| OLD | NEW |
| 1 var sampleRate = 44100; | 1 (function(global) { |
| 2 | 2 |
| 3 // Information about the starting/ending times and starting/ending values for | 3 // Information about the starting/ending times and starting/ending values for |
| 4 // each time interval. | 4 // each time interval. |
| 5 var timeValueInfo; | 5 let timeValueInfo; |
| 6 | 6 |
| 7 // The difference between starting values between each time interval. | 7 // The difference between starting values between each time interval. |
| 8 var startingValueDelta; | 8 let startingValueDelta; |
| 9 | 9 |
| 10 // For any automation function that has an end or target value, the end value is | 10 // For any automation function that has an end or target value, the end value |
| 11 // based the starting value of the time interval. The starting value will be | 11 // is based the starting value of the time interval. The starting value will |
| 12 // increased or decreased by |startEndValueChange|. We choose half of | 12 // be increased or decreased by |startEndValueChange|. We choose half of |
| 13 // |startingValueDelta| so that the ending value will be distinct from the | 13 // |startingValueDelta| so that the ending value will be distinct from the |
| 14 // starting value for next time interval. This allows us to detect where the | 14 // starting value for next time interval. This allows us to detect where the |
| 15 // ramp begins and ends. | 15 // ramp begins and ends. |
| 16 var startEndValueChange; | 16 let startEndValueChange; |
| 17 | 17 |
| 18 // Default threshold to use for detecting discontinuities that should appear at | 18 // Default threshold to use for detecting discontinuities that should appear |
| 19 // each time interval. | 19 // at each time interval. |
| 20 var discontinuityThreshold; | 20 let discontinuityThreshold; |
| 21 | 21 |
| 22 // Time interval between value changes. It is best if 1 / numberOfTests is not | 22 // Time interval between value changes. It is best if 1 / numberOfTests is |
| 23 // close to timeInterval. | 23 // not close to timeInterval. |
| 24 var timeInterval = .03; | 24 let timeIntervalInternal = .03; |
| 25 | 25 |
| 26 // Some suitable time constant so that we can see a significant change over a | 26 let context; |
| 27 // timeInterval. This is only needed by setTargetAtTime() which needs a time | 27 |
| 28 // constant. | 28 // Make sure we render long enough to capture all of our test data. |
| 29 var timeConstant = timeInterval / 3; | 29 function renderLength(numberOfTests) { |
| 30 | 30 return timeToSampleFrame((numberOfTests + 1) * timeInterval, sampleRate); |
| 31 var gainNode; | 31 } |
| 32 | 32 |
| 33 var context; | 33 // Create a constant reference signal with the given |value|. Basically the |
| 34 | 34 // same as |createConstantBuffer|, but with the parameters to match the other |
| 35 // Make sure we render long enough to capture all of our test data. | 35 // create functions. The |endValue| is ignored. |
| 36 function renderLength(numberOfTests) { | 36 function createConstantArray( |
| 37 return timeToSampleFrame((numberOfTests + 1) * timeInterval, sampleRate); | 37 startTime, endTime, value, endValue, sampleRate) { |
| 38 } | 38 let startFrame = timeToSampleFrame(startTime, sampleRate); |
| 39 | 39 let endFrame = timeToSampleFrame(endTime, sampleRate); |
| 40 // Create a constant reference signal with the given |value|. Basically the | 40 let length = endFrame - startFrame; |
| 41 // same as |createConstantBuffer|, but with the parameters to match the other | 41 |
| 42 // create functions. The |endValue| is ignored. | 42 let buffer = createConstantBuffer(context, length, value); |
| 43 function createConstantArray(startTime, endTime, value, endValue, sampleRate) { | 43 |
| 44 var startFrame = timeToSampleFrame(startTime, sampleRate); | 44 return buffer.getChannelData(0); |
| 45 var endFrame = timeToSampleFrame(endTime, sampleRate); | 45 } |
| 46 var length = endFrame - startFrame; | 46 |
| 47 | 47 function getStartEndFrames(startTime, endTime, sampleRate) { |
| 48 var buffer = createConstantBuffer(context, length, value); | 48 // Start frame is the ceiling of the start time because the ramp starts at |
| 49 | 49 // or after the sample frame. End frame is the ceiling because it's the |
| 50 return buffer.getChannelData(0); | 50 // exclusive ending frame of the automation. |
| 51 } | 51 let startFrame = Math.ceil(startTime * sampleRate); |
| 52 | 52 let endFrame = Math.ceil(endTime * sampleRate); |
| 53 function getStartEndFrames(startTime, endTime, sampleRate) { | 53 |
| 54 // Start frame is the ceiling of the start time because the ramp starts at or | 54 return {startFrame: startFrame, endFrame: endFrame}; |
| 55 // after the sample frame. End frame is the ceiling because it's the | 55 } |
| 56 // exclusive ending frame of the automation. | 56 |
| 57 var startFrame = Math.ceil(startTime * sampleRate); | 57 // Create a linear ramp starting at |startValue| and ending at |endValue|. The |
| 58 var endFrame = Math.ceil(endTime * sampleRate); | 58 // ramp starts at time |startTime| and ends at |endTime|. (The start and end |
| 59 | 59 // times are only used to compute how many samples to return.) |
| 60 return {startFrame: startFrame, endFrame: endFrame}; | 60 function createLinearRampArray( |
| 61 } | 61 startTime, endTime, startValue, endValue, sampleRate) { |
| 62 | 62 let frameInfo = getStartEndFrames(startTime, endTime, sampleRate); |
| 63 // Create a linear ramp starting at |startValue| and ending at |endValue|. The | 63 let startFrame = frameInfo.startFrame; |
| 64 // ramp starts at time |startTime| and ends at |endTime|. (The start and end | 64 let endFrame = frameInfo.endFrame; |
| 65 // times are only used to compute how many samples to return.) | 65 let length = endFrame - startFrame; |
| 66 function createLinearRampArray( | 66 let array = new Array(length); |
| 67 startTime, endTime, startValue, endValue, sampleRate) { | 67 |
| 68 var frameInfo = getStartEndFrames(startTime, endTime, sampleRate); | 68 let step = Math.fround( |
| 69 var startFrame = frameInfo.startFrame; | 69 (endValue - startValue) / (endTime - startTime) / sampleRate); |
| 70 var endFrame = frameInfo.endFrame; | 70 let start = Math.fround( |
| 71 var length = endFrame - startFrame; | 71 startValue + |
| 72 var array = new Array(length); | 72 (endValue - startValue) * (startFrame / sampleRate - startTime) / |
| 73 | 73 (endTime - startTime)); |
| 74 var step = | 74 |
| 75 Math.fround((endValue - startValue) / (endTime - startTime) / sampleRate); | 75 let slope = (endValue - startValue) / (endTime - startTime); |
| 76 var start = Math.fround( | 76 |
| 77 startValue + | 77 // v(t) = v0 + (v1 - v0)*(t-t0)/(t1-t0) |
| 78 (endValue - startValue) * (startFrame / sampleRate - startTime) / | 78 for (k = 0; k < length; ++k) { |
| 79 (endTime - startTime)); | 79 // array[k] = Math.fround(start + k * step); |
| 80 | 80 let t = (startFrame + k) / sampleRate; |
| 81 var slope = (endValue - startValue) / (endTime - startTime); | 81 array[k] = startValue + slope * (t - startTime); |
| 82 | 82 } |
| 83 // v(t) = v0 + (v1 - v0)*(t-t0)/(t1-t0) | 83 |
| 84 for (k = 0; k < length; ++k) { | 84 return array; |
| 85 // array[k] = Math.fround(start + k * step); | 85 } |
| 86 var t = (startFrame + k) / sampleRate; | 86 |
| 87 array[k] = startValue + slope * (t - startTime); | 87 // Create an exponential ramp starting at |startValue| and ending at |
| 88 } | 88 // |endValue|. The ramp starts at time |startTime| and ends at |endTime|. |
| 89 | 89 // (The start and end times are only used to compute how many samples to |
| 90 return array; | 90 // return.) |
| 91 } | 91 function createExponentialRampArray( |
| 92 | 92 startTime, endTime, startValue, endValue, sampleRate) { |
| 93 // Create an exponential ramp starting at |startValue| and ending at |endValue|. | 93 let deltaTime = endTime - startTime; |
| 94 // The ramp starts at time |startTime| and ends at |endTime|. (The start and | 94 |
| 95 // end times are only used to compute how many samples to return.) | 95 let frameInfo = getStartEndFrames(startTime, endTime, sampleRate); |
| 96 function createExponentialRampArray( | 96 let startFrame = frameInfo.startFrame; |
| 97 startTime, endTime, startValue, endValue, sampleRate) { | 97 let endFrame = frameInfo.endFrame; |
| 98 var deltaTime = endTime - startTime; | 98 let length = endFrame - startFrame; |
| 99 | 99 let array = new Array(length); |
| 100 var frameInfo = getStartEndFrames(startTime, endTime, sampleRate); | 100 |
| 101 var startFrame = frameInfo.startFrame; | 101 let ratio = endValue / startValue; |
| 102 var endFrame = frameInfo.endFrame; | 102 |
| 103 var length = endFrame - startFrame; | 103 // v(t) = v0*(v1/v0)^((t-t0)/(t1-t0)) |
| 104 var array = new Array(length); | 104 for (let k = 0; k < length; ++k) { |
| 105 | 105 let t = Math.fround((startFrame + k) / sampleRate); |
| 106 var ratio = endValue / startValue; | 106 array[k] = Math.fround( |
| 107 | 107 startValue * Math.pow(ratio, (t - startTime) / deltaTime)); |
| 108 // v(t) = v0*(v1/v0)^((t-t0)/(t1-t0)) | 108 } |
| 109 for (var k = 0; k < length; ++k) { | 109 |
| 110 var t = Math.fround((startFrame + k) / sampleRate); | 110 return array; |
| 111 array[k] = | 111 } |
| 112 Math.fround(startValue * Math.pow(ratio, (t - startTime) / deltaTime)); | 112 |
| 113 } | 113 function discreteTimeConstantForSampleRate(timeConstant, sampleRate) { |
| 114 | 114 return 1 - Math.exp(-1 / (sampleRate * timeConstant)); |
| 115 return array; | 115 } |
| 116 } | 116 |
| 117 | 117 // Create a signal that starts at |startValue| and exponentially approaches |
| 118 function discreteTimeConstantForSampleRate(timeConstant, sampleRate) { | 118 // the target value of |targetValue|, using a time constant of |timeConstant|. |
| 119 return 1 - Math.exp(-1 / (sampleRate * timeConstant)); | 119 // The ramp starts at time |startTime| and ends at |endTime|. (The start and |
| 120 } | 120 // end times are only used to compute how many samples to return.) |
| 121 | 121 function createExponentialApproachArray( |
| 122 // Create a signal that starts at |startValue| and exponentially approaches the | 122 startTime, endTime, startValue, targetValue, sampleRate, timeConstant) { |
| 123 // target value of |targetValue|, using a time constant of |timeConstant|. The | 123 let startFrameFloat = startTime * sampleRate; |
| 124 // ramp starts at time |startTime| and ends at |endTime|. (The start and end | 124 let frameInfo = getStartEndFrames(startTime, endTime, sampleRate); |
| 125 // times are only used to compute how many samples to return.) | 125 let startFrame = frameInfo.startFrame; |
| 126 function createExponentialApproachArray( | 126 let endFrame = frameInfo.endFrame; |
| 127 startTime, endTime, startValue, targetValue, sampleRate, timeConstant) { | 127 let length = Math.floor(endFrame - startFrame); |
| 128 var startFrameFloat = startTime * sampleRate; | 128 let array = new Array(length); |
| 129 var frameInfo = getStartEndFrames(startTime, endTime, sampleRate); | 129 let c = discreteTimeConstantForSampleRate(timeConstant, sampleRate); |
| 130 var startFrame = frameInfo.startFrame; | 130 |
| 131 var endFrame = frameInfo.endFrame; | 131 let delta = startValue - targetValue; |
| 132 var length = Math.floor(endFrame - startFrame); | 132 |
| 133 var array = new Array(length); | 133 // v(t) = v1 + (v0 - v1) * exp(-(t-t0)/tau) |
| 134 var c = discreteTimeConstantForSampleRate(timeConstant, sampleRate); | 134 for (let k = 0; k < length; ++k) { |
| 135 | 135 let t = (startFrame + k) / sampleRate; |
| 136 var delta = startValue - targetValue; | 136 let value = |
| 137 | 137 targetValue + delta * Math.exp(-(t - startTime) / timeConstant); |
| 138 // v(t) = v1 + (v0 - v1) * exp(-(t-t0)/tau) | 138 array[k] = value; |
| 139 for (var k = 0; k < length; ++k) { | 139 } |
| 140 var t = (startFrame + k) / sampleRate; | 140 |
| 141 var value = targetValue + delta * Math.exp(-(t - startTime) / timeConstant); | 141 return array; |
| 142 array[k] = value; | 142 } |
| 143 } | 143 |
| 144 | 144 // Create a sine wave of the specified duration. |
| 145 return array; | 145 function createReferenceSineArray( |
| 146 } | 146 startTime, endTime, startValue, endValue, sampleRate) { |
| 147 | 147 // Ignore |startValue| and |endValue| for the sine wave. |
| 148 // Create a sine wave of the specified duration. | 148 let curve = createSineWaveArray( |
| 149 function createReferenceSineArray( | 149 endTime - startTime, freqHz, sineAmplitude, sampleRate); |
| 150 startTime, endTime, startValue, endValue, sampleRate) { | 150 // Sample the curve appropriately. |
| 151 // Ignore |startValue| and |endValue| for the sine wave. | 151 let frameInfo = getStartEndFrames(startTime, endTime, sampleRate); |
| 152 var curve = createSineWaveArray( | 152 let startFrame = frameInfo.startFrame; |
| 153 endTime - startTime, freqHz, sineAmplitude, sampleRate); | 153 let endFrame = frameInfo.endFrame; |
| 154 // Sample the curve appropriately. | 154 let length = Math.floor(endFrame - startFrame); |
| 155 var frameInfo = getStartEndFrames(startTime, endTime, sampleRate); | 155 let array = new Array(length); |
| 156 var startFrame = frameInfo.startFrame; | 156 |
| 157 var endFrame = frameInfo.endFrame; | 157 // v(t) = linearly interpolate between V[k] and V[k + 1] where k = |
| 158 var length = Math.floor(endFrame - startFrame); | 158 // floor((N-1)/duration*(t - t0)) |
| 159 var array = new Array(length); | 159 let f = (length - 1) / (endTime - startTime); |
| 160 | 160 |
| 161 // v(t) = linearly interpolate between V[k] and V[k + 1] where k = | 161 for (let k = 0; k < length; ++k) { |
| 162 // floor((N-1)/duration*(t - t0)) | 162 let t = (startFrame + k) / sampleRate; |
| 163 var f = (length - 1) / (endTime - startTime); | 163 let indexFloat = f * (t - startTime); |
| 164 | 164 let index = Math.floor(indexFloat); |
| 165 for (var k = 0; k < length; ++k) { | 165 if (index + 1 < length) { |
| 166 var t = (startFrame + k) / sampleRate; | 166 let v0 = curve[index]; |
| 167 var indexFloat = f * (t - startTime); | 167 let v1 = curve[index + 1]; |
| 168 var index = Math.floor(indexFloat); | 168 array[k] = v0 + (v1 - v0) * (indexFloat - index); |
| 169 if (index + 1 < length) { | 169 } else { |
| 170 var v0 = curve[index]; | 170 array[k] = curve[length - 1]; |
| 171 var v1 = curve[index + 1]; | 171 } |
| 172 array[k] = v0 + (v1 - v0) * (indexFloat - index); | 172 } |
| 173 |
| 174 return array; |
| 175 } |
| 176 |
| 177 // Create a sine wave of the given frequency and amplitude. The sine wave is |
| 178 // offset by half the amplitude so that result is always positive. |
| 179 function createSineWaveArray(durationSeconds, freqHz, amplitude, sampleRate) { |
| 180 let length = timeToSampleFrame(durationSeconds, sampleRate); |
| 181 let signal = new Float32Array(length); |
| 182 let omega = 2 * Math.PI * freqHz / sampleRate; |
| 183 let halfAmplitude = amplitude / 2; |
| 184 |
| 185 for (let k = 0; k < length; ++k) { |
| 186 signal[k] = halfAmplitude + halfAmplitude * Math.sin(omega * k); |
| 187 } |
| 188 |
| 189 return signal; |
| 190 } |
| 191 |
| 192 // Return the difference between the starting value and the ending value for |
| 193 // time interval |timeIntervalIndex|. We alternate between an end value that |
| 194 // is above or below the starting value. |
| 195 function endValueDelta(timeIntervalIndex) { |
| 196 if (timeIntervalIndex & 1) { |
| 197 return -startEndValueChange; |
| 173 } else { | 198 } else { |
| 174 array[k] = curve[length - 1]; | 199 return startEndValueChange; |
| 175 } | 200 } |
| 176 } | 201 } |
| 177 | 202 |
| 178 return array; | 203 // Relative error metric |
| 179 } | 204 function relativeErrorMetric(actual, expected) { |
| 180 | 205 return (actual - expected) / Math.abs(expected); |
| 181 // Create a sine wave of the given frequency and amplitude. The sine wave is | 206 } |
| 182 // offset by half the amplitude so that result is always positive. | 207 |
| 183 function createSineWaveArray(durationSeconds, freqHz, amplitude, sampleRate) { | 208 // Difference metric |
| 184 var length = timeToSampleFrame(durationSeconds, sampleRate); | 209 function differenceErrorMetric(actual, expected) { |
| 185 var signal = new Float32Array(length); | 210 return actual - expected; |
| 186 var omega = 2 * Math.PI * freqHz / sampleRate; | 211 } |
| 187 var halfAmplitude = amplitude / 2; | 212 |
| 188 | 213 // Return the difference between the starting value at |timeIntervalIndex| and |
| 189 for (var k = 0; k < length; ++k) { | 214 // the starting value at the next time interval. Since we started at a large |
| 190 signal[k] = halfAmplitude + halfAmplitude * Math.sin(omega * k); | 215 // initial value, we decrease the value at each time interval. |
| 191 } | 216 function valueUpdate(timeIntervalIndex) { |
| 192 | 217 return -startingValueDelta; |
| 193 return signal; | 218 } |
| 194 } | 219 |
| 195 | 220 // Compare a section of the rendered data against our expected signal. |
| 196 // Return the difference between the starting value and the ending value for | 221 function comparePartialSignals( |
| 197 // time interval |timeIntervalIndex|. We alternate between an end value that is | 222 should, rendered, expectedFunction, startTime, endTime, valueInfo, |
| 198 // above or below the starting value. | 223 sampleRate, errorMetric) { |
| 199 function endValueDelta(timeIntervalIndex) { | 224 let startSample = timeToSampleFrame(startTime, sampleRate); |
| 200 if (timeIntervalIndex & 1) { | 225 let expected = expectedFunction( |
| 201 return -startEndValueChange; | 226 startTime, endTime, valueInfo.startValue, valueInfo.endValue, |
| 202 } else { | 227 sampleRate, timeConstant); |
| 203 return startEndValueChange; | 228 |
| 204 } | 229 let n = expected.length; |
| 205 } | 230 let maxError = -1; |
| 206 | 231 let maxErrorIndex = -1; |
| 207 // Relative error metric | 232 |
| 208 function relativeErrorMetric(actual, expected) { | 233 for (let k = 0; k < n; ++k) { |
| 209 return (actual - expected) / Math.abs(expected); | 234 // Make sure we don't pass these tests because a NaN has been generated in |
| 210 } | 235 // either the |
| 211 | 236 // rendered data or the reference data. |
| 212 // Difference metric | 237 if (!isValidNumber(rendered[startSample + k])) { |
| 213 function differenceErrorMetric(actual, expected) { | 238 maxError = Infinity; |
| 214 return actual - expected; | 239 maxErrorIndex = startSample + k; |
| 215 } | 240 should( |
| 216 | 241 isValidNumber(rendered[startSample + k]), |
| 217 // Return the difference between the starting value at |timeIntervalIndex| and | 242 'NaN or infinity for rendered data at ' + maxErrorIndex) |
| 218 // the starting value at the next time interval. Since we started at a large | 243 .beTrue(); |
| 219 // initial value, we decrease the value at each time interval. | 244 break; |
| 220 function valueUpdate(timeIntervalIndex) { | 245 } |
| 221 return -startingValueDelta; | 246 if (!isValidNumber(expected[k])) { |
| 222 } | 247 maxError = Infinity; |
| 223 | 248 maxErrorIndex = startSample + k; |
| 224 // Compare a section of the rendered data against our expected signal. | 249 should( |
| 225 function comparePartialSignals( | 250 isValidNumber(expected[k]), |
| 226 should, rendered, expectedFunction, startTime, endTime, valueInfo, | 251 'NaN or infinity for rendered data at ' + maxErrorIndex) |
| 227 sampleRate, errorMetric) { | 252 .beTrue(); |
| 228 var startSample = timeToSampleFrame(startTime, sampleRate); | 253 break; |
| 229 var expected = expectedFunction( | 254 } |
| 230 startTime, endTime, valueInfo.startValue, valueInfo.endValue, sampleRate, | 255 let error = Math.abs(errorMetric(rendered[startSample + k], expected[k])); |
| 231 timeConstant); | 256 if (error > maxError) { |
| 232 | 257 maxError = error; |
| 233 var n = expected.length; | 258 maxErrorIndex = k; |
| 234 var maxError = -1; | 259 } |
| 235 var maxErrorIndex = -1; | 260 } |
| 236 | 261 |
| 237 for (var k = 0; k < n; ++k) { | 262 return {maxError: maxError, index: maxErrorIndex, expected: expected}; |
| 238 // Make sure we don't pass these tests because a NaN has been generated in | 263 } |
| 239 // either the | 264 |
| 240 // rendered data or the reference data. | 265 // Find the discontinuities in the data and compare the locations of the |
| 241 if (!isValidNumber(rendered[startSample + k])) { | 266 // discontinuities with the times that define the time intervals. There is a |
| 242 maxError = Infinity; | 267 // discontinuity if the difference between successive samples exceeds the |
| 243 maxErrorIndex = startSample + k; | 268 // threshold. |
| 269 function verifyDiscontinuities(should, values, times, threshold) { |
| 270 let n = values.length; |
| 271 let success = true; |
| 272 let badLocations = 0; |
| 273 let breaks = []; |
| 274 |
| 275 // Find discontinuities. |
| 276 for (let k = 1; k < n; ++k) { |
| 277 if (Math.abs(values[k] - values[k - 1]) > threshold) { |
| 278 breaks.push(k); |
| 279 } |
| 280 } |
| 281 |
| 282 let testCount; |
| 283 |
| 284 // If there are numberOfTests intervals, there are only numberOfTests - 1 |
| 285 // internal interval boundaries. Hence the maximum number of discontinuties |
| 286 // we expect to find is numberOfTests - 1. If we find more than that, we |
| 287 // have no reference to compare against. We also assume that the actual |
| 288 // discontinuities are close to the expected ones. |
| 289 // |
| 290 // This is just a sanity check when something goes really wrong. For |
| 291 // example, if the threshold is too low, every sample frame looks like a |
| 292 // discontinuity. |
| 293 if (breaks.length >= numberOfTests) { |
| 294 testCount = numberOfTests - 1; |
| 295 should(breaks.length, 'Number of discontinuities') |
| 296 .beLessThan(numberOfTests); |
| 297 success = false; |
| 298 } else { |
| 299 testCount = breaks.length; |
| 300 } |
| 301 |
| 302 // Compare the location of each discontinuity with the end time of each |
| 303 // interval. (There is no discontinuity at the start of the signal.) |
| 304 for (let k = 0; k < testCount; ++k) { |
| 305 let expectedSampleFrame = timeToSampleFrame(times[k + 1], sampleRate); |
| 306 if (breaks[k] != expectedSampleFrame) { |
| 307 success = false; |
| 308 ++badLocations; |
| 309 should(breaks[k], 'Discontinuity at index') |
| 310 .beEqualTo(expectedSampleFrame); |
| 311 } |
| 312 } |
| 313 |
| 314 if (badLocations) { |
| 315 should(badLocations, 'Number of discontinuites at incorrect locations') |
| 316 .beEqualTo(0); |
| 317 success = false; |
| 318 } else { |
| 244 should( | 319 should( |
| 245 isValidNumber(rendered[startSample + k]), | 320 breaks.length + 1, |
| 246 'NaN or infinity for rendered data at ' + maxErrorIndex) | 321 'Number of tests started and ended at the correct time') |
| 247 .beTrue(); | 322 .beEqualTo(numberOfTests); |
| 248 break; | 323 } |
| 249 } | 324 |
| 250 if (!isValidNumber(expected[k])) { | 325 return success; |
| 251 maxError = Infinity; | 326 } |
| 252 maxErrorIndex = startSample + k; | 327 |
| 328 // Compare the rendered data with the expected data. |
| 329 // |
| 330 // testName - string describing the test |
| 331 // |
| 332 // maxError - maximum allowed difference between the rendered data and the |
| 333 // expected data |
| 334 // |
| 335 // rendererdData - array containing the rendered (actual) data |
| 336 // |
| 337 // expectedFunction - function to compute the expected data |
| 338 // |
| 339 // timeValueInfo - array containing information about the start and end times |
| 340 // and the start and end values of each interval. |
| 341 // |
| 342 // breakThreshold - threshold to use for determining discontinuities. |
| 343 function compareSignals( |
| 344 should, testName, maxError, renderedData, expectedFunction, timeValueInfo, |
| 345 breakThreshold, errorMetric) { |
| 346 let success = true; |
| 347 let failedTestCount = 0; |
| 348 let times = timeValueInfo.times; |
| 349 let values = timeValueInfo.values; |
| 350 let n = values.length; |
| 351 let expectedSignal = []; |
| 352 |
| 353 success = |
| 354 verifyDiscontinuities(should, renderedData, times, breakThreshold); |
| 355 |
| 356 for (let k = 0; k < n; ++k) { |
| 357 let result = comparePartialSignals( |
| 358 should, renderedData, expectedFunction, times[k], times[k + 1], |
| 359 values[k], sampleRate, errorMetric); |
| 360 |
| 361 expectedSignal = |
| 362 expectedSignal.concat(Array.prototype.slice.call(result.expected)); |
| 363 |
| 253 should( | 364 should( |
| 254 isValidNumber(expected[k]), | 365 result.maxError, |
| 255 'NaN or infinity for rendered data at ' + maxErrorIndex) | 366 'Max error for test ' + k + ' at offset ' + |
| 256 .beTrue(); | 367 (result.index + timeToSampleFrame(times[k], sampleRate))) |
| 257 break; | 368 .beLessThanOrEqualTo(maxError); |
| 258 } | 369 } |
| 259 var error = Math.abs(errorMetric(rendered[startSample + k], expected[k])); | 370 |
| 260 if (error > maxError) { | 371 should( |
| 261 maxError = error; | 372 failedTestCount, |
| 262 maxErrorIndex = k; | 373 'Number of failed tests with an acceptable relative tolerance of ' + |
| 263 } | 374 maxError) |
| 264 } | |
| 265 | |
| 266 return {maxError: maxError, index: maxErrorIndex, expected: expected}; | |
| 267 } | |
| 268 | |
| 269 // Find the discontinuities in the data and compare the locations of the | |
| 270 // discontinuities with the times that define the time intervals. There is a | |
| 271 // discontinuity if the difference between successive samples exceeds the | |
| 272 // threshold. | |
| 273 function verifyDiscontinuities(should, values, times, threshold) { | |
| 274 var n = values.length; | |
| 275 var success = true; | |
| 276 var badLocations = 0; | |
| 277 var breaks = []; | |
| 278 | |
| 279 // Find discontinuities. | |
| 280 for (var k = 1; k < n; ++k) { | |
| 281 if (Math.abs(values[k] - values[k - 1]) > threshold) { | |
| 282 breaks.push(k); | |
| 283 } | |
| 284 } | |
| 285 | |
| 286 var testCount; | |
| 287 | |
| 288 // If there are numberOfTests intervals, there are only numberOfTests - 1 | |
| 289 // internal interval boundaries. Hence the maximum number of discontinuties we | |
| 290 // expect to find is numberOfTests - 1. If we find more than that, we have no | |
| 291 // reference to compare against. We also assume that the actual | |
| 292 // discontinuities are close to the expected ones. | |
| 293 // | |
| 294 // This is just a sanity check when something goes really wrong. For example, | |
| 295 // if the threshold is too low, every sample frame looks like a discontinuity. | |
| 296 if (breaks.length >= numberOfTests) { | |
| 297 testCount = numberOfTests - 1; | |
| 298 should(breaks.length, 'Number of discontinuities') | |
| 299 .beLessThan(numberOfTests); | |
| 300 success = false; | |
| 301 } else { | |
| 302 testCount = breaks.length; | |
| 303 } | |
| 304 | |
| 305 // Compare the location of each discontinuity with the end time of each | |
| 306 // interval. (There is no discontinuity at the start of the signal.) | |
| 307 for (var k = 0; k < testCount; ++k) { | |
| 308 var expectedSampleFrame = timeToSampleFrame(times[k + 1], sampleRate); | |
| 309 if (breaks[k] != expectedSampleFrame) { | |
| 310 success = false; | |
| 311 ++badLocations; | |
| 312 should(breaks[k], 'Discontinuity at index') | |
| 313 .beEqualTo(expectedSampleFrame); | |
| 314 } | |
| 315 } | |
| 316 | |
| 317 if (badLocations) { | |
| 318 should(badLocations, 'Number of discontinuites at incorrect locations') | |
| 319 .beEqualTo(0); | 375 .beEqualTo(0); |
| 320 success = false; | 376 } |
| 321 } else { | 377 |
| 322 should( | 378 // Create a function to test the rendered data with the reference data. |
| 323 breaks.length + 1, | 379 // |
| 324 'Number of tests started and ended at the correct time') | 380 // testName - string describing the test |
| 325 .beEqualTo(numberOfTests); | 381 // |
| 326 } | 382 // error - max allowed error between rendered data and the reference data. |
| 327 | 383 // |
| 328 return success; | 384 // referenceFunction - function that generates the reference data to be |
| 329 } | 385 // compared with the rendered data. |
| 330 | 386 // |
| 331 // Compare the rendered data with the expected data. | 387 // jumpThreshold - optional parameter that specifies the threshold to use for |
| 332 // | 388 // detecting discontinuities. If not specified, defaults to |
| 333 // testName - string describing the test | 389 // discontinuityThreshold. |
| 334 // | 390 // |
| 335 // maxError - maximum allowed difference between the rendered data and the | 391 function checkResultFunction( |
| 336 // expected data | 392 task, should, testName, error, referenceFunction, jumpThreshold, |
| 337 // | 393 errorMetric) { |
| 338 // rendererdData - array containing the rendered (actual) data | 394 return function(event) { |
| 339 // | 395 let buffer = event.renderedBuffer; |
| 340 // expectedFunction - function to compute the expected data | 396 renderedData = buffer.getChannelData(0); |
| 341 // | 397 |
| 342 // timeValueInfo - array containing information about the start and end times | 398 let threshold; |
| 343 // and the start and end values of each interval. | 399 |
| 344 // | 400 if (!jumpThreshold) { |
| 345 // breakThreshold - threshold to use for determining discontinuities. | 401 threshold = discontinuityThreshold; |
| 346 function compareSignals( | 402 } else { |
| 347 should, testName, maxError, renderedData, expectedFunction, timeValueInfo, | 403 threshold = jumpThreshold; |
| 348 breakThreshold, errorMetric) { | 404 } |
| 349 var success = true; | 405 |
| 350 var failedTestCount = 0; | 406 compareSignals( |
| 351 var times = timeValueInfo.times; | 407 should, testName, error, renderedData, referenceFunction, |
| 352 var values = timeValueInfo.values; | 408 timeValueInfo, threshold, errorMetric); |
| 353 var n = values.length; | 409 task.done(); |
| 354 var expectedSignal = []; | 410 } |
| 355 | 411 } |
| 356 success = verifyDiscontinuities(should, renderedData, times, breakThreshold); | 412 |
| 357 | 413 // Run all the automation tests. |
| 358 for (var k = 0; k < n; ++k) { | 414 // |
| 359 var result = comparePartialSignals( | 415 // numberOfTests - number of tests (time intervals) to run. |
| 360 should, renderedData, expectedFunction, times[k], times[k + 1], | 416 // |
| 361 values[k], sampleRate, errorMetric); | 417 // initialValue - The initial value of the first time interval. |
| 362 | 418 // |
| 363 expectedSignal = | 419 // setValueFunction - function that sets the specified value at the start of a |
| 364 expectedSignal.concat(Array.prototype.slice.call(result.expected)); | 420 // time interval. |
| 365 | 421 // |
| 366 should( | 422 // automationFunction - function that sets the end value for the time |
| 367 result.maxError, | 423 // interval. It specifies how the value approaches the end value. |
| 368 'Max error for test ' + k + ' at offset ' + | 424 // |
| 369 (result.index + timeToSampleFrame(times[k], sampleRate))) | 425 // An object is returned containing an array of start times for each time |
| 370 .beLessThanOrEqualTo(maxError); | 426 // interval, and an array giving the start and end values for the interval. |
| 371 } | 427 function doAutomation( |
| 372 | 428 numberOfTests, initialValue, setValueFunction, automationFunction) { |
| 373 should( | 429 let timeInfo = [0]; |
| 374 failedTestCount, | 430 let valueInfo = []; |
| 375 'Number of failed tests with an acceptable relative tolerance of ' + | 431 let value = initialValue; |
| 376 maxError) | 432 |
| 377 .beEqualTo(0); | 433 for (let k = 0; k < numberOfTests; ++k) { |
| 378 } | 434 let startTime = k * timeInterval; |
| 379 | 435 let endTime = (k + 1) * timeInterval; |
| 380 // Create a function to test the rendered data with the reference data. | 436 let endValue = value + endValueDelta(k); |
| 381 // | 437 |
| 382 // testName - string describing the test | 438 // Set the value at the start of the time interval. |
| 383 // | 439 setValueFunction(value, startTime); |
| 384 // error - max allowed error between rendered data and the reference data. | 440 |
| 385 // | 441 // Specify the end or target value, and how we should approach it. |
| 386 // referenceFunction - function that generates the reference data to be compared | 442 automationFunction(endValue, startTime, endTime); |
| 387 // with the rendered data. | 443 |
| 388 // | 444 // Keep track of the start times, and the start and end values for each |
| 389 // jumpThreshold - optional parameter that specifies the threshold to use for | 445 // time interval. |
| 390 // detecting discontinuities. If not specified, defaults to | 446 timeInfo.push(endTime); |
| 391 // discontinuityThreshold. | 447 valueInfo.push({startValue: value, endValue: endValue}); |
| 392 // | 448 |
| 393 function checkResultFunction( | 449 value += valueUpdate(k); |
| 394 task, should, testName, error, referenceFunction, jumpThreshold, | 450 } |
| 395 errorMetric) { | 451 |
| 396 return function(event) { | 452 return {times: timeInfo, values: valueInfo}; |
| 397 var buffer = event.renderedBuffer; | 453 } |
| 398 renderedData = buffer.getChannelData(0); | 454 |
| 399 | 455 // Create the audio graph for the test and then run the test. |
| 400 var threshold; | 456 // |
| 401 | 457 // numberOfTests - number of time intervals (tests) to run. |
| 402 if (!jumpThreshold) { | 458 // |
| 403 threshold = discontinuityThreshold; | 459 // initialValue - the initial value of the gain at time 0. |
| 404 } else { | 460 // |
| 405 threshold = jumpThreshold; | 461 // setValueFunction - function to set the value at the beginning of each time |
| 406 } | 462 // interval. |
| 407 | 463 // |
| 408 compareSignals( | 464 // automationFunction - the AudioParamTimeline automation function |
| 409 should, testName, error, renderedData, referenceFunction, timeValueInfo, | 465 // |
| 410 threshold, errorMetric); | 466 // testName - string indicating the test that is being run. |
| 411 task.done(); | 467 // |
| 412 } | 468 // maxError - maximum allowed error between the rendered data and the |
| 413 } | 469 // reference data |
| 414 | 470 // |
| 415 // Run all the automation tests. | 471 // referenceFunction - function that generates the reference data to be |
| 416 // | 472 // compared against the rendered data. |
| 417 // numberOfTests - number of tests (time intervals) to run. | 473 // |
| 418 // | 474 // jumpThreshold - optional parameter that specifies the threshold to use for |
| 419 // initialValue - The initial value of the first time interval. | 475 // detecting discontinuities. If not specified, defaults to |
| 420 // | 476 // discontinuityThreshold. |
| 421 // setValueFunction - function that sets the specified value at the start of a | 477 // |
| 422 // time interval. | 478 function createAudioGraphAndTest( |
| 423 // | 479 task, should, numberOfTests, initialValue, setValueFunction, |
| 424 // automationFunction - function that sets the end value for the time interval. | 480 automationFunction, testName, maxError, referenceFunction, jumpThreshold, |
| 425 // It specifies how the value approaches the end value. | 481 errorMetric) { |
| 426 // | 482 // Create offline audio context. |
| 427 // An object is returned containing an array of start times for each time | 483 context = |
| 428 // interval, and an array giving the start and end values for the interval. | 484 new OfflineAudioContext(2, renderLength(numberOfTests), sampleRate); |
| 429 function doAutomation( | 485 let constantBuffer = |
| 430 numberOfTests, initialValue, setValueFunction, automationFunction) { | 486 createConstantBuffer(context, renderLength(numberOfTests), 1); |
| 431 var timeInfo = [0]; | 487 |
| 432 var valueInfo = []; | 488 // We use an AudioGainNode here simply as a convenient way to test the |
| 433 var value = initialValue; | 489 // AudioParam automation, since it's easy to pass a constant value through |
| 434 | 490 // the node, automate the .gain attribute and observe the resulting values. |
| 435 for (var k = 0; k < numberOfTests; ++k) { | 491 |
| 436 var startTime = k * timeInterval; | 492 gainNode = context.createGain(); |
| 437 var endTime = (k + 1) * timeInterval; | 493 |
| 438 var endValue = value + endValueDelta(k); | 494 let bufferSource = context.createBufferSource(); |
| 439 | 495 bufferSource.buffer = constantBuffer; |
| 440 // Set the value at the start of the time interval. | 496 bufferSource.connect(gainNode); |
| 441 setValueFunction(value, startTime); | 497 gainNode.connect(context.destination); |
| 442 | 498 |
| 443 // Specify the end or target value, and how we should approach it. | 499 // Set up default values for the parameters that control how the automation |
| 444 automationFunction(endValue, startTime, endTime); | 500 // test values progress for each time interval. |
| 445 | 501 startingValueDelta = initialValue / numberOfTests; |
| 446 // Keep track of the start times, and the start and end values for each time | 502 startEndValueChange = startingValueDelta / 2; |
| 447 // interval. | 503 discontinuityThreshold = startEndValueChange / 2; |
| 448 timeInfo.push(endTime); | 504 |
| 449 valueInfo.push({startValue: value, endValue: endValue}); | 505 // Run the automation tests. |
| 450 | 506 timeValueInfo = doAutomation( |
| 451 value += valueUpdate(k); | 507 numberOfTests, initialValue, setValueFunction, automationFunction); |
| 452 } | 508 bufferSource.start(0); |
| 453 | 509 |
| 454 return {times: timeInfo, values: valueInfo}; | 510 context.oncomplete = checkResultFunction( |
| 455 } | 511 task, should, testName, maxError, referenceFunction, jumpThreshold, |
| 456 | 512 errorMetric || relativeErrorMetric); |
| 457 // Create the audio graph for the test and then run the test. | 513 context.startRendering(); |
| 458 // | 514 } |
| 459 // numberOfTests - number of time intervals (tests) to run. | 515 |
| 460 // | 516 // Export local references to global scope. All the new objects in this file |
| 461 // initialValue - the initial value of the gain at time 0. | 517 // must be exported through this if it is to be used in the actual test HTML |
| 462 // | 518 // page. |
| 463 // setValueFunction - function to set the value at the beginning of each time | 519 let exports = { |
| 464 // interval. | 520 'sampleRate': 44100, |
| 465 // | 521 'gainNode': null, |
| 466 // automationFunction - the AudioParamTimeline automation function | 522 'timeInterval': timeIntervalInternal, |
| 467 // | 523 |
| 468 // testName - string indicating the test that is being run. | 524 // Some suitable time constant so that we can see a significant change over |
| 469 // | 525 // a timeInterval. This is only needed by setTargetAtTime() which needs a |
| 470 // maxError - maximum allowed error between the rendered data and the reference | 526 // time constant. |
| 471 // data | 527 'timeConstant': timeIntervalInternal / 3, |
| 472 // | 528 |
| 473 // referenceFunction - function that generates the reference data to be compared | 529 'renderLength': renderLength, |
| 474 // against the rendered data. | 530 'createConstantArray': createConstantArray, |
| 475 // | 531 'getStartEndFrames': getStartEndFrames, |
| 476 // jumpThreshold - optional parameter that specifies the threshold to use for | 532 'createLinearRampArray': createLinearRampArray, |
| 477 // detecting discontinuities. If not specified, defaults to | 533 'createExponentialRampArray': createExponentialRampArray, |
| 478 // discontinuityThreshold. | 534 'discreteTimeConstantForSampleRate': discreteTimeConstantForSampleRate, |
| 479 // | 535 'createExponentialApproachArray': createExponentialApproachArray, |
| 480 function createAudioGraphAndTest( | 536 'createReferenceSineArray': createReferenceSineArray, |
| 481 task, should, numberOfTests, initialValue, setValueFunction, | 537 'createSineWaveArray': createSineWaveArray, |
| 482 automationFunction, testName, maxError, referenceFunction, jumpThreshold, | 538 'endValueDelta': endValueDelta, |
| 483 errorMetric) { | 539 'relativeErrorMetric': relativeErrorMetric, |
| 484 // Create offline audio context. | 540 'differenceErrorMetric': differenceErrorMetric, |
| 485 context = new OfflineAudioContext(2, renderLength(numberOfTests), sampleRate); | 541 'valueUpdate': valueUpdate, |
| 486 var constantBuffer = | 542 'comparePartialSignals': comparePartialSignals, |
| 487 createConstantBuffer(context, renderLength(numberOfTests), 1); | 543 'verifyDiscontinuities': verifyDiscontinuities, |
| 488 | 544 'compareSignals': compareSignals, |
| 489 // We use an AudioGainNode here simply as a convenient way to test the | 545 'checkResultFunction': checkResultFunction, |
| 490 // AudioParam automation, since it's easy to pass a constant value through the | 546 'doAutomation': doAutomation, |
| 491 // node, automate the .gain attribute and observe the resulting values. | 547 'createAudioGraphAndTest': createAudioGraphAndTest |
| 492 | 548 }; |
| 493 gainNode = context.createGain(); | 549 |
| 494 | 550 for (let reference in exports) { |
| 495 var bufferSource = context.createBufferSource(); | 551 global[reference] = exports[reference]; |
| 496 bufferSource.buffer = constantBuffer; | 552 } |
| 497 bufferSource.connect(gainNode); | 553 |
| 498 gainNode.connect(context.destination); | 554 })(window); |
| 499 | |
| 500 // Set up default values for the parameters that control how the automation | |
| 501 // test values progress for each time interval. | |
| 502 startingValueDelta = initialValue / numberOfTests; | |
| 503 startEndValueChange = startingValueDelta / 2; | |
| 504 discontinuityThreshold = startEndValueChange / 2; | |
| 505 | |
| 506 // Run the automation tests. | |
| 507 timeValueInfo = doAutomation( | |
| 508 numberOfTests, initialValue, setValueFunction, automationFunction); | |
| 509 bufferSource.start(0); | |
| 510 | |
| 511 context.oncomplete = checkResultFunction( | |
| 512 task, should, testName, maxError, referenceFunction, jumpThreshold, | |
| 513 errorMetric || relativeErrorMetric); | |
| 514 context.startRendering(); | |
| 515 } | |
| OLD | NEW |