Index: native_client_sdk/src/examples/demo/life_simd/life.c |
diff --git a/native_client_sdk/src/examples/demo/life/life.c b/native_client_sdk/src/examples/demo/life_simd/life.c |
similarity index 50% |
copy from native_client_sdk/src/examples/demo/life/life.c |
copy to native_client_sdk/src/examples/demo/life_simd/life.c |
index d9d9def3fbccf998fb2623cdab182860b2970cc3..9d55257982f89b738996c7ceda277438d693566e 100644 |
--- a/native_client_sdk/src/examples/demo/life/life.c |
+++ b/native_client_sdk/src/examples/demo/life_simd/life.c |
@@ -38,41 +38,51 @@ struct { |
int bound; |
uint8_t* cell_in; |
uint8_t* cell_out; |
+ int32_t cell_stride; |
} g_Context; |
const unsigned int kInitialRandSeed = 0xC0DE533D; |
+const int kCellAlignment = 0x10; |
+ |
+#define INLINE inline __attribute__((always_inline)) |
/* BGRA helper macro, for constructing a pixel for a BGRA buffer. */ |
#define MakeBGRA(b, g, r, a) \ |
(((a) << 24) | ((r) << 16) | ((g) << 8) | (b)) |
+/* 128 bit vector types */ |
+typedef uint8_t u8x16_t __attribute__ ((vector_size (16))); |
+ |
+/* Helper function to broadcast x across 16 element vector. */ |
+INLINE u8x16_t broadcast(uint8_t x) { |
+ u8x16_t r = {x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x}; |
+ return r; |
+} |
+ |
/* |
- * Given a count of cells in a 3x3 grid where cells are worth 1 except for |
- * the center which is worth 9, this is a color representation of how |
- * "alive" that cell is making for a more interesting representation than |
- * a binary alive or dead. |
+ * Convert a count value into a live (green) or dead color value. |
*/ |
const uint32_t kNeighborColors[] = { |
- MakeBGRA(0x00, 0x00, 0x00, 0xff), |
- MakeBGRA(0x00, 0x40, 0x00, 0xff), |
- MakeBGRA(0x00, 0x60, 0x00, 0xff), |
- MakeBGRA(0x00, 0x80, 0x00, 0xff), |
- MakeBGRA(0x00, 0xA0, 0x00, 0xff), |
- MakeBGRA(0x00, 0xC0, 0x00, 0xff), |
- MakeBGRA(0x00, 0xE0, 0x00, 0xff), |
- MakeBGRA(0x00, 0x00, 0x00, 0xff), |
- MakeBGRA(0x00, 0x40, 0x00, 0xff), |
- MakeBGRA(0x00, 0x60, 0x00, 0xff), |
- MakeBGRA(0x00, 0x80, 0x00, 0xff), |
- MakeBGRA(0x00, 0xA0, 0x00, 0xff), |
- MakeBGRA(0x00, 0xC0, 0x00, 0xff), |
- MakeBGRA(0x00, 0xE0, 0x00, 0xff), |
- MakeBGRA(0x00, 0xFF, 0x00, 0xff), |
- MakeBGRA(0x00, 0xFF, 0x00, 0xff), |
- MakeBGRA(0x00, 0xFF, 0x00, 0xff), |
- MakeBGRA(0x00, 0xFF, 0x00, 0xff), |
+ MakeBGRA(0x00, 0x00, 0x00, 0xFF), |
+ MakeBGRA(0x00, 0x00, 0x00, 0xFF), |
+ MakeBGRA(0x00, 0x00, 0x00, 0xFF), |
+ MakeBGRA(0x00, 0x00, 0x00, 0xFF), |
+ MakeBGRA(0x00, 0x00, 0x00, 0xFF), |
+ MakeBGRA(0x00, 0xFF, 0x00, 0xFF), |
+ MakeBGRA(0x00, 0xFF, 0x00, 0xFF), |
+ MakeBGRA(0x00, 0xFF, 0x00, 0xFF), |
+ MakeBGRA(0x00, 0x00, 0x00, 0xFF), |
+ MakeBGRA(0x00, 0x00, 0x00, 0xFF), |
+ MakeBGRA(0x00, 0x00, 0x00, 0xFF), |
+ MakeBGRA(0x00, 0x00, 0x00, 0xFF), |
+ MakeBGRA(0x00, 0x00, 0x00, 0xFF), |
+ MakeBGRA(0x00, 0x00, 0x00, 0xFF), |
+ MakeBGRA(0x00, 0x00, 0x00, 0xFF), |
+ MakeBGRA(0x00, 0x00, 0x00, 0xFF), |
+ MakeBGRA(0x00, 0x00, 0x00, 0xFF), |
+ MakeBGRA(0x00, 0x00, 0x00, 0xFF), |
}; |
/* |
@@ -80,21 +90,28 @@ const uint32_t kNeighborColors[] = { |
* values. The health is binary: either alive or dead. |
*/ |
const uint8_t kIsAlive[] = { |
- 0, 0, 0, 1, 0, 0, 0, 0, 0, /* Values if the center cell is dead. */ |
- 0, 0, 1, 1, 0, 0, 0, 0, 0 /* Values if the center cell is alive. */ |
+ 0, 0, 0, 0, 0, 1, 1, 1, 0, |
+ 0, 0, 0, 0, 0, 0, 0, 0, 0 |
}; |
void UpdateContext(uint32_t width, uint32_t height) { |
+ int stride = (width + kCellAlignment - 1) & ~kCellAlignment; |
if (width != g_Context.size.width || height != g_Context.size.height) { |
- size_t size = width * height; |
+ |
+ size_t size = stride * height; |
size_t index; |
free(g_Context.cell_in); |
free(g_Context.cell_out); |
/* Create a new context */ |
- g_Context.cell_in = (uint8_t*) malloc(size); |
- g_Context.cell_out = (uint8_t*) malloc(size); |
+ void* in_buffer = NULL; |
+ void* out_buffer = NULL; |
+ /* alloc buffers aligned on 16 bytes */ |
+ posix_memalign(&in_buffer, kCellAlignment, size); |
+ posix_memalign(&out_buffer, kCellAlignment, size); |
+ g_Context.cell_in = (uint8_t*) in_buffer; |
+ g_Context.cell_out = (uint8_t*) out_buffer; |
memset(g_Context.cell_out, 0, size); |
for (index = 0; index < size; index++) { |
@@ -106,6 +123,7 @@ void UpdateContext(uint32_t width, uint32_t height) { |
g_pCore->ReleaseResource(g_Context.ctx); |
g_Context.size.width = width; |
g_Context.size.height = height; |
+ g_Context.cell_stride = stride; |
g_Context.ctx = |
g_pGraphics2D->Create(PSGetInstanceId(), &g_Context.size, PP_TRUE); |
g_Context.bound = |
@@ -115,14 +133,15 @@ void UpdateContext(uint32_t width, uint32_t height) { |
void DrawCell(int32_t x, int32_t y) { |
int32_t width = g_Context.size.width; |
int32_t height = g_Context.size.height; |
+ int32_t stride = g_Context.cell_stride; |
if (!g_Context.cell_in) return; |
if (x > 0 && x < width - 1 && y > 0 && y < height - 1) { |
- g_Context.cell_in[x - 1 + y * width] = 1; |
- g_Context.cell_in[x + 1 + y * width] = 1; |
- g_Context.cell_in[x + (y - 1) * width] = 1; |
- g_Context.cell_in[x + (y + 1) * width] = 1; |
+ g_Context.cell_in[x - 1 + y * stride] = 1; |
+ g_Context.cell_in[x + 1 + y * stride] = 1; |
+ g_Context.cell_in[x + (y - 1) * stride] = 1; |
+ g_Context.cell_in[x + (y + 1) * stride] = 1; |
} |
} |
@@ -201,21 +220,25 @@ void ProcessEvent(PSEvent* event) { |
} |
-void Stir(uint32_t width, uint32_t height) { |
- int i; |
+void Stir() { |
+ int32_t width = g_Context.size.width; |
+ int32_t height = g_Context.size.height; |
+ int32_t stride = g_Context.cell_stride; |
+ int32_t i; |
if (g_Context.cell_in == NULL || g_Context.cell_out == NULL) |
return; |
for (i = 0; i < width; ++i) { |
g_Context.cell_in[i] = rand() & 1; |
- g_Context.cell_in[i + (height - 1) * width] = rand() & 1; |
+ g_Context.cell_in[i + (height - 1) * stride] = rand() & 1; |
} |
for (i = 0; i < height; ++i) { |
- g_Context.cell_in[i * width] = rand() & 1; |
- g_Context.cell_in[i * width + (width - 1)] = rand() & 1; |
+ g_Context.cell_in[i * stride] = rand() & 1; |
+ g_Context.cell_in[i * stride + (width - 1)] = rand() & 1; |
} |
} |
+ |
void Render() { |
struct PP_Size* psize = &g_Context.size; |
PP_ImageDataFormat format = PP_IMAGEDATAFORMAT_BGRA_PREMUL; |
@@ -235,29 +258,136 @@ void Render() { |
/* If we somehow have not allocated these pointers yet, skip this frame. */ |
if (!g_Context.cell_in || !g_Context.cell_out) return; |
- /* Get the stride. */ |
+ /* Get the pixel stride. */ |
g_pImageData->Describe(image, &desc); |
/* Stir up the edges to prevent the simulation from reaching steady state. */ |
- Stir(desc.size.width, desc.size.height); |
- |
- /* Do neighbor summation; apply rules, output pixel color. */ |
- for (y = 1; y < desc.size.height - 1; ++y) { |
- uint8_t *src0 = (g_Context.cell_in + (y - 1) * desc.size.width) + 1; |
- uint8_t *src1 = src0 + desc.size.width; |
- uint8_t *src2 = src1 + desc.size.width; |
- int count; |
- uint32_t color; |
- uint8_t *dst = (g_Context.cell_out + y * desc.size.width) + 1; |
- uint32_t *pixel_line = (uint32_t*) (pixels + y * desc.stride); |
+ Stir(); |
- for (x = 1; x < (desc.size.width - 1); ++x) { |
- /* Build sum, weight center by 9x. */ |
- count = src0[-1] + src0[0] + src0[1] + |
- src1[-1] + src1[0] * 9 + src1[1] + |
- src2[-1] + src2[0] + src2[1]; |
- color = kNeighborColors[count]; |
+ /* |
+ * Do neighbor summation; apply rules, output pixel color. Note that a 1 cell |
+ * wide perimeter is excluded from the simulation update; only cells from |
+ * x = 1 to x < width - 1 and y = 1 to y < height - 1 are updated. |
+ */ |
+ |
+ for (y = 1; y < g_Context.size.height - 1; ++y) { |
+ uint8_t *src0 = (g_Context.cell_in + (y - 1) * g_Context.cell_stride); |
+ uint8_t *src1 = src0 + g_Context.cell_stride; |
+ uint8_t *src2 = src1 + g_Context.cell_stride; |
+ uint8_t *dst = (g_Context.cell_out + y * g_Context.cell_stride) + 1; |
+ uint32_t *pixel_line = (uint32_t*) (pixels + y * desc.stride); |
+ const u8x16_t kOne = broadcast(1); |
+ const u8x16_t kFour = broadcast(4); |
+ const u8x16_t kEight = broadcast(8); |
+ const u8x16_t kZero255 = {0, 255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; |
+ |
+ /* Prime the src */ |
+ u8x16_t src00 = *(u8x16_t*)&src0[0]; |
+ u8x16_t src01 = *(u8x16_t*)&src0[16]; |
+ u8x16_t src10 = *(u8x16_t*)&src1[0]; |
+ u8x16_t src11 = *(u8x16_t*)&src1[16]; |
+ u8x16_t src20 = *(u8x16_t*)&src2[0]; |
+ u8x16_t src21 = *(u8x16_t*)&src2[16]; |
+ |
+ /* This inner loop is SIMD - each loop iteration will process 16 cells. */ |
+ for (x = 1; (x + 15) < (g_Context.size.width - 1); x += 16) { |
+ |
+ /* |
+ * Construct jittered source temps, using __builtin_shufflevector(..) to |
+ * extract a shifted 16 element vector from the 32 element concatenation |
+ * of two source vectors. |
+ */ |
+ u8x16_t src0j0 = src00; |
+ u8x16_t src0j1 = __builtin_shufflevector(src00, src01, |
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16); |
+ u8x16_t src0j2 = __builtin_shufflevector(src00, src01, |
+ 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17); |
+ u8x16_t src1j0 = src10; |
+ u8x16_t src1j1 = __builtin_shufflevector(src10, src11, |
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16); |
+ u8x16_t src1j2 = __builtin_shufflevector(src10, src11, |
+ 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17); |
+ u8x16_t src2j0 = src20; |
+ u8x16_t src2j1 = __builtin_shufflevector(src20, src21, |
+ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16); |
+ u8x16_t src2j2 = __builtin_shufflevector(src20, src21, |
+ 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17); |
+ |
+ /* Sum the jittered sources to construct neighbor count. */ |
+ u8x16_t count = src0j0 + src0j1 + src0j2 + |
+ src1j0 + + src1j2 + |
+ src2j0 + src2j1 + src2j2; |
+ /* Add the center cell. */ |
+ count = count + count + src1j1; |
+ /* If count > 4 and < 8, center cell will be alive in the next frame. */ |
+ u8x16_t alive1 = count > kFour; |
+ u8x16_t alive2 = count < kEight; |
+ /* Intersect the two comparisons from above. */ |
+ u8x16_t alive = alive1 & alive2; |
+ |
+ /* |
+ * At this point, alive[x] will be one of two values: |
+ * 0x00 for a dead cell |
+ * 0xFF for an alive cell. |
+ * |
+ * Next, convert alive cells to green pixel color. |
+ * Use __builtin_shufflevector(..) to construct output pixels from |
+ * concantination of alive vector and kZero255 const vector. |
+ * Indices 0..15 select the 16 cells from alive vector. |
+ * Index 16 is zero constant from kZero255 constant vector. |
+ * Index 17 is 255 constant from kZero255 constant vector. |
+ * Output pixel color values are in BGRABGRABGRABGRA order. |
+ * Since each pixel needs 4 bytes of color information, 16 cells will |
+ * need to expand to 4 seperate 16 byte pixel splats. |
+ */ |
+ u8x16_t pixel0_3 = __builtin_shufflevector(alive, kZero255, |
+ 16, 0, 16, 17, 16, 1, 16, 17, 16, 2, 16, 17, 16, 3, 16, 17); |
+ u8x16_t pixel4_7 = __builtin_shufflevector(alive, kZero255, |
+ 16, 4, 16, 17, 16, 5, 16, 17, 16, 6, 16, 17, 16, 7, 16, 17); |
+ u8x16_t pixel8_11 = __builtin_shufflevector(alive, kZero255, |
+ 16, 8, 16, 17, 16, 9, 16, 17, 16, 10, 16, 17, 16, 11, 16, 17); |
+ u8x16_t pixel12_15 = __builtin_shufflevector(alive, kZero255, |
+ 16, 12, 16, 17, 16, 13, 16, 17, 16, 14, 16, 17, 16, 15, 16, 17); |
+ |
+ /* Write 16 pixels to output pixel buffer. */ |
+ *(u8x16_t*)(pixel_line + 0) = pixel0_3; |
+ *(u8x16_t*)(pixel_line + 4) = pixel4_7; |
+ *(u8x16_t*)(pixel_line + 8) = pixel8_11; |
+ *(u8x16_t*)(pixel_line + 12) = pixel12_15; |
+ |
+ /* Convert alive mask to 1 or 0 and store in destination cell array. */ |
+ *(u8x16_t*)dst = alive & kOne; |
+ |
+ /* Increment pointers. */ |
+ pixel_line += 16; |
+ dst += 16; |
+ src0 += 16; |
+ src1 += 16; |
+ src2 += 16; |
+ |
+ /* Shift source over by 16 cells and read the next 16 cells. */ |
+ src00 = src01; |
+ src01 = *(u8x16_t*)&src0[16]; |
+ src10 = src11; |
+ src11 = *(u8x16_t*)&src1[16]; |
+ src20 = src21; |
+ src21 = *(u8x16_t*)&src2[16]; |
+ } |
+ /* |
+ * The SIMD loop above does 16 cells at a time. The loop below is the |
+ * regular version which processes one cell at a time. It is used to |
+ * finish the remainder of the scanline not handled by the SIMD loop. |
+ */ |
+ for (; x < (g_Context.size.width - 1); ++x) { |
+ /* Sum the jittered sources to construct neighbor count. */ |
+ int count = src0[0] + src0[1] + src0[2] + |
+ src1[0] + + src1[2] + |
+ src2[0] + src2[1] + src2[2]; |
+ /* Add the center cell. */ |
+ count = count + count + src1[1]; |
+ /* Use table lookup indexed by count to determine pixel & alive state. */ |
+ uint32_t color = kNeighborColors[count]; |
*pixel_line++ = color; |
*dst++ = kIsAlive[count]; |
++src0; |