OLD | NEW |
(Empty) | |
| 1 /////////////////////////////////////////////////////////////////////////////// |
| 2 // |
| 3 /// \file simple_coder.c |
| 4 /// \brief Wrapper for simple filters |
| 5 /// |
| 6 /// Simple filters don't change the size of the data i.e. number of bytes |
| 7 /// in equals the number of bytes out. |
| 8 // |
| 9 // Author: Lasse Collin |
| 10 // |
| 11 // This file has been put into the public domain. |
| 12 // You can do whatever you want with this file. |
| 13 // |
| 14 /////////////////////////////////////////////////////////////////////////////// |
| 15 |
| 16 #include "simple_private.h" |
| 17 |
| 18 |
| 19 /// Copied or encodes/decodes more data to out[]. |
| 20 static lzma_ret |
| 21 copy_or_code(lzma_coder *coder, lzma_allocator *allocator, |
| 22 const uint8_t *restrict in, size_t *restrict in_pos, |
| 23 size_t in_size, uint8_t *restrict out, |
| 24 size_t *restrict out_pos, size_t out_size, lzma_action action) |
| 25 { |
| 26 assert(!coder->end_was_reached); |
| 27 |
| 28 if (coder->next.code == NULL) { |
| 29 lzma_bufcpy(in, in_pos, in_size, out, out_pos, out_size); |
| 30 |
| 31 // Check if end of stream was reached. |
| 32 if (coder->is_encoder && action == LZMA_FINISH |
| 33 && *in_pos == in_size) |
| 34 coder->end_was_reached = true; |
| 35 |
| 36 } else { |
| 37 // Call the next coder in the chain to provide us some data. |
| 38 // We don't care about uncompressed_size here, because |
| 39 // the next filter in the chain will do it for us (since |
| 40 // we don't change the size of the data). |
| 41 const lzma_ret ret = coder->next.code( |
| 42 coder->next.coder, allocator, |
| 43 in, in_pos, in_size, |
| 44 out, out_pos, out_size, action); |
| 45 |
| 46 if (ret == LZMA_STREAM_END) { |
| 47 assert(!coder->is_encoder |
| 48 || action == LZMA_FINISH); |
| 49 coder->end_was_reached = true; |
| 50 |
| 51 } else if (ret != LZMA_OK) { |
| 52 return ret; |
| 53 } |
| 54 } |
| 55 |
| 56 return LZMA_OK; |
| 57 } |
| 58 |
| 59 |
| 60 static size_t |
| 61 call_filter(lzma_coder *coder, uint8_t *buffer, size_t size) |
| 62 { |
| 63 const size_t filtered = coder->filter(coder->simple, |
| 64 coder->now_pos, coder->is_encoder, |
| 65 buffer, size); |
| 66 coder->now_pos += filtered; |
| 67 return filtered; |
| 68 } |
| 69 |
| 70 |
| 71 static lzma_ret |
| 72 simple_code(lzma_coder *coder, lzma_allocator *allocator, |
| 73 const uint8_t *restrict in, size_t *restrict in_pos, |
| 74 size_t in_size, uint8_t *restrict out, |
| 75 size_t *restrict out_pos, size_t out_size, lzma_action action) |
| 76 { |
| 77 // TODO: Add partial support for LZMA_SYNC_FLUSH. We can support it |
| 78 // in cases when the filter is able to filter everything. With most |
| 79 // simple filters it can be done at offset that is a multiple of 2, |
| 80 // 4, or 16. With x86 filter, it needs good luck, and thus cannot |
| 81 // be made to work predictably. |
| 82 if (action == LZMA_SYNC_FLUSH) |
| 83 return LZMA_OPTIONS_ERROR; |
| 84 |
| 85 // Flush already filtered data from coder->buffer[] to out[]. |
| 86 if (coder->pos < coder->filtered) { |
| 87 lzma_bufcpy(coder->buffer, &coder->pos, coder->filtered, |
| 88 out, out_pos, out_size); |
| 89 |
| 90 // If we couldn't flush all the filtered data, return to |
| 91 // application immediately. |
| 92 if (coder->pos < coder->filtered) |
| 93 return LZMA_OK; |
| 94 |
| 95 if (coder->end_was_reached) { |
| 96 assert(coder->filtered == coder->size); |
| 97 return LZMA_STREAM_END; |
| 98 } |
| 99 } |
| 100 |
| 101 // If we get here, there is no filtered data left in the buffer. |
| 102 coder->filtered = 0; |
| 103 |
| 104 assert(!coder->end_was_reached); |
| 105 |
| 106 // If there is more output space left than there is unfiltered data |
| 107 // in coder->buffer[], flush coder->buffer[] to out[], and copy/code |
| 108 // more data to out[] hopefully filling it completely. Then filter |
| 109 // the data in out[]. This step is where most of the data gets |
| 110 // filtered if the buffer sizes used by the application are reasonable. |
| 111 const size_t out_avail = out_size - *out_pos; |
| 112 const size_t buf_avail = coder->size - coder->pos; |
| 113 if (out_avail > buf_avail) { |
| 114 // Store the old position so that we know from which byte |
| 115 // to start filtering. |
| 116 const size_t out_start = *out_pos; |
| 117 |
| 118 // Flush data from coder->buffer[] to out[], but don't reset |
| 119 // coder->pos and coder->size yet. This way the coder can be |
| 120 // restarted if the next filter in the chain returns e.g. |
| 121 // LZMA_MEM_ERROR. |
| 122 memcpy(out + *out_pos, coder->buffer + coder->pos, buf_avail); |
| 123 *out_pos += buf_avail; |
| 124 |
| 125 // Copy/Encode/Decode more data to out[]. |
| 126 { |
| 127 const lzma_ret ret = copy_or_code(coder, allocator, |
| 128 in, in_pos, in_size, |
| 129 out, out_pos, out_size, action); |
| 130 assert(ret != LZMA_STREAM_END); |
| 131 if (ret != LZMA_OK) |
| 132 return ret; |
| 133 } |
| 134 |
| 135 // Filter out[]. |
| 136 const size_t size = *out_pos - out_start; |
| 137 const size_t filtered = call_filter( |
| 138 coder, out + out_start, size); |
| 139 |
| 140 const size_t unfiltered = size - filtered; |
| 141 assert(unfiltered <= coder->allocated / 2); |
| 142 |
| 143 // Now we can update coder->pos and coder->size, because |
| 144 // the next coder in the chain (if any) was successful. |
| 145 coder->pos = 0; |
| 146 coder->size = unfiltered; |
| 147 |
| 148 if (coder->end_was_reached) { |
| 149 // The last byte has been copied to out[] already. |
| 150 // They are left as is. |
| 151 coder->size = 0; |
| 152 |
| 153 } else if (unfiltered > 0) { |
| 154 // There is unfiltered data left in out[]. Copy it to |
| 155 // coder->buffer[] and rewind *out_pos appropriately. |
| 156 *out_pos -= unfiltered; |
| 157 memcpy(coder->buffer, out + *out_pos, unfiltered); |
| 158 } |
| 159 } else if (coder->pos > 0) { |
| 160 memmove(coder->buffer, coder->buffer + coder->pos, buf_avail); |
| 161 coder->size -= coder->pos; |
| 162 coder->pos = 0; |
| 163 } |
| 164 |
| 165 assert(coder->pos == 0); |
| 166 |
| 167 // If coder->buffer[] isn't empty, try to fill it by copying/decoding |
| 168 // more data. Then filter coder->buffer[] and copy the successfully |
| 169 // filtered data to out[]. It is probable, that some filtered and |
| 170 // unfiltered data will be left to coder->buffer[]. |
| 171 if (coder->size > 0) { |
| 172 { |
| 173 const lzma_ret ret = copy_or_code(coder, allocator, |
| 174 in, in_pos, in_size, |
| 175 coder->buffer, &coder->size, |
| 176 coder->allocated, action); |
| 177 assert(ret != LZMA_STREAM_END); |
| 178 if (ret != LZMA_OK) |
| 179 return ret; |
| 180 } |
| 181 |
| 182 coder->filtered = call_filter( |
| 183 coder, coder->buffer, coder->size); |
| 184 |
| 185 // Everything is considered to be filtered if coder->buffer[] |
| 186 // contains the last bytes of the data. |
| 187 if (coder->end_was_reached) |
| 188 coder->filtered = coder->size; |
| 189 |
| 190 // Flush as much as possible. |
| 191 lzma_bufcpy(coder->buffer, &coder->pos, coder->filtered, |
| 192 out, out_pos, out_size); |
| 193 } |
| 194 |
| 195 // Check if we got everything done. |
| 196 if (coder->end_was_reached && coder->pos == coder->size) |
| 197 return LZMA_STREAM_END; |
| 198 |
| 199 return LZMA_OK; |
| 200 } |
| 201 |
| 202 |
| 203 static void |
| 204 simple_coder_end(lzma_coder *coder, lzma_allocator *allocator) |
| 205 { |
| 206 lzma_next_end(&coder->next, allocator); |
| 207 lzma_free(coder->simple, allocator); |
| 208 lzma_free(coder, allocator); |
| 209 return; |
| 210 } |
| 211 |
| 212 |
| 213 static lzma_ret |
| 214 simple_coder_update(lzma_coder *coder, lzma_allocator *allocator, |
| 215 const lzma_filter *filters_null lzma_attribute((unused)), |
| 216 const lzma_filter *reversed_filters) |
| 217 { |
| 218 // No update support, just call the next filter in the chain. |
| 219 return lzma_next_filter_update( |
| 220 &coder->next, allocator, reversed_filters + 1); |
| 221 } |
| 222 |
| 223 |
| 224 extern lzma_ret |
| 225 lzma_simple_coder_init(lzma_next_coder *next, lzma_allocator *allocator, |
| 226 const lzma_filter_info *filters, |
| 227 size_t (*filter)(lzma_simple *simple, uint32_t now_pos, |
| 228 bool is_encoder, uint8_t *buffer, size_t size), |
| 229 size_t simple_size, size_t unfiltered_max, |
| 230 uint32_t alignment, bool is_encoder) |
| 231 { |
| 232 // Allocate memory for the lzma_coder structure if needed. |
| 233 if (next->coder == NULL) { |
| 234 // Here we allocate space also for the temporary buffer. We |
| 235 // need twice the size of unfiltered_max, because then it |
| 236 // is always possible to filter at least unfiltered_max bytes |
| 237 // more data in coder->buffer[] if it can be filled completely. |
| 238 next->coder = lzma_alloc(sizeof(lzma_coder) |
| 239 + 2 * unfiltered_max, allocator); |
| 240 if (next->coder == NULL) |
| 241 return LZMA_MEM_ERROR; |
| 242 |
| 243 next->code = &simple_code; |
| 244 next->end = &simple_coder_end; |
| 245 next->update = &simple_coder_update; |
| 246 |
| 247 next->coder->next = LZMA_NEXT_CODER_INIT; |
| 248 next->coder->filter = filter; |
| 249 next->coder->allocated = 2 * unfiltered_max; |
| 250 |
| 251 // Allocate memory for filter-specific data structure. |
| 252 if (simple_size > 0) { |
| 253 next->coder->simple = lzma_alloc( |
| 254 simple_size, allocator); |
| 255 if (next->coder->simple == NULL) |
| 256 return LZMA_MEM_ERROR; |
| 257 } else { |
| 258 next->coder->simple = NULL; |
| 259 } |
| 260 } |
| 261 |
| 262 if (filters[0].options != NULL) { |
| 263 const lzma_options_bcj *simple = filters[0].options; |
| 264 next->coder->now_pos = simple->start_offset; |
| 265 if (next->coder->now_pos & (alignment - 1)) |
| 266 return LZMA_OPTIONS_ERROR; |
| 267 } else { |
| 268 next->coder->now_pos = 0; |
| 269 } |
| 270 |
| 271 // Reset variables. |
| 272 next->coder->is_encoder = is_encoder; |
| 273 next->coder->end_was_reached = false; |
| 274 next->coder->pos = 0; |
| 275 next->coder->filtered = 0; |
| 276 next->coder->size = 0; |
| 277 |
| 278 return lzma_next_filter_init( |
| 279 &next->coder->next, allocator, filters + 1); |
| 280 } |
OLD | NEW |