OLD | NEW |
(Empty) | |
| 1 /////////////////////////////////////////////////////////////////////////////// |
| 2 // |
| 3 /// \file lz_decoder.c |
| 4 /// \brief LZ out window |
| 5 /// |
| 6 // Authors: Igor Pavlov |
| 7 // Lasse Collin |
| 8 // |
| 9 // This file has been put into the public domain. |
| 10 // You can do whatever you want with this file. |
| 11 // |
| 12 /////////////////////////////////////////////////////////////////////////////// |
| 13 |
| 14 // liblzma supports multiple LZ77-based filters. The LZ part is shared |
| 15 // between these filters. The LZ code takes care of dictionary handling |
| 16 // and passing the data between filters in the chain. The filter-specific |
| 17 // part decodes from the input buffer to the dictionary. |
| 18 |
| 19 |
| 20 #include "lz_decoder.h" |
| 21 |
| 22 |
| 23 struct lzma_coder_s { |
| 24 /// Dictionary (history buffer) |
| 25 lzma_dict dict; |
| 26 |
| 27 /// The actual LZ-based decoder e.g. LZMA |
| 28 lzma_lz_decoder lz; |
| 29 |
| 30 /// Next filter in the chain, if any. Note that LZMA and LZMA2 are |
| 31 /// only allowed as the last filter, but the long-range filter in |
| 32 /// future can be in the middle of the chain. |
| 33 lzma_next_coder next; |
| 34 |
| 35 /// True if the next filter in the chain has returned LZMA_STREAM_END. |
| 36 bool next_finished; |
| 37 |
| 38 /// True if the LZ decoder (e.g. LZMA) has detected end of payload |
| 39 /// marker. This may become true before next_finished becomes true. |
| 40 bool this_finished; |
| 41 |
| 42 /// Temporary buffer needed when the LZ-based filter is not the last |
| 43 /// filter in the chain. The output of the next filter is first |
| 44 /// decoded into buffer[], which is then used as input for the actual |
| 45 /// LZ-based decoder. |
| 46 struct { |
| 47 size_t pos; |
| 48 size_t size; |
| 49 uint8_t buffer[LZMA_BUFFER_SIZE]; |
| 50 } temp; |
| 51 }; |
| 52 |
| 53 |
| 54 static void |
| 55 lz_decoder_reset(lzma_coder *coder) |
| 56 { |
| 57 coder->dict.pos = 0; |
| 58 coder->dict.full = 0; |
| 59 coder->dict.buf[coder->dict.size - 1] = '\0'; |
| 60 coder->dict.need_reset = false; |
| 61 return; |
| 62 } |
| 63 |
| 64 |
| 65 static lzma_ret |
| 66 decode_buffer(lzma_coder *coder, |
| 67 const uint8_t *restrict in, size_t *restrict in_pos, |
| 68 size_t in_size, uint8_t *restrict out, |
| 69 size_t *restrict out_pos, size_t out_size) |
| 70 { |
| 71 while (true) { |
| 72 // Wrap the dictionary if needed. |
| 73 if (coder->dict.pos == coder->dict.size) |
| 74 coder->dict.pos = 0; |
| 75 |
| 76 // Store the current dictionary position. It is needed to know |
| 77 // where to start copying to the out[] buffer. |
| 78 const size_t dict_start = coder->dict.pos; |
| 79 |
| 80 // Calculate how much we allow coder->lz.code() to decode. |
| 81 // It must not decode past the end of the dictionary |
| 82 // buffer, and we don't want it to decode more than is |
| 83 // actually needed to fill the out[] buffer. |
| 84 coder->dict.limit = coder->dict.pos |
| 85 + my_min(out_size - *out_pos, |
| 86 coder->dict.size - coder->dict.pos); |
| 87 |
| 88 // Call the coder->lz.code() to do the actual decoding. |
| 89 const lzma_ret ret = coder->lz.code( |
| 90 coder->lz.coder, &coder->dict, |
| 91 in, in_pos, in_size); |
| 92 |
| 93 // Copy the decoded data from the dictionary to the out[] |
| 94 // buffer. |
| 95 const size_t copy_size = coder->dict.pos - dict_start; |
| 96 assert(copy_size <= out_size - *out_pos); |
| 97 memcpy(out + *out_pos, coder->dict.buf + dict_start, |
| 98 copy_size); |
| 99 *out_pos += copy_size; |
| 100 |
| 101 // Reset the dictionary if so requested by coder->lz.code(). |
| 102 if (coder->dict.need_reset) { |
| 103 lz_decoder_reset(coder); |
| 104 |
| 105 // Since we reset dictionary, we don't check if |
| 106 // dictionary became full. |
| 107 if (ret != LZMA_OK || *out_pos == out_size) |
| 108 return ret; |
| 109 } else { |
| 110 // Return if everything got decoded or an error |
| 111 // occurred, or if there's no more data to decode. |
| 112 // |
| 113 // Note that detecting if there's something to decode |
| 114 // is done by looking if dictionary become full |
| 115 // instead of looking if *in_pos == in_size. This |
| 116 // is because it is possible that all the input was |
| 117 // consumed already but some data is pending to be |
| 118 // written to the dictionary. |
| 119 if (ret != LZMA_OK || *out_pos == out_size |
| 120 || coder->dict.pos < coder->dict.size) |
| 121 return ret; |
| 122 } |
| 123 } |
| 124 } |
| 125 |
| 126 |
| 127 static lzma_ret |
| 128 lz_decode(lzma_coder *coder, |
| 129 lzma_allocator *allocator lzma_attribute((unused)), |
| 130 const uint8_t *restrict in, size_t *restrict in_pos, |
| 131 size_t in_size, uint8_t *restrict out, |
| 132 size_t *restrict out_pos, size_t out_size, |
| 133 lzma_action action) |
| 134 { |
| 135 if (coder->next.code == NULL) |
| 136 return decode_buffer(coder, in, in_pos, in_size, |
| 137 out, out_pos, out_size); |
| 138 |
| 139 // We aren't the last coder in the chain, we need to decode |
| 140 // our input to a temporary buffer. |
| 141 while (*out_pos < out_size) { |
| 142 // Fill the temporary buffer if it is empty. |
| 143 if (!coder->next_finished |
| 144 && coder->temp.pos == coder->temp.size) { |
| 145 coder->temp.pos = 0; |
| 146 coder->temp.size = 0; |
| 147 |
| 148 const lzma_ret ret = coder->next.code( |
| 149 coder->next.coder, |
| 150 allocator, in, in_pos, in_size, |
| 151 coder->temp.buffer, &coder->temp.size, |
| 152 LZMA_BUFFER_SIZE, action); |
| 153 |
| 154 if (ret == LZMA_STREAM_END) |
| 155 coder->next_finished = true; |
| 156 else if (ret != LZMA_OK || coder->temp.size == 0) |
| 157 return ret; |
| 158 } |
| 159 |
| 160 if (coder->this_finished) { |
| 161 if (coder->temp.size != 0) |
| 162 return LZMA_DATA_ERROR; |
| 163 |
| 164 if (coder->next_finished) |
| 165 return LZMA_STREAM_END; |
| 166 |
| 167 return LZMA_OK; |
| 168 } |
| 169 |
| 170 const lzma_ret ret = decode_buffer(coder, coder->temp.buffer, |
| 171 &coder->temp.pos, coder->temp.size, |
| 172 out, out_pos, out_size); |
| 173 |
| 174 if (ret == LZMA_STREAM_END) |
| 175 coder->this_finished = true; |
| 176 else if (ret != LZMA_OK) |
| 177 return ret; |
| 178 else if (coder->next_finished && *out_pos < out_size) |
| 179 return LZMA_DATA_ERROR; |
| 180 } |
| 181 |
| 182 return LZMA_OK; |
| 183 } |
| 184 |
| 185 |
| 186 static void |
| 187 lz_decoder_end(lzma_coder *coder, lzma_allocator *allocator) |
| 188 { |
| 189 lzma_next_end(&coder->next, allocator); |
| 190 lzma_free(coder->dict.buf, allocator); |
| 191 |
| 192 if (coder->lz.end != NULL) |
| 193 coder->lz.end(coder->lz.coder, allocator); |
| 194 else |
| 195 lzma_free(coder->lz.coder, allocator); |
| 196 |
| 197 lzma_free(coder, allocator); |
| 198 return; |
| 199 } |
| 200 |
| 201 |
| 202 extern lzma_ret |
| 203 lzma_lz_decoder_init(lzma_next_coder *next, lzma_allocator *allocator, |
| 204 const lzma_filter_info *filters, |
| 205 lzma_ret (*lz_init)(lzma_lz_decoder *lz, |
| 206 lzma_allocator *allocator, const void *options, |
| 207 lzma_lz_options *lz_options)) |
| 208 { |
| 209 // Allocate the base structure if it isn't already allocated. |
| 210 if (next->coder == NULL) { |
| 211 next->coder = lzma_alloc(sizeof(lzma_coder), allocator); |
| 212 if (next->coder == NULL) |
| 213 return LZMA_MEM_ERROR; |
| 214 |
| 215 next->code = &lz_decode; |
| 216 next->end = &lz_decoder_end; |
| 217 |
| 218 next->coder->dict.buf = NULL; |
| 219 next->coder->dict.size = 0; |
| 220 next->coder->lz = LZMA_LZ_DECODER_INIT; |
| 221 next->coder->next = LZMA_NEXT_CODER_INIT; |
| 222 } |
| 223 |
| 224 // Allocate and initialize the LZ-based decoder. It will also give |
| 225 // us the dictionary size. |
| 226 lzma_lz_options lz_options; |
| 227 return_if_error(lz_init(&next->coder->lz, allocator, |
| 228 filters[0].options, &lz_options)); |
| 229 |
| 230 // If the dictionary size is very small, increase it to 4096 bytes. |
| 231 // This is to prevent constant wrapping of the dictionary, which |
| 232 // would slow things down. The downside is that since we don't check |
| 233 // separately for the real dictionary size, we may happily accept |
| 234 // corrupt files. |
| 235 if (lz_options.dict_size < 4096) |
| 236 lz_options.dict_size = 4096; |
| 237 |
| 238 // Make dictionary size a multipe of 16. Some LZ-based decoders like |
| 239 // LZMA use the lowest bits lzma_dict.pos to know the alignment of the |
| 240 // data. Aligned buffer is also good when memcpying from the |
| 241 // dictionary to the output buffer, since applications are |
| 242 // recommended to give aligned buffers to liblzma. |
| 243 // |
| 244 // Avoid integer overflow. |
| 245 if (lz_options.dict_size > SIZE_MAX - 15) |
| 246 return LZMA_MEM_ERROR; |
| 247 |
| 248 lz_options.dict_size = (lz_options.dict_size + 15) & ~((size_t)(15)); |
| 249 |
| 250 // Allocate and initialize the dictionary. |
| 251 if (next->coder->dict.size != lz_options.dict_size) { |
| 252 lzma_free(next->coder->dict.buf, allocator); |
| 253 next->coder->dict.buf |
| 254 = lzma_alloc(lz_options.dict_size, allocator); |
| 255 if (next->coder->dict.buf == NULL) |
| 256 return LZMA_MEM_ERROR; |
| 257 |
| 258 next->coder->dict.size = lz_options.dict_size; |
| 259 } |
| 260 |
| 261 lz_decoder_reset(next->coder); |
| 262 |
| 263 // Use the preset dictionary if it was given to us. |
| 264 if (lz_options.preset_dict != NULL |
| 265 && lz_options.preset_dict_size > 0) { |
| 266 // If the preset dictionary is bigger than the actual |
| 267 // dictionary, copy only the tail. |
| 268 const size_t copy_size = my_min(lz_options.preset_dict_size, |
| 269 lz_options.dict_size); |
| 270 const size_t offset = lz_options.preset_dict_size - copy_size; |
| 271 memcpy(next->coder->dict.buf, lz_options.preset_dict + offset, |
| 272 copy_size); |
| 273 next->coder->dict.pos = copy_size; |
| 274 next->coder->dict.full = copy_size; |
| 275 } |
| 276 |
| 277 // Miscellaneous initializations |
| 278 next->coder->next_finished = false; |
| 279 next->coder->this_finished = false; |
| 280 next->coder->temp.pos = 0; |
| 281 next->coder->temp.size = 0; |
| 282 |
| 283 // Initialize the next filter in the chain, if any. |
| 284 return lzma_next_filter_init(&next->coder->next, allocator, |
| 285 filters + 1); |
| 286 } |
| 287 |
| 288 |
| 289 extern uint64_t |
| 290 lzma_lz_decoder_memusage(size_t dictionary_size) |
| 291 { |
| 292 return sizeof(lzma_coder) + (uint64_t)(dictionary_size); |
| 293 } |
| 294 |
| 295 |
| 296 extern void |
| 297 lzma_lz_decoder_uncompressed(lzma_coder *coder, lzma_vli uncompressed_size) |
| 298 { |
| 299 coder->lz.set_uncompressed(coder->lz.coder, uncompressed_size); |
| 300 } |
OLD | NEW |