OLD | NEW |
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. | 1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
4 | 4 |
5 #ifndef UI_GFX_COLOR_ANALYSIS_H_ | 5 #ifndef UI_GFX_COLOR_ANALYSIS_H_ |
6 #define UI_GFX_COLOR_ANALYSIS_H_ | 6 #define UI_GFX_COLOR_ANALYSIS_H_ |
7 | 7 |
8 #include "base/basictypes.h" | 8 #include "base/basictypes.h" |
9 #include "base/compiler_specific.h" | 9 #include "base/compiler_specific.h" |
10 #include "base/memory/ref_counted.h" | 10 #include "base/memory/ref_counted.h" |
11 #include "base/memory/ref_counted_memory.h" | 11 #include "base/memory/ref_counted_memory.h" |
12 #include "third_party/skia/include/core/SkColor.h" | 12 #include "third_party/skia/include/core/SkColor.h" |
13 #include "ui/gfx/gfx_export.h" | 13 #include "ui/gfx/gfx_export.h" |
14 #include "ui/gfx/matrix3_f.h" | 14 #include "ui/gfx/matrix3_f.h" |
15 | 15 |
16 class SkBitmap; | 16 class SkBitmap; |
17 | 17 |
18 namespace color_utils { | 18 namespace color_utils { |
19 | 19 |
| 20 struct HSL; |
| 21 |
20 // This class exposes the sampling method to the caller, which allows | 22 // This class exposes the sampling method to the caller, which allows |
21 // stubbing out for things like unit tests. Might be useful to pass more | 23 // stubbing out for things like unit tests. Might be useful to pass more |
22 // arguments into the GetSample method in the future (such as which | 24 // arguments into the GetSample method in the future (such as which |
23 // cluster is being worked on, etc.). | 25 // cluster is being worked on, etc.). |
24 // | 26 // |
25 // Note: Samplers should be deterministic, as the same image may be analyzed | 27 // Note: Samplers should be deterministic, as the same image may be analyzed |
26 // twice with two sampler instances and the results displayed side-by-side | 28 // twice with two sampler instances and the results displayed side-by-side |
27 // to the user. | 29 // to the user. |
28 class GFX_EXPORT KMeanImageSampler { | 30 class GFX_EXPORT KMeanImageSampler { |
29 public: | 31 public: |
(...skipping 19 matching lines...) Expand all Loading... |
49 | 51 |
50 // Returns the color in an ARGB |image| that is closest in RGB-space to the | 52 // Returns the color in an ARGB |image| that is closest in RGB-space to the |
51 // provided |color|. Exported for testing. | 53 // provided |color|. Exported for testing. |
52 GFX_EXPORT SkColor FindClosestColor(const uint8_t* image, int width, int height, | 54 GFX_EXPORT SkColor FindClosestColor(const uint8_t* image, int width, int height, |
53 SkColor color); | 55 SkColor color); |
54 | 56 |
55 // Returns an SkColor that represents the calculated dominant color in the | 57 // Returns an SkColor that represents the calculated dominant color in the |
56 // image. This uses a KMean clustering algorithm to find clusters of pixel | 58 // image. This uses a KMean clustering algorithm to find clusters of pixel |
57 // colors in RGB space. | 59 // colors in RGB space. |
58 // |png|/|bitmap| represents the data of a png/bitmap encoded image. | 60 // |png|/|bitmap| represents the data of a png/bitmap encoded image. |
59 // |darkness_limit| represents the minimum sum of the RGB components that is | 61 // |lower_bound| represents the minimum bound of HSL values to allow. |
60 // acceptable as a color choice. This can be from 0 to 765. | 62 // |upper_bound| represents the maximum bound of HSL values to allow. |
61 // |brightness_limit| represents the maximum sum of the RGB components that is | 63 // See color_utils::IsWithinHSLRange() for description of these bounds. |
62 // acceptable as a color choice. This can be from 0 to 765. | |
63 // | 64 // |
64 // RGB KMean Algorithm (N clusters, M iterations): | 65 // RGB KMean Algorithm (N clusters, M iterations): |
65 // 1.Pick N starting colors by randomly sampling the pixels. If you see a | 66 // 1.Pick N starting colors by randomly sampling the pixels. If you see a |
66 // color you already saw keep sampling. After a certain number of tries | 67 // color you already saw keep sampling. After a certain number of tries |
67 // just remove the cluster and continue with N = N-1 clusters (for an image | 68 // just remove the cluster and continue with N = N-1 clusters (for an image |
68 // with just one color this should devolve to N=1). These colors are the | 69 // with just one color this should devolve to N=1). These colors are the |
69 // centers of your N clusters. | 70 // centers of your N clusters. |
70 // 2.For each pixel in the image find the cluster that it is closest to in RGB | 71 // 2.For each pixel in the image find the cluster that it is closest to in RGB |
71 // space. Add that pixel's color to that cluster (we keep a sum and a count | 72 // space. Add that pixel's color to that cluster (we keep a sum and a count |
72 // of all of the pixels added to the space, so just add it to the sum and | 73 // of all of the pixels added to the space, so just add it to the sum and |
73 // increment count). | 74 // increment count). |
74 // 3.Calculate the new cluster centroids by getting the average color of all of | 75 // 3.Calculate the new cluster centroids by getting the average color of all of |
75 // the pixels in each cluster (dividing the sum by the count). | 76 // the pixels in each cluster (dividing the sum by the count). |
76 // 4.See if the new centroids are the same as the old centroids. | 77 // 4.See if the new centroids are the same as the old centroids. |
77 // a) If this is the case for all N clusters than we have converged and | 78 // a) If this is the case for all N clusters than we have converged and |
78 // can move on. | 79 // can move on. |
79 // b) If any centroid moved, repeat step 2 with the new centroids for up | 80 // b) If any centroid moved, repeat step 2 with the new centroids for up |
80 // to M iterations. | 81 // to M iterations. |
81 // 5.Once the clusters have converged or M iterations have been tried, sort | 82 // 5.Once the clusters have converged or M iterations have been tried, sort |
82 // the clusters by weight (where weight is the number of pixels that make up | 83 // the clusters by weight (where weight is the number of pixels that make up |
83 // this cluster). | 84 // this cluster). |
84 // 6.Going through the sorted list of clusters, pick the first cluster with the | 85 // 6.Going through the sorted list of clusters, pick the first cluster with the |
85 // largest weight that's centroid fulfills the equation | 86 // largest weight that's centroid falls between |lower_bound| and |
86 // |darkness_limit| < SUM(R, G, B) < |brightness_limit|. Return that color. | 87 // |upper_bound|. Return that color. |
87 // If no color fulfills that requirement return the color with the largest | 88 // If no color fulfills that requirement return the color with the largest |
88 // weight regardless of whether or not it fulfills the equation above. | 89 // weight regardless of whether or not it fulfills the equation above. |
89 // | 90 GFX_EXPORT SkColor |
90 // Note: Switching to HSV space did not improve the results of this algorithm | 91 CalculateKMeanColorOfPNG(scoped_refptr<base::RefCountedMemory> png, |
91 // for typical favicon images. | 92 const HSL& lower_bound, |
92 GFX_EXPORT SkColor CalculateKMeanColorOfPNG( | 93 const HSL& upper_bound, |
93 scoped_refptr<base::RefCountedMemory> png, | 94 KMeanImageSampler* sampler); |
94 uint32_t darkness_limit, | |
95 uint32_t brightness_limit, | |
96 KMeanImageSampler* sampler); | |
97 // Computes a dominant color using the above algorithm and reasonable defaults | 95 // Computes a dominant color using the above algorithm and reasonable defaults |
98 // for |darkness_limit|, |brightness_limit| and |sampler|. | 96 // for |lower_bound|, |upper_bound| and |sampler|. |
99 GFX_EXPORT SkColor CalculateKMeanColorOfPNG( | 97 GFX_EXPORT SkColor CalculateKMeanColorOfPNG( |
100 scoped_refptr<base::RefCountedMemory> png); | 98 scoped_refptr<base::RefCountedMemory> png); |
101 | 99 |
102 // Returns an SkColor that represents the calculated dominant color in the | 100 // Returns an SkColor that represents the calculated dominant color in the |
103 // image. See CalculateKMeanColorOfPNG() for details. | 101 // image. See CalculateKMeanColorOfPNG() for details. |
104 GFX_EXPORT SkColor CalculateKMeanColorOfBitmap(const SkBitmap& bitmap, | 102 GFX_EXPORT SkColor CalculateKMeanColorOfBitmap(const SkBitmap& bitmap, |
105 uint32_t darkness_limit, | 103 const HSL& lower_bound, |
106 uint32_t brightness_limit, | 104 const HSL& upper_bound, |
107 KMeanImageSampler* sampler); | 105 KMeanImageSampler* sampler); |
108 // Computes a dominant color using the above algorithm and reasonable defaults | 106 // Computes a dominant color using the above algorithm and reasonable defaults |
109 // for |darkness_limit|, |brightness_limit| and |sampler|. | 107 // for |lower_bound|, |upper_bound| and |sampler|. |
110 GFX_EXPORT SkColor CalculateKMeanColorOfBitmap(const SkBitmap& bitmap); | 108 GFX_EXPORT SkColor CalculateKMeanColorOfBitmap(const SkBitmap& bitmap); |
111 | 109 |
112 // Compute color covariance matrix for the input bitmap. | 110 // Compute color covariance matrix for the input bitmap. |
113 GFX_EXPORT gfx::Matrix3F ComputeColorCovariance(const SkBitmap& bitmap); | 111 GFX_EXPORT gfx::Matrix3F ComputeColorCovariance(const SkBitmap& bitmap); |
114 | 112 |
115 // Apply a color reduction transform defined by |color_transform| vector to | 113 // Apply a color reduction transform defined by |color_transform| vector to |
116 // |source_bitmap|. The result is put into |target_bitmap|, which is expected | 114 // |source_bitmap|. The result is put into |target_bitmap|, which is expected |
117 // to be initialized to the required size and type (SkBitmap::kA8_Config). | 115 // to be initialized to the required size and type (SkBitmap::kA8_Config). |
118 // If |fit_to_range|, result is transfored linearly to fit 0-0xFF range. | 116 // If |fit_to_range|, result is transfored linearly to fit 0-0xFF range. |
119 // Otherwise, data is clipped. | 117 // Otherwise, data is clipped. |
120 // Returns true if the target has been computed. | 118 // Returns true if the target has been computed. |
121 GFX_EXPORT bool ApplyColorReduction(const SkBitmap& source_bitmap, | 119 GFX_EXPORT bool ApplyColorReduction(const SkBitmap& source_bitmap, |
122 const gfx::Vector3dF& color_transform, | 120 const gfx::Vector3dF& color_transform, |
123 bool fit_to_range, | 121 bool fit_to_range, |
124 SkBitmap* target_bitmap); | 122 SkBitmap* target_bitmap); |
125 | 123 |
126 // Compute a monochrome image representing the principal color component of | 124 // Compute a monochrome image representing the principal color component of |
127 // the |source_bitmap|. The result is stored in |target_bitmap|, which must be | 125 // the |source_bitmap|. The result is stored in |target_bitmap|, which must be |
128 // initialized to the required size and type (SkBitmap::kA8_Config). | 126 // initialized to the required size and type (SkBitmap::kA8_Config). |
129 // Returns true if the conversion succeeded. Note that there might be legitimate | 127 // Returns true if the conversion succeeded. Note that there might be legitimate |
130 // reasons for the process to fail even if all input was correct. This is a | 128 // reasons for the process to fail even if all input was correct. This is a |
131 // condition the caller must be able to handle. | 129 // condition the caller must be able to handle. |
132 GFX_EXPORT bool ComputePrincipalComponentImage(const SkBitmap& source_bitmap, | 130 GFX_EXPORT bool ComputePrincipalComponentImage(const SkBitmap& source_bitmap, |
133 SkBitmap* target_bitmap); | 131 SkBitmap* target_bitmap); |
134 | 132 |
135 } // namespace color_utils | 133 } // namespace color_utils |
136 | 134 |
137 #endif // UI_GFX_COLOR_ANALYSIS_H_ | 135 #endif // UI_GFX_COLOR_ANALYSIS_H_ |
OLD | NEW |