |
+ } |
+ } else { |
+ DCHECK_EQ(LaneSizeInBytesFromFormat(vform), kDRegSize); |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ double input = src.Float<double>(i); |
+ double rounded = FPRoundInt(input, rounding_mode); |
+ if (inexact_exception && !std::isnan(input) && (input != rounded)) { |
+ FPProcessException(); |
+ } |
+ dst.SetFloat<double>(i, rounded); |
+ } |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::fcvts(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src, |
+ FPRounding rounding_mode, int fbits) { |
+ dst.ClearForWrite(vform); |
+ if (LaneSizeInBytesFromFormat(vform) == kSRegSize) { |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ float op = src.Float<float>(i) * std::pow(2.0f, fbits); |
+ dst.SetInt(vform, i, FPToInt32(op, rounding_mode)); |
+ } |
+ } else { |
+ DCHECK_EQ(LaneSizeInBytesFromFormat(vform), kDRegSize); |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ double op = src.Float<double>(i) * std::pow(2.0, fbits); |
+ dst.SetInt(vform, i, FPToInt64(op, rounding_mode)); |
+ } |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::fcvtu(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src, |
+ FPRounding rounding_mode, int fbits) { |
+ dst.ClearForWrite(vform); |
+ if (LaneSizeInBytesFromFormat(vform) == kSRegSize) { |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ float op = src.Float<float>(i) * std::pow(2.0f, fbits); |
+ dst.SetUint(vform, i, FPToUInt32(op, rounding_mode)); |
+ } |
+ } else { |
+ DCHECK_EQ(LaneSizeInBytesFromFormat(vform), kDRegSize); |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ double op = src.Float<double>(i) * std::pow(2.0, fbits); |
+ dst.SetUint(vform, i, FPToUInt64(op, rounding_mode)); |
+ } |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::fcvtl(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src) { |
+ if (LaneSizeInBytesFromFormat(vform) == kSRegSize) { |
+ for (int i = LaneCountFromFormat(vform) - 1; i >= 0; i--) { |
+ dst.SetFloat(i, FPToFloat(src.Float<float16>(i))); |
+ } |
+ } else { |
+ DCHECK_EQ(LaneSizeInBytesFromFormat(vform), kDRegSize); |
+ for (int i = LaneCountFromFormat(vform) - 1; i >= 0; i--) { |
+ dst.SetFloat(i, FPToDouble(src.Float<float>(i))); |
+ } |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::fcvtl2(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src) { |
+ int lane_count = LaneCountFromFormat(vform); |
+ if (LaneSizeInBytesFromFormat(vform) == kSRegSize) { |
+ for (int i = 0; i < lane_count; i++) { |
+ dst.SetFloat(i, FPToFloat(src.Float<float16>(i + lane_count))); |
+ } |
+ } else { |
+ DCHECK_EQ(LaneSizeInBytesFromFormat(vform), kDRegSize); |
+ for (int i = 0; i < lane_count; i++) { |
+ dst.SetFloat(i, FPToDouble(src.Float<float>(i + lane_count))); |
+ } |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::fcvtn(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src) { |
+ if (LaneSizeInBytesFromFormat(vform) == kHRegSize) { |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ dst.SetFloat(i, FPToFloat16(src.Float<float>(i), FPTieEven)); |
+ } |
+ } else { |
+ DCHECK_EQ(LaneSizeInBytesFromFormat(vform), kSRegSize); |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ dst.SetFloat(i, FPToFloat(src.Float<double>(i), FPTieEven)); |
+ } |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::fcvtn2(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src) { |
+ int lane_count = LaneCountFromFormat(vform) / 2; |
+ if (LaneSizeInBytesFromFormat(vform) == kHRegSize) { |
+ for (int i = lane_count - 1; i >= 0; i--) { |
+ dst.SetFloat(i + lane_count, FPToFloat16(src.Float<float>(i), FPTieEven)); |
+ } |
+ } else { |
+ DCHECK_EQ(LaneSizeInBytesFromFormat(vform), kSRegSize); |
+ for (int i = lane_count - 1; i >= 0; i--) { |
+ dst.SetFloat(i + lane_count, FPToFloat(src.Float<double>(i), FPTieEven)); |
+ } |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::fcvtxn(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src) { |
+ dst.ClearForWrite(vform); |
+ DCHECK_EQ(LaneSizeInBytesFromFormat(vform), kSRegSize); |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ dst.SetFloat(i, FPToFloat(src.Float<double>(i), FPRoundOdd)); |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::fcvtxn2(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src) { |
+ DCHECK_EQ(LaneSizeInBytesFromFormat(vform), kSRegSize); |
+ int lane_count = LaneCountFromFormat(vform) / 2; |
+ for (int i = lane_count - 1; i >= 0; i--) { |
+ dst.SetFloat(i + lane_count, FPToFloat(src.Float<double>(i), FPRoundOdd)); |
+ } |
+ return dst; |
+} |
+ |
+// Based on reference C function recip_sqrt_estimate from ARM ARM. |
+double Simulator::recip_sqrt_estimate(double a) { |
+ int q0, q1, s; |
+ double r; |
+ if (a < 0.5) { |
+ q0 = static_cast<int>(a * 512.0); |
+ r = 1.0 / sqrt((static_cast<double>(q0) + 0.5) / 512.0); |
+ } else { |
+ q1 = static_cast<int>(a * 256.0); |
+ r = 1.0 / sqrt((static_cast<double>(q1) + 0.5) / 256.0); |
+ } |
+ s = static_cast<int>(256.0 * r + 0.5); |
+ return static_cast<double>(s) / 256.0; |
+} |
+ |
+namespace { |
+ |
+inline uint64_t Bits(uint64_t val, int start_bit, int end_bit) { |
+ return unsigned_bitextract_64(start_bit, end_bit, val); |
+} |
+ |
+} // anonymous namespace |
+ |
+template <typename T> |
+T Simulator::FPRecipSqrtEstimate(T op) { |
+ static_assert(std::is_same<float, T>::value || std::is_same<double, T>::value, |
+ "T must be a float or double"); |
+ |
+ if (std::isnan(op)) { |
+ return FPProcessNaN(op); |
+ } else if (op == 0.0) { |
+ if (copysign(1.0, op) < 0.0) { |
+ return kFP64NegativeInfinity; |
+ } else { |
+ return kFP64PositiveInfinity; |
+ } |
+ } else if (copysign(1.0, op) < 0.0) { |
+ FPProcessException(); |
+ return FPDefaultNaN<T>(); |
+ } else if (std::isinf(op)) { |
+ return 0.0; |
+ } else { |
+ uint64_t fraction; |
+ int32_t exp, result_exp; |
+ |
+ if (sizeof(T) == sizeof(float)) { |
+ exp = static_cast<int32_t>(float_exp(op)); |
+ fraction = float_mantissa(op); |
+ fraction <<= 29; |
+ } else { |
+ exp = static_cast<int32_t>(double_exp(op)); |
+ fraction = double_mantissa(op); |
+ } |
+ |
+ if (exp == 0) { |
+ while (Bits(fraction, 51, 51) == 0) { |
+ fraction = Bits(fraction, 50, 0) << 1; |
+ exp -= 1; |
+ } |
+ fraction = Bits(fraction, 50, 0) << 1; |
+ } |
+ |
+ double scaled; |
+ if (Bits(exp, 0, 0) == 0) { |
+ scaled = double_pack(0, 1022, Bits(fraction, 51, 44) << 44); |
+ } else { |
+ scaled = double_pack(0, 1021, Bits(fraction, 51, 44) << 44); |
+ } |
+ |
+ if (sizeof(T) == sizeof(float)) { |
+ result_exp = (380 - exp) / 2; |
+ } else { |
+ result_exp = (3068 - exp) / 2; |
+ } |
+ |
+ uint64_t estimate = bit_cast<uint64_t>(recip_sqrt_estimate(scaled)); |
+ |
+ if (sizeof(T) == sizeof(float)) { |
+ uint32_t exp_bits = static_cast<uint32_t>(Bits(result_exp, 7, 0)); |
+ uint32_t est_bits = static_cast<uint32_t>(Bits(estimate, 51, 29)); |
+ return float_pack(0, exp_bits, est_bits); |
+ } else { |
+ return double_pack(0, Bits(result_exp, 10, 0), Bits(estimate, 51, 0)); |
+ } |
+ } |
+} |
+ |
+LogicVRegister Simulator::frsqrte(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src) { |
+ dst.ClearForWrite(vform); |
+ if (LaneSizeInBytesFromFormat(vform) == kSRegSize) { |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ float input = src.Float<float>(i); |
+ dst.SetFloat(i, FPRecipSqrtEstimate<float>(input)); |
+ } |
+ } else { |
+ DCHECK_EQ(LaneSizeInBytesFromFormat(vform), kDRegSize); |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ double input = src.Float<double>(i); |
+ dst.SetFloat(i, FPRecipSqrtEstimate<double>(input)); |
+ } |
+ } |
+ return dst; |
+} |
+ |
+template <typename T> |
+T Simulator::FPRecipEstimate(T op, FPRounding rounding) { |
+ static_assert(std::is_same<float, T>::value || std::is_same<double, T>::value, |
+ "T must be a float or double"); |
+ uint32_t sign; |
+ |
+ if (sizeof(T) == sizeof(float)) { |
+ sign = float_sign(op); |
+ } else { |
+ sign = double_sign(op); |
+ } |
+ |
+ if (std::isnan(op)) { |
+ return FPProcessNaN(op); |
+ } else if (std::isinf(op)) { |
+ return (sign == 1) ? -0.0 : 0.0; |
+ } else if (op == 0.0) { |
+ FPProcessException(); // FPExc_DivideByZero exception. |
+ return (sign == 1) ? kFP64NegativeInfinity : kFP64PositiveInfinity; |
+ } else if (((sizeof(T) == sizeof(float)) && |
+ (std::fabs(op) < std::pow(2.0, -128.0))) || |
+ ((sizeof(T) == sizeof(double)) && |
+ (std::fabs(op) < std::pow(2.0, -1024.0)))) { |
+ bool overflow_to_inf = false; |
+ switch (rounding) { |
+ case FPTieEven: |
+ overflow_to_inf = true; |
+ break; |
+ case FPPositiveInfinity: |
+ overflow_to_inf = (sign == 0); |
+ break; |
+ case FPNegativeInfinity: |
+ overflow_to_inf = (sign == 1); |
+ break; |
+ case FPZero: |
+ overflow_to_inf = false; |
+ break; |
+ default: |
+ break; |
+ } |
+ FPProcessException(); // FPExc_Overflow and FPExc_Inexact. |
+ if (overflow_to_inf) { |
+ return (sign == 1) ? kFP64NegativeInfinity : kFP64PositiveInfinity; |
+ } else { |
+ // Return FPMaxNormal(sign). |
+ if (sizeof(T) == sizeof(float)) { |
+ return float_pack(sign, 0xfe, 0x07fffff); |
+ } else { |
+ return double_pack(sign, 0x7fe, 0x0fffffffffffffl); |
+ } |
+ } |
+ } else { |
+ uint64_t fraction; |
+ int32_t exp, result_exp; |
+ uint32_t sign; |
+ |
+ if (sizeof(T) == sizeof(float)) { |
+ sign = float_sign(op); |
+ exp = static_cast<int32_t>(float_exp(op)); |
+ fraction = float_mantissa(op); |
+ fraction <<= 29; |
+ } else { |
+ sign = double_sign(op); |
+ exp = static_cast<int32_t>(double_exp(op)); |
+ fraction = double_mantissa(op); |
+ } |
+ |
+ if (exp == 0) { |
+ if (Bits(fraction, 51, 51) == 0) { |
+ exp -= 1; |
+ fraction = Bits(fraction, 49, 0) << 2; |
+ } else { |
+ fraction = Bits(fraction, 50, 0) << 1; |
+ } |
+ } |
+ |
+ double scaled = double_pack(0, 1022, Bits(fraction, 51, 44) << 44); |
+ |
+ if (sizeof(T) == sizeof(float)) { |
+ result_exp = 253 - exp; |
+ } else { |
+ result_exp = 2045 - exp; |
+ } |
+ |
+ double estimate = recip_estimate(scaled); |
+ |
+ fraction = double_mantissa(estimate); |
+ if (result_exp == 0) { |
+ fraction = (UINT64_C(1) << 51) | Bits(fraction, 51, 1); |
+ } else if (result_exp == -1) { |
+ fraction = (UINT64_C(1) << 50) | Bits(fraction, 51, 2); |
+ result_exp = 0; |
+ } |
+ if (sizeof(T) == sizeof(float)) { |
+ uint32_t exp_bits = static_cast<uint32_t>(Bits(result_exp, 7, 0)); |
+ uint32_t frac_bits = static_cast<uint32_t>(Bits(fraction, 51, 29)); |
+ return float_pack(sign, exp_bits, frac_bits); |
+ } else { |
+ return double_pack(sign, Bits(result_exp, 10, 0), Bits(fraction, 51, 0)); |
+ } |
+ } |
+} |
+ |
+LogicVRegister Simulator::frecpe(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src, FPRounding round) { |
+ dst.ClearForWrite(vform); |
+ if (LaneSizeInBytesFromFormat(vform) == kSRegSize) { |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ float input = src.Float<float>(i); |
+ dst.SetFloat(i, FPRecipEstimate<float>(input, round)); |
+ } |
+ } else { |
+ DCHECK_EQ(LaneSizeInBytesFromFormat(vform), kDRegSize); |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ double input = src.Float<double>(i); |
+ dst.SetFloat(i, FPRecipEstimate<double>(input, round)); |
+ } |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::ursqrte(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src) { |
+ dst.ClearForWrite(vform); |
+ uint64_t operand; |
+ uint32_t result; |
+ double dp_operand, dp_result; |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ operand = src.Uint(vform, i); |
+ if (operand <= 0x3FFFFFFF) { |
+ result = 0xFFFFFFFF; |
+ } else { |
+ dp_operand = operand * std::pow(2.0, -32); |
+ dp_result = recip_sqrt_estimate(dp_operand) * std::pow(2.0, 31); |
+ result = static_cast<uint32_t>(dp_result); |
+ } |
+ dst.SetUint(vform, i, result); |
+ } |
+ return dst; |
+} |
+ |
+// Based on reference C function recip_estimate from ARM ARM. |
+double Simulator::recip_estimate(double a) { |
+ int q, s; |
+ double r; |
+ q = static_cast<int>(a * 512.0); |
+ r = 1.0 / ((static_cast<double>(q) + 0.5) / 512.0); |
+ s = static_cast<int>(256.0 * r + 0.5); |
+ return static_cast<double>(s) / 256.0; |
+} |
+ |
+LogicVRegister Simulator::urecpe(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src) { |
+ dst.ClearForWrite(vform); |
+ uint64_t operand; |
+ uint32_t result; |
+ double dp_operand, dp_result; |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ operand = src.Uint(vform, i); |
+ if (operand <= 0x7FFFFFFF) { |
+ result = 0xFFFFFFFF; |
+ } else { |
+ dp_operand = operand * std::pow(2.0, -32); |
+ dp_result = recip_estimate(dp_operand) * std::pow(2.0, 31); |
+ result = static_cast<uint32_t>(dp_result); |
+ } |
+ dst.SetUint(vform, i, result); |
+ } |
+ return dst; |
+} |
+ |
+template <typename T> |
+LogicVRegister Simulator::frecpx(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src) { |
+ dst.ClearForWrite(vform); |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ T op = src.Float<T>(i); |
+ T result; |
+ if (std::isnan(op)) { |
+ result = FPProcessNaN(op); |
+ } else { |
+ int exp; |
+ uint32_t sign; |
+ if (sizeof(T) == sizeof(float)) { |
+ sign = float_sign(op); |
+ exp = static_cast<int>(float_exp(op)); |
+ exp = (exp == 0) ? (0xFF - 1) : static_cast<int>(Bits(~exp, 7, 0)); |
+ result = float_pack(sign, exp, 0); |
+ } else { |
+ sign = double_sign(op); |
+ exp = static_cast<int>(double_exp(op)); |
+ exp = (exp == 0) ? (0x7FF - 1) : static_cast<int>(Bits(~exp, 10, 0)); |
+ result = double_pack(sign, exp, 0); |
+ } |
+ } |
+ dst.SetFloat(i, result); |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::frecpx(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src) { |
+ if (LaneSizeInBytesFromFormat(vform) == kSRegSize) { |
+ frecpx<float>(vform, dst, src); |
+ } else { |
+ DCHECK_EQ(LaneSizeInBytesFromFormat(vform), kDRegSize); |
+ frecpx<double>(vform, dst, src); |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::scvtf(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src, int fbits, |
+ FPRounding round) { |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ if (LaneSizeInBytesFromFormat(vform) == kSRegSize) { |
+ float result = FixedToFloat(src.Int(kFormatS, i), fbits, round); |
+ dst.SetFloat<float>(i, result); |
+ } else { |
+ DCHECK_EQ(LaneSizeInBytesFromFormat(vform), kDRegSize); |
+ double result = FixedToDouble(src.Int(kFormatD, i), fbits, round); |
+ dst.SetFloat<double>(i, result); |
+ } |
+ } |
+ return dst; |
+} |
+ |
+LogicVRegister Simulator::ucvtf(VectorFormat vform, LogicVRegister dst, |
+ const LogicVRegister& src, int fbits, |
+ FPRounding round) { |
+ for (int i = 0; i < LaneCountFromFormat(vform); i++) { |
+ if (LaneSizeInBytesFromFormat(vform) == kSRegSize) { |
+ float result = UFixedToFloat(src.Uint(kFormatS, i), fbits, round); |
+ dst.SetFloat<float>(i, result); |
+ } else { |
+ DCHECK_EQ(LaneSizeInBytesFromFormat(vform), kDRegSize); |
+ double result = UFixedToDouble(src.Uint(kFormatD, i), fbits, round); |
+ dst.SetFloat<double>(i, result); |
+ } |
+ } |
+ return dst; |
+} |
+ |
+#endif // USE_SIMULATOR |
+ |
+} // namespace internal |
+} // namespace v8 |
+ |
+#endif // V8_TARGET_ARCH_ARM64 |