Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(144)

Unified Diff: third_party/WebKit/LayoutTests/webaudio/BiquadFilter/biquad-automation.html

Issue 2895963003: Apply layout-test-tidy to LayoutTests/webaudio (Closed)
Patch Set: Created 3 years, 7 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: third_party/WebKit/LayoutTests/webaudio/BiquadFilter/biquad-automation.html
diff --git a/third_party/WebKit/LayoutTests/webaudio/BiquadFilter/biquad-automation.html b/third_party/WebKit/LayoutTests/webaudio/BiquadFilter/biquad-automation.html
index ff0eb2860a0da56d02b7e95fa613288b24fdee44..d8ae87131bba0569b211da314c2fe4dc205c7c68 100644
--- a/third_party/WebKit/LayoutTests/webaudio/BiquadFilter/biquad-automation.html
+++ b/third_party/WebKit/LayoutTests/webaudio/BiquadFilter/biquad-automation.html
@@ -1,125 +1,135 @@
-<!doctype html>
+<!DOCTYPE html>
<html>
<head>
- <title>Biquad Automation Test</title>
+ <title>
+ Biquad Automation Test
+ </title>
<script src="../../resources/testharness.js"></script>
- <script src="../../resources/testharnessreport.js"></script>
+ <script src="../../resources/testharnessreport.js"></script>
<script src="../resources/audit-util.js"></script>
<script src="../resources/audit.js"></script>
<script src="../resources/biquad-filters.js"></script>
<script src="../resources/audioparam-testing.js"></script>
</head>
<body>
- <script>
-
-
- // Don't need to run these tests at high sampling rate, so just use a low one to reduce memory
- // usage and complexity.
- var sampleRate = 16000;
+ <script id="layout-test-code">
+ // Don't need to run these tests at high sampling rate, so just use a low
+ // one to reduce memory usage and complexity.
+ let sampleRate = 16000;
// How long to render for each test.
- var renderDuration = 0.25;
+ let renderDuration = 0.25;
// Where to end the automations. Fairly arbitrary, but must end before
// the renderDuration.
- var automationEndTime = renderDuration / 2;
+ let automationEndTime = renderDuration / 2;
- var audit = Audit.createTaskRunner();
+ let audit = Audit.createTaskRunner();
// The definition of the linear ramp automation function.
function linearRamp(t, v0, v1, t0, t1) {
return v0 + (v1 - v0) * (t - t0) / (t1 - t0);
}
- // Generate the filter coefficients for the specified filter using the given parameters for
- // the given duration. |filterTypeFunction| is a function that returns the filter
- // coefficients for one set of parameters. |parameters| is a property bag that contains the
- // start and end values (as an array) for each of the biquad attributes. The properties are
- // |freq|, |Q|, |gain|, and |detune|. |duration| is the number of seconds for which the
- // coefficients are generated.
+ // Generate the filter coefficients for the specified filter using the
+ // given parameters for the given duration. |filterTypeFunction| is a
+ // function that returns the filter coefficients for one set of
+ // parameters. |parameters| is a property bag that contains the start and
+ // end values (as an array) for each of the biquad attributes. The
+ // properties are |freq|, |Q|, |gain|, and |detune|. |duration| is the
+ // number of seconds for which the coefficients are generated.
//
- // A property bag with properties |b0|, |b1|, |b2|, |a1|, |a2|. Each propery is an array
- // consisting of the coefficients for the time-varying biquad filter.
- function generateFilterCoefficients(filterTypeFunction, parameters, duration) {
- var renderEndFrame = Math.ceil(renderDuration * sampleRate);
- var endFrame = Math.ceil(duration * sampleRate);
- var nCoef = renderEndFrame;
- var b0 = new Float64Array(nCoef);
- var b1 = new Float64Array(nCoef);
- var b2 = new Float64Array(nCoef);
- var a1 = new Float64Array(nCoef);
- var a2 = new Float64Array(nCoef);
-
- var k = 0;
- // If the property is not given, use the defaults.
- var freqs = parameters.freq || [350, 350];
- var qs = parameters.Q || [1, 1];
- var gains = parameters.gain || [0, 0];
- var detunes = parameters.detune || [0, 0];
-
- for (var frame = 0; frame <= endFrame; ++frame) {
- // Apply linear ramp at frame |frame|.
- var f = linearRamp(frame / sampleRate, freqs[0], freqs[1], 0, duration);
- var q = linearRamp(frame / sampleRate, qs[0], qs[1], 0, duration);
- var g = linearRamp(frame / sampleRate, gains[0], gains[1], 0, duration);
- var d = linearRamp(frame / sampleRate, detunes[0], detunes[1], 0, duration);
-
- // Compute actual frequency parameter
- f = f * Math.pow(2, d / 1200);
-
- // Compute filter coefficients
- var coef = filterTypeFunction(f / (sampleRate / 2), q, g);
- b0[k] = coef.b0;
- b1[k] = coef.b1;
- b2[k] = coef.b2;
- a1[k] = coef.a1;
- a2[k] = coef.a2;
- ++k;
- }
-
- // Fill the rest of the arrays with the constant value to the end of
- // the rendering duration.
- b0.fill(b0[endFrame], endFrame + 1);
- b1.fill(b1[endFrame], endFrame + 1);
- b2.fill(b2[endFrame], endFrame + 1);
- a1.fill(a1[endFrame], endFrame + 1);
- a2.fill(a2[endFrame], endFrame + 1);
-
- return {b0: b0, b1: b1, b2: b2, a1: a1, a2: a2};
+ // A property bag with properties |b0|, |b1|, |b2|, |a1|, |a2|. Each
+ // propery is an array consisting of the coefficients for the time-varying
+ // biquad filter.
+ function generateFilterCoefficients(
+ filterTypeFunction, parameters, duration) {
+ let renderEndFrame = Math.ceil(renderDuration * sampleRate);
+ let endFrame = Math.ceil(duration * sampleRate);
+ let nCoef = renderEndFrame;
+ let b0 = new Float64Array(nCoef);
+ let b1 = new Float64Array(nCoef);
+ let b2 = new Float64Array(nCoef);
+ let a1 = new Float64Array(nCoef);
+ let a2 = new Float64Array(nCoef);
+
+ let k = 0;
+ // If the property is not given, use the defaults.
+ let freqs = parameters.freq || [350, 350];
+ let qs = parameters.Q || [1, 1];
+ let gains = parameters.gain || [0, 0];
+ let detunes = parameters.detune || [0, 0];
+
+ for (let frame = 0; frame <= endFrame; ++frame) {
+ // Apply linear ramp at frame |frame|.
+ let f =
+ linearRamp(frame / sampleRate, freqs[0], freqs[1], 0, duration);
+ let q = linearRamp(frame / sampleRate, qs[0], qs[1], 0, duration);
+ let g =
+ linearRamp(frame / sampleRate, gains[0], gains[1], 0, duration);
+ let d = linearRamp(
+ frame / sampleRate, detunes[0], detunes[1], 0, duration);
+
+ // Compute actual frequency parameter
+ f = f * Math.pow(2, d / 1200);
+
+ // Compute filter coefficients
+ let coef = filterTypeFunction(f / (sampleRate / 2), q, g);
+ b0[k] = coef.b0;
+ b1[k] = coef.b1;
+ b2[k] = coef.b2;
+ a1[k] = coef.a1;
+ a2[k] = coef.a2;
+ ++k;
+ }
+
+ // Fill the rest of the arrays with the constant value to the end of
+ // the rendering duration.
+ b0.fill(b0[endFrame], endFrame + 1);
+ b1.fill(b1[endFrame], endFrame + 1);
+ b2.fill(b2[endFrame], endFrame + 1);
+ a1.fill(a1[endFrame], endFrame + 1);
+ a2.fill(a2[endFrame], endFrame + 1);
+
+ return {b0: b0, b1: b1, b2: b2, a1: a1, a2: a2};
}
- // Apply the given time-varying biquad filter to the given signal, |signal|. |coef| should be
- // the time-varying coefficients of the filter, as returned by |generateFilterCoefficients|.
+ // Apply the given time-varying biquad filter to the given signal,
+ // |signal|. |coef| should be the time-varying coefficients of the
+ // filter, as returned by |generateFilterCoefficients|.
function timeVaryingFilter(signal, coef) {
- var length = signal.length;
+ let length = signal.length;
// Use double precision for the internal computations.
- var y = new Float64Array(length);
+ let y = new Float64Array(length);
// Prime the pump. (Assumes the signal has length >= 2!)
y[0] = coef.b0[0] * signal[0];
- y[1] = coef.b0[1] * signal[1] + coef.b1[1] * signal[0] - coef.a1[1] * y[0];
+ y[1] =
+ coef.b0[1] * signal[1] + coef.b1[1] * signal[0] - coef.a1[1] * y[0];
- for (var n = 2; n < length; ++n) {
- y[n] = coef.b0[n] * signal[n] + coef.b1[n] * signal[n-1] + coef.b2[n] * signal[n-2];
- y[n] -= coef.a1[n] * y[n-1] + coef.a2[n] * y[n-2];
+ for (let n = 2; n < length; ++n) {
+ y[n] = coef.b0[n] * signal[n] + coef.b1[n] * signal[n - 1] +
+ coef.b2[n] * signal[n - 2];
+ y[n] -= coef.a1[n] * y[n - 1] + coef.a2[n] * y[n - 2];
}
// But convert the result to single precision for comparison.
return y.map(Math.fround);
}
- // Configure the audio graph using |context|. Returns the biquad filter node and the
- // AudioBuffer used for the source.
+ // Configure the audio graph using |context|. Returns the biquad filter
+ // node and the AudioBuffer used for the source.
function configureGraph(context, toneFrequency) {
// The source is just a simple sine wave.
- var src = context.createBufferSource();
- var b = context.createBuffer(1, renderDuration * sampleRate, sampleRate);
- var data = b.getChannelData(0);
- var omega = 2 * Math.PI * toneFrequency / sampleRate;
- for (var k = 0; k < data.length; ++k) {
+ let src = context.createBufferSource();
+ let b =
+ context.createBuffer(1, renderDuration * sampleRate, sampleRate);
+ let data = b.getChannelData(0);
+ let omega = 2 * Math.PI * toneFrequency / sampleRate;
+ for (let k = 0; k < data.length; ++k) {
data[k] = Math.sin(omega * k);
}
src.buffer = b;
- var f = context.createBiquadFilter();
+ let f = context.createBiquadFilter();
src.connect(f);
f.connect(context.destination);
@@ -128,10 +138,12 @@
return {filter: f, source: b};
}
- function createFilterVerifier(should, filterCreator, threshold, parameters, input, message) {
- return function (resultBuffer) {
- var actual = resultBuffer.getChannelData(0);
- var coefs = generateFilterCoefficients(filterCreator, parameters, automationEndTime);
+ function createFilterVerifier(
+ should, filterCreator, threshold, parameters, input, message) {
+ return function(resultBuffer) {
+ let actual = resultBuffer.getChannelData(0);
+ let coefs = generateFilterCoefficients(
+ filterCreator, parameters, automationEndTime);
reference = timeVaryingFilter(input, coefs);
@@ -141,13 +153,16 @@
};
}
- // Automate just the frequency parameter. A bandpass filter is used where the center
- // frequency is swept across the source (which is a simple tone).
- audit.define("automate-freq", (task, should) => {
- var context = new OfflineAudioContext(1, renderDuration * sampleRate, sampleRate);
+ // Automate just the frequency parameter. A bandpass filter is used where
+ // the center frequency is swept across the source (which is a simple
+ // tone).
+ audit.define('automate-freq', (task, should) => {
+ let context =
+ new OfflineAudioContext(1, renderDuration * sampleRate, sampleRate);
- // Center frequency of bandpass filter and also the frequency of the test tone.
- var centerFreq = 10*440;
+ // Center frequency of bandpass filter and also the frequency of the
+ // test tone.
+ let centerFreq = 10 * 440;
// Sweep the frequency +/- 5*440 Hz from the center. This should cause
// the output to be low at the beginning and end of the test where the
@@ -155,217 +170,234 @@
// of the automation time where the tone is near the center of the pass
// band. Make sure the frequency sweep stays inside the Nyquist
// frequency.
- var parameters = {
- freq: [centerFreq - 5*440, centerFreq + 5*440]
- };
- var graph = configureGraph(context, centerFreq);
- var f = graph.filter;
- var b = graph.source;
+ let parameters = {freq: [centerFreq - 5 * 440, centerFreq + 5 * 440]};
+ let graph = configureGraph(context, centerFreq);
+ let f = graph.filter;
+ let b = graph.source;
- f.type = "bandpass";
+ f.type = 'bandpass';
f.frequency.setValueAtTime(parameters.freq[0], 0);
- f.frequency.linearRampToValueAtTime(parameters.freq[1], automationEndTime);
+ f.frequency.linearRampToValueAtTime(
+ parameters.freq[1], automationEndTime);
context.startRendering()
- .then(createFilterVerifier(should, createBandpassFilter, 4.6455e-6,
- parameters, b.getChannelData(0),
- "Output of bandpass filter with frequency automation"))
- .then(() => task.done());
+ .then(createFilterVerifier(
+ should, createBandpassFilter, 4.6455e-6, parameters,
+ b.getChannelData(0),
+ 'Output of bandpass filter with frequency automation'))
+ .then(() => task.done());
});
- // Automate just the Q parameter. A bandpass filter is used where the Q of the filter is
- // swept.
- audit.define("automate-q", (task, should) => {
- var context = new OfflineAudioContext(1, renderDuration * sampleRate, sampleRate);
+ // Automate just the Q parameter. A bandpass filter is used where the Q
+ // of the filter is swept.
+ audit.define('automate-q', (task, should) => {
+ let context =
+ new OfflineAudioContext(1, renderDuration * sampleRate, sampleRate);
// The frequency of the test tone.
- var centerFreq = 440;
+ let centerFreq = 440;
- // Sweep the Q paramter between 1 and 200. This will cause the output of the filter to pass
- // most of the tone at the beginning to passing less of the tone at the end. This is
- // because we set center frequency of the bandpass filter to be slightly off from the actual
- // tone.
- var parameters = {
+ // Sweep the Q paramter between 1 and 200. This will cause the output
+ // of the filter to pass most of the tone at the beginning to passing
+ // less of the tone at the end. This is because we set center frequency
+ // of the bandpass filter to be slightly off from the actual tone.
+ let parameters = {
Q: [1, 200],
- // Center frequency of the bandpass filter is just 25 Hz above the tone frequency.
+ // Center frequency of the bandpass filter is just 25 Hz above the
+ // tone frequency.
freq: [centerFreq + 25, centerFreq + 25]
};
- var graph = configureGraph(context, centerFreq);
- var f = graph.filter;
- var b = graph.source;
+ let graph = configureGraph(context, centerFreq);
+ let f = graph.filter;
+ let b = graph.source;
- f.type = "bandpass";
+ f.type = 'bandpass';
f.frequency.value = parameters.freq[0];
f.Q.setValueAtTime(parameters.Q[0], 0);
f.Q.linearRampToValueAtTime(parameters.Q[1], automationEndTime);
context.startRendering()
- .then(createFilterVerifier(should, createBandpassFilter, 9.8348e-7,
- parameters, b.getChannelData(0),
- "Output of bandpass filter with Q automation"))
- .then(() => task.done());
+ .then(createFilterVerifier(
+ should, createBandpassFilter, 9.8348e-7, parameters,
+ b.getChannelData(0),
+ 'Output of bandpass filter with Q automation'))
+ .then(() => task.done());
});
- // Automate just the gain of the lowshelf filter. A test tone will be in the lowshelf part of
- // the filter. The output will vary as the gain of the lowshelf is changed.
- audit.define("automate-gain", (task, should) => {
- var context = new OfflineAudioContext(1, renderDuration * sampleRate, sampleRate);
+ // Automate just the gain of the lowshelf filter. A test tone will be in
+ // the lowshelf part of the filter. The output will vary as the gain of
+ // the lowshelf is changed.
+ audit.define('automate-gain', (task, should) => {
+ let context =
+ new OfflineAudioContext(1, renderDuration * sampleRate, sampleRate);
// Frequency of the test tone.
- var centerFreq = 440;
-
- // Set the cutoff frequency of the lowshelf to be significantly higher than the test tone.
- // Sweep the gain from 20 dB to -20 dB. (We go from 20 to -20 to easily verify that the
- // filter didn't go unstable.)
- var parameters = {
- freq: [3500, 3500],
- gain: [20, -20]
- };
- var graph = configureGraph(context, centerFreq);
- var f = graph.filter;
- var b = graph.source;
+ let centerFreq = 440;
- f.type = "lowshelf";
+ // Set the cutoff frequency of the lowshelf to be significantly higher
+ // than the test tone. Sweep the gain from 20 dB to -20 dB. (We go from
+ // 20 to -20 to easily verify that the filter didn't go unstable.)
+ let parameters = {freq: [3500, 3500], gain: [20, -20]};
+ let graph = configureGraph(context, centerFreq);
+ let f = graph.filter;
+ let b = graph.source;
+
+ f.type = 'lowshelf';
f.frequency.value = parameters.freq[0];
f.gain.setValueAtTime(parameters.gain[0], 0);
f.gain.linearRampToValueAtTime(parameters.gain[1], automationEndTime);
context.startRendering()
- .then(createFilterVerifier(should, createLowShelfFilter, 2.7657e-5,
- parameters, b.getChannelData(0),
- "Output of lowshelf filter with gain automation"))
- .then(() => task.done());
+ .then(createFilterVerifier(
+ should, createLowShelfFilter, 2.7657e-5, parameters,
+ b.getChannelData(0),
+ 'Output of lowshelf filter with gain automation'))
+ .then(() => task.done());
});
- // Automate just the detune parameter. Basically the same test as for the frequncy parameter
- // but we just use the detune parameter to modulate the frequency parameter.
- audit.define("automate-detune", (task, should) => {
- var context = new OfflineAudioContext(1, renderDuration * sampleRate, sampleRate);
- var centerFreq = 10*440;
- var parameters = {
+ // Automate just the detune parameter. Basically the same test as for the
+ // frequncy parameter but we just use the detune parameter to modulate the
+ // frequency parameter.
+ audit.define('automate-detune', (task, should) => {
+ let context =
+ new OfflineAudioContext(1, renderDuration * sampleRate, sampleRate);
+ let centerFreq = 10 * 440;
+ let parameters = {
freq: [centerFreq, centerFreq],
- detune: [-10*1200, 10*1200]
+ detune: [-10 * 1200, 10 * 1200]
};
- var graph = configureGraph(context, centerFreq);
- var f = graph.filter;
- var b = graph.source;
+ let graph = configureGraph(context, centerFreq);
+ let f = graph.filter;
+ let b = graph.source;
- f.type = "bandpass";
+ f.type = 'bandpass';
f.frequency.value = parameters.freq[0];
f.detune.setValueAtTime(parameters.detune[0], 0);
- f.detune.linearRampToValueAtTime(parameters.detune[1], automationEndTime);
+ f.detune.linearRampToValueAtTime(
+ parameters.detune[1], automationEndTime);
context.startRendering()
- .then(createFilterVerifier(should, createBandpassFilter, 3.1471e-5,
- parameters, b.getChannelData(0),
- "Output of bandpass filter with detune automation"))
- .then(() => task.done());
+ .then(createFilterVerifier(
+ should, createBandpassFilter, 3.1471e-5, parameters,
+ b.getChannelData(0),
+ 'Output of bandpass filter with detune automation'))
+ .then(() => task.done());
});
- // Automate all of the filter parameters at once. This is a basic check that everything is
- // working. A peaking filter is used because it uses all of the parameters.
- audit.define("automate-all", (task, should) => {
- var context = new OfflineAudioContext(1, renderDuration * sampleRate, sampleRate);
- var graph = configureGraph(context, 10*440);
- var f = graph.filter;
- var b = graph.source;
+ // Automate all of the filter parameters at once. This is a basic check
+ // that everything is working. A peaking filter is used because it uses
+ // all of the parameters.
+ audit.define('automate-all', (task, should) => {
+ let context =
+ new OfflineAudioContext(1, renderDuration * sampleRate, sampleRate);
+ let graph = configureGraph(context, 10 * 440);
+ let f = graph.filter;
+ let b = graph.source;
// Sweep all of the filter parameters. These are pretty much arbitrary.
- var parameters = {
+ let parameters = {
freq: [8000, 100],
Q: [f.Q.value, .0001],
gain: [f.gain.value, 20],
detune: [2400, -2400]
};
- f.type = "peaking";
- // Set starting points for all parameters of the filter. Start at 10 kHz for the center
- // frequency, and the defaults for Q and gain.
+ f.type = 'peaking';
+ // Set starting points for all parameters of the filter. Start at 10
+ // kHz for the center frequency, and the defaults for Q and gain.
f.frequency.setValueAtTime(parameters.freq[0], 0);
f.Q.setValueAtTime(parameters.Q[0], 0);
f.gain.setValueAtTime(parameters.gain[0], 0);
f.detune.setValueAtTime(parameters.detune[0], 0);
// Linear ramp each parameter
- f.frequency.linearRampToValueAtTime(parameters.freq[1], automationEndTime);
+ f.frequency.linearRampToValueAtTime(
+ parameters.freq[1], automationEndTime);
f.Q.linearRampToValueAtTime(parameters.Q[1], automationEndTime);
f.gain.linearRampToValueAtTime(parameters.gain[1], automationEndTime);
- f.detune.linearRampToValueAtTime(parameters.detune[1], automationEndTime);
+ f.detune.linearRampToValueAtTime(
+ parameters.detune[1], automationEndTime);
context.startRendering()
- .then(createFilterVerifier(should, createPeakingFilter, 6.2907e-4,
- parameters, b.getChannelData(0),
- "Output of peaking filter with automation of all parameters"))
- .then(() => task.done());
+ .then(createFilterVerifier(
+ should, createPeakingFilter, 6.2907e-4, parameters,
+ b.getChannelData(0),
+ 'Output of peaking filter with automation of all parameters'))
+ .then(() => task.done());
});
- // Test that modulation of the frequency parameter of the filter works. A sinusoid of 440 Hz
- // is the test signal that is applied to a bandpass biquad filter. The frequency parameter of
- // the filter is modulated by a sinusoid at 103 Hz, and the frequency modulation varies from
- // 116 to 412 Hz. (This test was taken from the description in
+ // Test that modulation of the frequency parameter of the filter works. A
+ // sinusoid of 440 Hz is the test signal that is applied to a bandpass
+ // biquad filter. The frequency parameter of the filter is modulated by a
+ // sinusoid at 103 Hz, and the frequency modulation varies from 116 to 412
+ // Hz. (This test was taken from the description in
// https://github.com/WebAudio/web-audio-api/issues/509#issuecomment-94731355)
- audit.define("modulation", (task, should) => {
- var context = new OfflineAudioContext(1, renderDuration * sampleRate, sampleRate);
+ audit.define('modulation', (task, should) => {
+ let context =
+ new OfflineAudioContext(1, renderDuration * sampleRate, sampleRate);
- // Create a graph with the sinusoidal source at 440 Hz as the input to a biquad filter.
- var graph = configureGraph(context, 440);
- var f = graph.filter;
- var b = graph.source;
+ // Create a graph with the sinusoidal source at 440 Hz as the input to a
+ // biquad filter.
+ let graph = configureGraph(context, 440);
+ let f = graph.filter;
+ let b = graph.source;
- f.type = "bandpass";
+ f.type = 'bandpass';
f.Q.value = 5;
f.frequency.value = 264;
- // Create the modulation source, a sinusoid with frequency 103 Hz and amplitude 148. (The
- // amplitude of 148 is added to the filter's frequency value of 264 to produce a sinusoidal
- // modulation of the frequency parameter from 116 to 412 Hz.)
- var mod = context.createBufferSource();
- var mbuffer = context.createBuffer(1, renderDuration * sampleRate, sampleRate);
- var d = mbuffer.getChannelData(0);
- var omega = 2 * Math.PI * 103 / sampleRate;
- for (var k = 0; k < d.length; ++k) {
+ // Create the modulation source, a sinusoid with frequency 103 Hz and
+ // amplitude 148. (The amplitude of 148 is added to the filter's
+ // frequency value of 264 to produce a sinusoidal modulation of the
+ // frequency parameter from 116 to 412 Hz.)
+ let mod = context.createBufferSource();
+ let mbuffer =
+ context.createBuffer(1, renderDuration * sampleRate, sampleRate);
+ let d = mbuffer.getChannelData(0);
+ let omega = 2 * Math.PI * 103 / sampleRate;
+ for (let k = 0; k < d.length; ++k) {
d[k] = 148 * Math.sin(omega * k);
}
mod.buffer = mbuffer;
mod.connect(f.frequency);
-
+
mod.start();
context.startRendering()
- .then(function (resultBuffer) {
- var actual = resultBuffer.getChannelData(0);
- // Compute the filter coefficients using the mod sine wave
-
- var endFrame = Math.ceil(renderDuration * sampleRate);
- var nCoef = endFrame;
- var b0 = new Float64Array(nCoef);
- var b1 = new Float64Array(nCoef);
- var b2 = new Float64Array(nCoef);
- var a1 = new Float64Array(nCoef);
- var a2 = new Float64Array(nCoef);
-
- // Generate the filter coefficients when the frequency varies from 116 to 248 Hz using
- // the 103 Hz sinusoid.
- for (var k = 0; k < nCoef; ++k) {
- var freq = f.frequency.value + d[k];
- var c = createBandpassFilter(freq / (sampleRate / 2), f.Q.value, f.gain.value);
- b0[k] = c.b0;
- b1[k] = c.b1;
- b2[k] = c.b2;
- a1[k] = c.a1;
- a2[k] = c.a2;
- }
- reference = timeVaryingFilter(b.getChannelData(0),
- {b0: b0, b1: b1, b2: b2, a1: a1, a2: a2});
-
- should(actual,
- "Output of bandpass filter with sinusoidal modulation of bandpass center frequency"
- )
- .beCloseToArray(reference, {
- absoluteThreshold: 3.9787e-5
- });
- })
- .then(() => task.done());
+ .then(function(resultBuffer) {
+ let actual = resultBuffer.getChannelData(0);
+ // Compute the filter coefficients using the mod sine wave
+
+ let endFrame = Math.ceil(renderDuration * sampleRate);
+ let nCoef = endFrame;
+ let b0 = new Float64Array(nCoef);
+ let b1 = new Float64Array(nCoef);
+ let b2 = new Float64Array(nCoef);
+ let a1 = new Float64Array(nCoef);
+ let a2 = new Float64Array(nCoef);
+
+ // Generate the filter coefficients when the frequency varies from
+ // 116 to 248 Hz using the 103 Hz sinusoid.
+ for (let k = 0; k < nCoef; ++k) {
+ let freq = f.frequency.value + d[k];
+ let c = createBandpassFilter(
+ freq / (sampleRate / 2), f.Q.value, f.gain.value);
+ b0[k] = c.b0;
+ b1[k] = c.b1;
+ b2[k] = c.b2;
+ a1[k] = c.a1;
+ a2[k] = c.a2;
+ }
+ reference = timeVaryingFilter(
+ b.getChannelData(0),
+ {b0: b0, b1: b1, b2: b2, a1: a1, a2: a2});
+
+ should(
+ actual,
+ 'Output of bandpass filter with sinusoidal modulation of bandpass center frequency')
+ .beCloseToArray(reference, {absoluteThreshold: 3.9787e-5});
+ })
+ .then(() => task.done());
});
audit.run();

Powered by Google App Engine
This is Rietveld 408576698