OLD | NEW |
(Empty) | |
| 1 /////////////////////////////////////////////////////////////////////////////// |
| 2 // |
| 3 /// \file lz_encoder_mf.c |
| 4 /// \brief Match finders |
| 5 /// |
| 6 // Authors: Igor Pavlov |
| 7 // Lasse Collin |
| 8 // |
| 9 // This file has been put into the public domain. |
| 10 // You can do whatever you want with this file. |
| 11 // |
| 12 /////////////////////////////////////////////////////////////////////////////// |
| 13 |
| 14 #include "lz_encoder.h" |
| 15 #include "lz_encoder_hash.h" |
| 16 |
| 17 |
| 18 /// \brief Find matches starting from the current byte |
| 19 /// |
| 20 /// \return The length of the longest match found |
| 21 extern uint32_t |
| 22 lzma_mf_find(lzma_mf *mf, uint32_t *count_ptr, lzma_match *matches) |
| 23 { |
| 24 // Call the match finder. It returns the number of length-distance |
| 25 // pairs found. |
| 26 // FIXME: Minimum count is zero, what _exactly_ is the maximum? |
| 27 const uint32_t count = mf->find(mf, matches); |
| 28 |
| 29 // Length of the longest match; assume that no matches were found |
| 30 // and thus the maximum length is zero. |
| 31 uint32_t len_best = 0; |
| 32 |
| 33 if (count > 0) { |
| 34 #ifndef NDEBUG |
| 35 // Validate the matches. |
| 36 for (uint32_t i = 0; i < count; ++i) { |
| 37 assert(matches[i].len <= mf->nice_len); |
| 38 assert(matches[i].dist < mf->read_pos); |
| 39 assert(memcmp(mf_ptr(mf) - 1, |
| 40 mf_ptr(mf) - matches[i].dist - 2, |
| 41 matches[i].len) == 0); |
| 42 } |
| 43 #endif |
| 44 |
| 45 // The last used element in the array contains |
| 46 // the longest match. |
| 47 len_best = matches[count - 1].len; |
| 48 |
| 49 // If a match of maximum search length was found, try to |
| 50 // extend the match to maximum possible length. |
| 51 if (len_best == mf->nice_len) { |
| 52 // The limit for the match length is either the |
| 53 // maximum match length supported by the LZ-based |
| 54 // encoder or the number of bytes left in the |
| 55 // dictionary, whichever is smaller. |
| 56 uint32_t limit = mf_avail(mf) + 1; |
| 57 if (limit > mf->match_len_max) |
| 58 limit = mf->match_len_max; |
| 59 |
| 60 // Pointer to the byte we just ran through |
| 61 // the match finder. |
| 62 const uint8_t *p1 = mf_ptr(mf) - 1; |
| 63 |
| 64 // Pointer to the beginning of the match. We need -1 |
| 65 // here because the match distances are zero based. |
| 66 const uint8_t *p2 = p1 - matches[count - 1].dist - 1; |
| 67 |
| 68 while (len_best < limit |
| 69 && p1[len_best] == p2[len_best]) |
| 70 ++len_best; |
| 71 } |
| 72 } |
| 73 |
| 74 *count_ptr = count; |
| 75 |
| 76 // Finally update the read position to indicate that match finder was |
| 77 // run for this dictionary offset. |
| 78 ++mf->read_ahead; |
| 79 |
| 80 return len_best; |
| 81 } |
| 82 |
| 83 |
| 84 /// Hash value to indicate unused element in the hash. Since we start the |
| 85 /// positions from dict_size + 1, zero is always too far to qualify |
| 86 /// as usable match position. |
| 87 #define EMPTY_HASH_VALUE 0 |
| 88 |
| 89 |
| 90 /// Normalization must be done when lzma_mf.offset + lzma_mf.read_pos |
| 91 /// reaches MUST_NORMALIZE_POS. |
| 92 #define MUST_NORMALIZE_POS UINT32_MAX |
| 93 |
| 94 |
| 95 /// \brief Normalizes hash values |
| 96 /// |
| 97 /// The hash arrays store positions of match candidates. The positions are |
| 98 /// relative to an arbitrary offset that is not the same as the absolute |
| 99 /// offset in the input stream. The relative position of the current byte |
| 100 /// is lzma_mf.offset + lzma_mf.read_pos. The distances of the matches are |
| 101 /// the differences of the current read position and the position found from |
| 102 /// the hash. |
| 103 /// |
| 104 /// To prevent integer overflows of the offsets stored in the hash arrays, |
| 105 /// we need to "normalize" the stored values now and then. During the |
| 106 /// normalization, we drop values that indicate distance greater than the |
| 107 /// dictionary size, thus making space for new values. |
| 108 static void |
| 109 normalize(lzma_mf *mf) |
| 110 { |
| 111 assert(mf->read_pos + mf->offset == MUST_NORMALIZE_POS); |
| 112 |
| 113 // In future we may not want to touch the lowest bits, because there |
| 114 // may be match finders that use larger resolution than one byte. |
| 115 const uint32_t subvalue |
| 116 = (MUST_NORMALIZE_POS - mf->cyclic_size); |
| 117 // & (~(UINT32_C(1) << 10) - 1); |
| 118 |
| 119 const uint32_t count = mf->hash_size_sum + mf->sons_count; |
| 120 uint32_t *hash = mf->hash; |
| 121 |
| 122 for (uint32_t i = 0; i < count; ++i) { |
| 123 // If the distance is greater than the dictionary size, |
| 124 // we can simply mark the hash element as empty. |
| 125 // |
| 126 // NOTE: Only the first mf->hash_size_sum elements are |
| 127 // initialized for sure. There may be uninitialized elements |
| 128 // in mf->son. Since we go through both mf->hash and |
| 129 // mf->son here in normalization, Valgrind may complain |
| 130 // that the "if" below depends on uninitialized value. In |
| 131 // this case it is safe to ignore the warning. See also the |
| 132 // comments in lz_encoder_init() in lz_encoder.c. |
| 133 if (hash[i] <= subvalue) |
| 134 hash[i] = EMPTY_HASH_VALUE; |
| 135 else |
| 136 hash[i] -= subvalue; |
| 137 } |
| 138 |
| 139 // Update offset to match the new locations. |
| 140 mf->offset -= subvalue; |
| 141 |
| 142 return; |
| 143 } |
| 144 |
| 145 |
| 146 /// Mark the current byte as processed from point of view of the match finder. |
| 147 static void |
| 148 move_pos(lzma_mf *mf) |
| 149 { |
| 150 if (++mf->cyclic_pos == mf->cyclic_size) |
| 151 mf->cyclic_pos = 0; |
| 152 |
| 153 ++mf->read_pos; |
| 154 assert(mf->read_pos <= mf->write_pos); |
| 155 |
| 156 if (unlikely(mf->read_pos + mf->offset == UINT32_MAX)) |
| 157 normalize(mf); |
| 158 } |
| 159 |
| 160 |
| 161 /// When flushing, we cannot run the match finder unless there is nice_len |
| 162 /// bytes available in the dictionary. Instead, we skip running the match |
| 163 /// finder (indicating that no match was found), and count how many bytes we |
| 164 /// have ignored this way. |
| 165 /// |
| 166 /// When new data is given after the flushing was completed, the match finder |
| 167 /// is restarted by rewinding mf->read_pos backwards by mf->pending. Then |
| 168 /// the missed bytes are added to the hash using the match finder's skip |
| 169 /// function (with small amount of input, it may start using mf->pending |
| 170 /// again if flushing). |
| 171 /// |
| 172 /// Due to this rewinding, we don't touch cyclic_pos or test for |
| 173 /// normalization. It will be done when the match finder's skip function |
| 174 /// catches up after a flush. |
| 175 static void |
| 176 move_pending(lzma_mf *mf) |
| 177 { |
| 178 ++mf->read_pos; |
| 179 assert(mf->read_pos <= mf->write_pos); |
| 180 ++mf->pending; |
| 181 } |
| 182 |
| 183 |
| 184 /// Calculate len_limit and determine if there is enough input to run |
| 185 /// the actual match finder code. Sets up "cur" and "pos". This macro |
| 186 /// is used by all find functions and binary tree skip functions. Hash |
| 187 /// chain skip function doesn't need len_limit so a simpler code is used |
| 188 /// in them. |
| 189 #define header(is_bt, len_min, ret_op) \ |
| 190 uint32_t len_limit = mf_avail(mf); \ |
| 191 if (mf->nice_len <= len_limit) { \ |
| 192 len_limit = mf->nice_len; \ |
| 193 } else if (len_limit < (len_min) \ |
| 194 || (is_bt && mf->action == LZMA_SYNC_FLUSH)) { \ |
| 195 assert(mf->action != LZMA_RUN); \ |
| 196 move_pending(mf); \ |
| 197 ret_op; \ |
| 198 } \ |
| 199 const uint8_t *cur = mf_ptr(mf); \ |
| 200 const uint32_t pos = mf->read_pos + mf->offset |
| 201 |
| 202 |
| 203 /// Header for find functions. "return 0" indicates that zero matches |
| 204 /// were found. |
| 205 #define header_find(is_bt, len_min) \ |
| 206 header(is_bt, len_min, return 0); \ |
| 207 uint32_t matches_count = 0 |
| 208 |
| 209 |
| 210 /// Header for a loop in a skip function. "continue" tells to skip the rest |
| 211 /// of the code in the loop. |
| 212 #define header_skip(is_bt, len_min) \ |
| 213 header(is_bt, len_min, continue) |
| 214 |
| 215 |
| 216 /// Calls hc_find_func() or bt_find_func() and calculates the total number |
| 217 /// of matches found. Updates the dictionary position and returns the number |
| 218 /// of matches found. |
| 219 #define call_find(func, len_best) \ |
| 220 do { \ |
| 221 matches_count = func(len_limit, pos, cur, cur_match, mf->depth, \ |
| 222 mf->son, mf->cyclic_pos, mf->cyclic_size, \ |
| 223 matches + matches_count, len_best) \ |
| 224 - matches; \ |
| 225 move_pos(mf); \ |
| 226 return matches_count; \ |
| 227 } while (0) |
| 228 |
| 229 |
| 230 //////////////// |
| 231 // Hash Chain // |
| 232 //////////////// |
| 233 |
| 234 #if defined(HAVE_MF_HC3) || defined(HAVE_MF_HC4) |
| 235 /// |
| 236 /// |
| 237 /// \param len_limit Don't look for matches longer than len_limit. |
| 238 /// \param pos lzma_mf.read_pos + lzma_mf.offset |
| 239 /// \param cur Pointer to current byte (mf_ptr(mf)) |
| 240 /// \param cur_match Start position of the current match candidate |
| 241 /// \param depth Maximum length of the hash chain |
| 242 /// \param son lzma_mf.son (contains the hash chain) |
| 243 /// \param cyclic_pos |
| 244 /// \param cyclic_size |
| 245 /// \param matches Array to hold the matches. |
| 246 /// \param len_best The length of the longest match found so far. |
| 247 static lzma_match * |
| 248 hc_find_func( |
| 249 const uint32_t len_limit, |
| 250 const uint32_t pos, |
| 251 const uint8_t *const cur, |
| 252 uint32_t cur_match, |
| 253 uint32_t depth, |
| 254 uint32_t *const son, |
| 255 const uint32_t cyclic_pos, |
| 256 const uint32_t cyclic_size, |
| 257 lzma_match *matches, |
| 258 uint32_t len_best) |
| 259 { |
| 260 son[cyclic_pos] = cur_match; |
| 261 |
| 262 while (true) { |
| 263 const uint32_t delta = pos - cur_match; |
| 264 if (depth-- == 0 || delta >= cyclic_size) |
| 265 return matches; |
| 266 |
| 267 const uint8_t *const pb = cur - delta; |
| 268 cur_match = son[cyclic_pos - delta |
| 269 + (delta > cyclic_pos ? cyclic_size : 0)]; |
| 270 |
| 271 if (pb[len_best] == cur[len_best] && pb[0] == cur[0]) { |
| 272 uint32_t len = 0; |
| 273 while (++len != len_limit) |
| 274 if (pb[len] != cur[len]) |
| 275 break; |
| 276 |
| 277 if (len_best < len) { |
| 278 len_best = len; |
| 279 matches->len = len; |
| 280 matches->dist = delta - 1; |
| 281 ++matches; |
| 282 |
| 283 if (len == len_limit) |
| 284 return matches; |
| 285 } |
| 286 } |
| 287 } |
| 288 } |
| 289 |
| 290 |
| 291 #define hc_find(len_best) \ |
| 292 call_find(hc_find_func, len_best) |
| 293 |
| 294 |
| 295 #define hc_skip() \ |
| 296 do { \ |
| 297 mf->son[mf->cyclic_pos] = cur_match; \ |
| 298 move_pos(mf); \ |
| 299 } while (0) |
| 300 |
| 301 #endif |
| 302 |
| 303 |
| 304 #ifdef HAVE_MF_HC3 |
| 305 extern uint32_t |
| 306 lzma_mf_hc3_find(lzma_mf *mf, lzma_match *matches) |
| 307 { |
| 308 header_find(false, 3); |
| 309 |
| 310 hash_3_calc(); |
| 311 |
| 312 const uint32_t delta2 = pos - mf->hash[hash_2_value]; |
| 313 const uint32_t cur_match = mf->hash[FIX_3_HASH_SIZE + hash_value]; |
| 314 |
| 315 mf->hash[hash_2_value] = pos; |
| 316 mf->hash[FIX_3_HASH_SIZE + hash_value] = pos; |
| 317 |
| 318 uint32_t len_best = 2; |
| 319 |
| 320 if (delta2 < mf->cyclic_size && *(cur - delta2) == *cur) { |
| 321 for ( ; len_best != len_limit; ++len_best) |
| 322 if (*(cur + len_best - delta2) != cur[len_best]) |
| 323 break; |
| 324 |
| 325 matches[0].len = len_best; |
| 326 matches[0].dist = delta2 - 1; |
| 327 matches_count = 1; |
| 328 |
| 329 if (len_best == len_limit) { |
| 330 hc_skip(); |
| 331 return 1; // matches_count |
| 332 } |
| 333 } |
| 334 |
| 335 hc_find(len_best); |
| 336 } |
| 337 |
| 338 |
| 339 extern void |
| 340 lzma_mf_hc3_skip(lzma_mf *mf, uint32_t amount) |
| 341 { |
| 342 do { |
| 343 if (mf_avail(mf) < 3) { |
| 344 move_pending(mf); |
| 345 continue; |
| 346 } |
| 347 |
| 348 const uint8_t *cur = mf_ptr(mf); |
| 349 const uint32_t pos = mf->read_pos + mf->offset; |
| 350 |
| 351 hash_3_calc(); |
| 352 |
| 353 const uint32_t cur_match |
| 354 = mf->hash[FIX_3_HASH_SIZE + hash_value]; |
| 355 |
| 356 mf->hash[hash_2_value] = pos; |
| 357 mf->hash[FIX_3_HASH_SIZE + hash_value] = pos; |
| 358 |
| 359 hc_skip(); |
| 360 |
| 361 } while (--amount != 0); |
| 362 } |
| 363 #endif |
| 364 |
| 365 |
| 366 #ifdef HAVE_MF_HC4 |
| 367 extern uint32_t |
| 368 lzma_mf_hc4_find(lzma_mf *mf, lzma_match *matches) |
| 369 { |
| 370 header_find(false, 4); |
| 371 |
| 372 hash_4_calc(); |
| 373 |
| 374 uint32_t delta2 = pos - mf->hash[hash_2_value]; |
| 375 const uint32_t delta3 |
| 376 = pos - mf->hash[FIX_3_HASH_SIZE + hash_3_value]; |
| 377 const uint32_t cur_match = mf->hash[FIX_4_HASH_SIZE + hash_value]; |
| 378 |
| 379 mf->hash[hash_2_value ] = pos; |
| 380 mf->hash[FIX_3_HASH_SIZE + hash_3_value] = pos; |
| 381 mf->hash[FIX_4_HASH_SIZE + hash_value] = pos; |
| 382 |
| 383 uint32_t len_best = 1; |
| 384 |
| 385 if (delta2 < mf->cyclic_size && *(cur - delta2) == *cur) { |
| 386 len_best = 2; |
| 387 matches[0].len = 2; |
| 388 matches[0].dist = delta2 - 1; |
| 389 matches_count = 1; |
| 390 } |
| 391 |
| 392 if (delta2 != delta3 && delta3 < mf->cyclic_size |
| 393 && *(cur - delta3) == *cur) { |
| 394 len_best = 3; |
| 395 matches[matches_count++].dist = delta3 - 1; |
| 396 delta2 = delta3; |
| 397 } |
| 398 |
| 399 if (matches_count != 0) { |
| 400 for ( ; len_best != len_limit; ++len_best) |
| 401 if (*(cur + len_best - delta2) != cur[len_best]) |
| 402 break; |
| 403 |
| 404 matches[matches_count - 1].len = len_best; |
| 405 |
| 406 if (len_best == len_limit) { |
| 407 hc_skip(); |
| 408 return matches_count; |
| 409 } |
| 410 } |
| 411 |
| 412 if (len_best < 3) |
| 413 len_best = 3; |
| 414 |
| 415 hc_find(len_best); |
| 416 } |
| 417 |
| 418 |
| 419 extern void |
| 420 lzma_mf_hc4_skip(lzma_mf *mf, uint32_t amount) |
| 421 { |
| 422 do { |
| 423 if (mf_avail(mf) < 4) { |
| 424 move_pending(mf); |
| 425 continue; |
| 426 } |
| 427 |
| 428 const uint8_t *cur = mf_ptr(mf); |
| 429 const uint32_t pos = mf->read_pos + mf->offset; |
| 430 |
| 431 hash_4_calc(); |
| 432 |
| 433 const uint32_t cur_match |
| 434 = mf->hash[FIX_4_HASH_SIZE + hash_value]; |
| 435 |
| 436 mf->hash[hash_2_value] = pos; |
| 437 mf->hash[FIX_3_HASH_SIZE + hash_3_value] = pos; |
| 438 mf->hash[FIX_4_HASH_SIZE + hash_value] = pos; |
| 439 |
| 440 hc_skip(); |
| 441 |
| 442 } while (--amount != 0); |
| 443 } |
| 444 #endif |
| 445 |
| 446 |
| 447 ///////////////// |
| 448 // Binary Tree // |
| 449 ///////////////// |
| 450 |
| 451 #if defined(HAVE_MF_BT2) || defined(HAVE_MF_BT3) || defined(HAVE_MF_BT4) |
| 452 static lzma_match * |
| 453 bt_find_func( |
| 454 const uint32_t len_limit, |
| 455 const uint32_t pos, |
| 456 const uint8_t *const cur, |
| 457 uint32_t cur_match, |
| 458 uint32_t depth, |
| 459 uint32_t *const son, |
| 460 const uint32_t cyclic_pos, |
| 461 const uint32_t cyclic_size, |
| 462 lzma_match *matches, |
| 463 uint32_t len_best) |
| 464 { |
| 465 uint32_t *ptr0 = son + (cyclic_pos << 1) + 1; |
| 466 uint32_t *ptr1 = son + (cyclic_pos << 1); |
| 467 |
| 468 uint32_t len0 = 0; |
| 469 uint32_t len1 = 0; |
| 470 |
| 471 while (true) { |
| 472 const uint32_t delta = pos - cur_match; |
| 473 if (depth-- == 0 || delta >= cyclic_size) { |
| 474 *ptr0 = EMPTY_HASH_VALUE; |
| 475 *ptr1 = EMPTY_HASH_VALUE; |
| 476 return matches; |
| 477 } |
| 478 |
| 479 uint32_t *const pair = son + ((cyclic_pos - delta |
| 480 + (delta > cyclic_pos ? cyclic_size : 0)) |
| 481 << 1); |
| 482 |
| 483 const uint8_t *const pb = cur - delta; |
| 484 uint32_t len = my_min(len0, len1); |
| 485 |
| 486 if (pb[len] == cur[len]) { |
| 487 while (++len != len_limit) |
| 488 if (pb[len] != cur[len]) |
| 489 break; |
| 490 |
| 491 if (len_best < len) { |
| 492 len_best = len; |
| 493 matches->len = len; |
| 494 matches->dist = delta - 1; |
| 495 ++matches; |
| 496 |
| 497 if (len == len_limit) { |
| 498 *ptr1 = pair[0]; |
| 499 *ptr0 = pair[1]; |
| 500 return matches; |
| 501 } |
| 502 } |
| 503 } |
| 504 |
| 505 if (pb[len] < cur[len]) { |
| 506 *ptr1 = cur_match; |
| 507 ptr1 = pair + 1; |
| 508 cur_match = *ptr1; |
| 509 len1 = len; |
| 510 } else { |
| 511 *ptr0 = cur_match; |
| 512 ptr0 = pair; |
| 513 cur_match = *ptr0; |
| 514 len0 = len; |
| 515 } |
| 516 } |
| 517 } |
| 518 |
| 519 |
| 520 static void |
| 521 bt_skip_func( |
| 522 const uint32_t len_limit, |
| 523 const uint32_t pos, |
| 524 const uint8_t *const cur, |
| 525 uint32_t cur_match, |
| 526 uint32_t depth, |
| 527 uint32_t *const son, |
| 528 const uint32_t cyclic_pos, |
| 529 const uint32_t cyclic_size) |
| 530 { |
| 531 uint32_t *ptr0 = son + (cyclic_pos << 1) + 1; |
| 532 uint32_t *ptr1 = son + (cyclic_pos << 1); |
| 533 |
| 534 uint32_t len0 = 0; |
| 535 uint32_t len1 = 0; |
| 536 |
| 537 while (true) { |
| 538 const uint32_t delta = pos - cur_match; |
| 539 if (depth-- == 0 || delta >= cyclic_size) { |
| 540 *ptr0 = EMPTY_HASH_VALUE; |
| 541 *ptr1 = EMPTY_HASH_VALUE; |
| 542 return; |
| 543 } |
| 544 |
| 545 uint32_t *pair = son + ((cyclic_pos - delta |
| 546 + (delta > cyclic_pos ? cyclic_size : 0)) |
| 547 << 1); |
| 548 const uint8_t *pb = cur - delta; |
| 549 uint32_t len = my_min(len0, len1); |
| 550 |
| 551 if (pb[len] == cur[len]) { |
| 552 while (++len != len_limit) |
| 553 if (pb[len] != cur[len]) |
| 554 break; |
| 555 |
| 556 if (len == len_limit) { |
| 557 *ptr1 = pair[0]; |
| 558 *ptr0 = pair[1]; |
| 559 return; |
| 560 } |
| 561 } |
| 562 |
| 563 if (pb[len] < cur[len]) { |
| 564 *ptr1 = cur_match; |
| 565 ptr1 = pair + 1; |
| 566 cur_match = *ptr1; |
| 567 len1 = len; |
| 568 } else { |
| 569 *ptr0 = cur_match; |
| 570 ptr0 = pair; |
| 571 cur_match = *ptr0; |
| 572 len0 = len; |
| 573 } |
| 574 } |
| 575 } |
| 576 |
| 577 |
| 578 #define bt_find(len_best) \ |
| 579 call_find(bt_find_func, len_best) |
| 580 |
| 581 #define bt_skip() \ |
| 582 do { \ |
| 583 bt_skip_func(len_limit, pos, cur, cur_match, mf->depth, \ |
| 584 mf->son, mf->cyclic_pos, \ |
| 585 mf->cyclic_size); \ |
| 586 move_pos(mf); \ |
| 587 } while (0) |
| 588 |
| 589 #endif |
| 590 |
| 591 |
| 592 #ifdef HAVE_MF_BT2 |
| 593 extern uint32_t |
| 594 lzma_mf_bt2_find(lzma_mf *mf, lzma_match *matches) |
| 595 { |
| 596 header_find(true, 2); |
| 597 |
| 598 hash_2_calc(); |
| 599 |
| 600 const uint32_t cur_match = mf->hash[hash_value]; |
| 601 mf->hash[hash_value] = pos; |
| 602 |
| 603 bt_find(1); |
| 604 } |
| 605 |
| 606 |
| 607 extern void |
| 608 lzma_mf_bt2_skip(lzma_mf *mf, uint32_t amount) |
| 609 { |
| 610 do { |
| 611 header_skip(true, 2); |
| 612 |
| 613 hash_2_calc(); |
| 614 |
| 615 const uint32_t cur_match = mf->hash[hash_value]; |
| 616 mf->hash[hash_value] = pos; |
| 617 |
| 618 bt_skip(); |
| 619 |
| 620 } while (--amount != 0); |
| 621 } |
| 622 #endif |
| 623 |
| 624 |
| 625 #ifdef HAVE_MF_BT3 |
| 626 extern uint32_t |
| 627 lzma_mf_bt3_find(lzma_mf *mf, lzma_match *matches) |
| 628 { |
| 629 header_find(true, 3); |
| 630 |
| 631 hash_3_calc(); |
| 632 |
| 633 const uint32_t delta2 = pos - mf->hash[hash_2_value]; |
| 634 const uint32_t cur_match = mf->hash[FIX_3_HASH_SIZE + hash_value]; |
| 635 |
| 636 mf->hash[hash_2_value] = pos; |
| 637 mf->hash[FIX_3_HASH_SIZE + hash_value] = pos; |
| 638 |
| 639 uint32_t len_best = 2; |
| 640 |
| 641 if (delta2 < mf->cyclic_size && *(cur - delta2) == *cur) { |
| 642 for ( ; len_best != len_limit; ++len_best) |
| 643 if (*(cur + len_best - delta2) != cur[len_best]) |
| 644 break; |
| 645 |
| 646 matches[0].len = len_best; |
| 647 matches[0].dist = delta2 - 1; |
| 648 matches_count = 1; |
| 649 |
| 650 if (len_best == len_limit) { |
| 651 bt_skip(); |
| 652 return 1; // matches_count |
| 653 } |
| 654 } |
| 655 |
| 656 bt_find(len_best); |
| 657 } |
| 658 |
| 659 |
| 660 extern void |
| 661 lzma_mf_bt3_skip(lzma_mf *mf, uint32_t amount) |
| 662 { |
| 663 do { |
| 664 header_skip(true, 3); |
| 665 |
| 666 hash_3_calc(); |
| 667 |
| 668 const uint32_t cur_match |
| 669 = mf->hash[FIX_3_HASH_SIZE + hash_value]; |
| 670 |
| 671 mf->hash[hash_2_value] = pos; |
| 672 mf->hash[FIX_3_HASH_SIZE + hash_value] = pos; |
| 673 |
| 674 bt_skip(); |
| 675 |
| 676 } while (--amount != 0); |
| 677 } |
| 678 #endif |
| 679 |
| 680 |
| 681 #ifdef HAVE_MF_BT4 |
| 682 extern uint32_t |
| 683 lzma_mf_bt4_find(lzma_mf *mf, lzma_match *matches) |
| 684 { |
| 685 header_find(true, 4); |
| 686 |
| 687 hash_4_calc(); |
| 688 |
| 689 uint32_t delta2 = pos - mf->hash[hash_2_value]; |
| 690 const uint32_t delta3 |
| 691 = pos - mf->hash[FIX_3_HASH_SIZE + hash_3_value]; |
| 692 const uint32_t cur_match = mf->hash[FIX_4_HASH_SIZE + hash_value]; |
| 693 |
| 694 mf->hash[hash_2_value] = pos; |
| 695 mf->hash[FIX_3_HASH_SIZE + hash_3_value] = pos; |
| 696 mf->hash[FIX_4_HASH_SIZE + hash_value] = pos; |
| 697 |
| 698 uint32_t len_best = 1; |
| 699 |
| 700 if (delta2 < mf->cyclic_size && *(cur - delta2) == *cur) { |
| 701 len_best = 2; |
| 702 matches[0].len = 2; |
| 703 matches[0].dist = delta2 - 1; |
| 704 matches_count = 1; |
| 705 } |
| 706 |
| 707 if (delta2 != delta3 && delta3 < mf->cyclic_size |
| 708 && *(cur - delta3) == *cur) { |
| 709 len_best = 3; |
| 710 matches[matches_count++].dist = delta3 - 1; |
| 711 delta2 = delta3; |
| 712 } |
| 713 |
| 714 if (matches_count != 0) { |
| 715 for ( ; len_best != len_limit; ++len_best) |
| 716 if (*(cur + len_best - delta2) != cur[len_best]) |
| 717 break; |
| 718 |
| 719 matches[matches_count - 1].len = len_best; |
| 720 |
| 721 if (len_best == len_limit) { |
| 722 bt_skip(); |
| 723 return matches_count; |
| 724 } |
| 725 } |
| 726 |
| 727 if (len_best < 3) |
| 728 len_best = 3; |
| 729 |
| 730 bt_find(len_best); |
| 731 } |
| 732 |
| 733 |
| 734 extern void |
| 735 lzma_mf_bt4_skip(lzma_mf *mf, uint32_t amount) |
| 736 { |
| 737 do { |
| 738 header_skip(true, 4); |
| 739 |
| 740 hash_4_calc(); |
| 741 |
| 742 const uint32_t cur_match |
| 743 = mf->hash[FIX_4_HASH_SIZE + hash_value]; |
| 744 |
| 745 mf->hash[hash_2_value] = pos; |
| 746 mf->hash[FIX_3_HASH_SIZE + hash_3_value] = pos; |
| 747 mf->hash[FIX_4_HASH_SIZE + hash_value] = pos; |
| 748 |
| 749 bt_skip(); |
| 750 |
| 751 } while (--amount != 0); |
| 752 } |
| 753 #endif |
OLD | NEW |