OLD | NEW |
(Empty) | |
| 1 /////////////////////////////////////////////////////////////////////////////// |
| 2 // |
| 3 /// \file index_encoder.c |
| 4 /// \brief Encodes the Index field |
| 5 // |
| 6 // Author: Lasse Collin |
| 7 // |
| 8 // This file has been put into the public domain. |
| 9 // You can do whatever you want with this file. |
| 10 // |
| 11 /////////////////////////////////////////////////////////////////////////////// |
| 12 |
| 13 #include "index_encoder.h" |
| 14 #include "index.h" |
| 15 #include "check.h" |
| 16 |
| 17 |
| 18 struct lzma_coder_s { |
| 19 enum { |
| 20 SEQ_INDICATOR, |
| 21 SEQ_COUNT, |
| 22 SEQ_UNPADDED, |
| 23 SEQ_UNCOMPRESSED, |
| 24 SEQ_NEXT, |
| 25 SEQ_PADDING, |
| 26 SEQ_CRC32, |
| 27 } sequence; |
| 28 |
| 29 /// Index being encoded |
| 30 const lzma_index *index; |
| 31 |
| 32 /// Iterator for the Index being encoded |
| 33 lzma_index_iter iter; |
| 34 |
| 35 /// Position in integers |
| 36 size_t pos; |
| 37 |
| 38 /// CRC32 of the List of Records field |
| 39 uint32_t crc32; |
| 40 }; |
| 41 |
| 42 |
| 43 static lzma_ret |
| 44 index_encode(lzma_coder *coder, |
| 45 lzma_allocator *allocator lzma_attribute((unused)), |
| 46 const uint8_t *restrict in lzma_attribute((unused)), |
| 47 size_t *restrict in_pos lzma_attribute((unused)), |
| 48 size_t in_size lzma_attribute((unused)), |
| 49 uint8_t *restrict out, size_t *restrict out_pos, |
| 50 size_t out_size, lzma_action action lzma_attribute((unused))) |
| 51 { |
| 52 // Position where to start calculating CRC32. The idea is that we |
| 53 // need to call lzma_crc32() only once per call to index_encode(). |
| 54 const size_t out_start = *out_pos; |
| 55 |
| 56 // Return value to use if we return at the end of this function. |
| 57 // We use "goto out" to jump out of the while-switch construct |
| 58 // instead of returning directly, because that way we don't need |
| 59 // to copypaste the lzma_crc32() call to many places. |
| 60 lzma_ret ret = LZMA_OK; |
| 61 |
| 62 while (*out_pos < out_size) |
| 63 switch (coder->sequence) { |
| 64 case SEQ_INDICATOR: |
| 65 out[*out_pos] = 0x00; |
| 66 ++*out_pos; |
| 67 coder->sequence = SEQ_COUNT; |
| 68 break; |
| 69 |
| 70 case SEQ_COUNT: { |
| 71 const lzma_vli count = lzma_index_block_count(coder->index); |
| 72 ret = lzma_vli_encode(count, &coder->pos, |
| 73 out, out_pos, out_size); |
| 74 if (ret != LZMA_STREAM_END) |
| 75 goto out; |
| 76 |
| 77 ret = LZMA_OK; |
| 78 coder->pos = 0; |
| 79 coder->sequence = SEQ_NEXT; |
| 80 break; |
| 81 } |
| 82 |
| 83 case SEQ_NEXT: |
| 84 if (lzma_index_iter_next( |
| 85 &coder->iter, LZMA_INDEX_ITER_BLOCK)) { |
| 86 // Get the size of the Index Padding field. |
| 87 coder->pos = lzma_index_padding_size(coder->index); |
| 88 assert(coder->pos <= 3); |
| 89 coder->sequence = SEQ_PADDING; |
| 90 break; |
| 91 } |
| 92 |
| 93 coder->sequence = SEQ_UNPADDED; |
| 94 |
| 95 // Fall through |
| 96 |
| 97 case SEQ_UNPADDED: |
| 98 case SEQ_UNCOMPRESSED: { |
| 99 const lzma_vli size = coder->sequence == SEQ_UNPADDED |
| 100 ? coder->iter.block.unpadded_size |
| 101 : coder->iter.block.uncompressed_size; |
| 102 |
| 103 ret = lzma_vli_encode(size, &coder->pos, |
| 104 out, out_pos, out_size); |
| 105 if (ret != LZMA_STREAM_END) |
| 106 goto out; |
| 107 |
| 108 ret = LZMA_OK; |
| 109 coder->pos = 0; |
| 110 |
| 111 // Advance to SEQ_UNCOMPRESSED or SEQ_NEXT. |
| 112 ++coder->sequence; |
| 113 break; |
| 114 } |
| 115 |
| 116 case SEQ_PADDING: |
| 117 if (coder->pos > 0) { |
| 118 --coder->pos; |
| 119 out[(*out_pos)++] = 0x00; |
| 120 break; |
| 121 } |
| 122 |
| 123 // Finish the CRC32 calculation. |
| 124 coder->crc32 = lzma_crc32(out + out_start, |
| 125 *out_pos - out_start, coder->crc32); |
| 126 |
| 127 coder->sequence = SEQ_CRC32; |
| 128 |
| 129 // Fall through |
| 130 |
| 131 case SEQ_CRC32: |
| 132 // We don't use the main loop, because we don't want |
| 133 // coder->crc32 to be touched anymore. |
| 134 do { |
| 135 if (*out_pos == out_size) |
| 136 return LZMA_OK; |
| 137 |
| 138 out[*out_pos] = (coder->crc32 >> (coder->pos * 8)) |
| 139 & 0xFF; |
| 140 ++*out_pos; |
| 141 |
| 142 } while (++coder->pos < 4); |
| 143 |
| 144 return LZMA_STREAM_END; |
| 145 |
| 146 default: |
| 147 assert(0); |
| 148 return LZMA_PROG_ERROR; |
| 149 } |
| 150 |
| 151 out: |
| 152 // Update the CRC32. |
| 153 coder->crc32 = lzma_crc32(out + out_start, |
| 154 *out_pos - out_start, coder->crc32); |
| 155 |
| 156 return ret; |
| 157 } |
| 158 |
| 159 |
| 160 static void |
| 161 index_encoder_end(lzma_coder *coder, lzma_allocator *allocator) |
| 162 { |
| 163 lzma_free(coder, allocator); |
| 164 return; |
| 165 } |
| 166 |
| 167 |
| 168 static void |
| 169 index_encoder_reset(lzma_coder *coder, const lzma_index *i) |
| 170 { |
| 171 lzma_index_iter_init(&coder->iter, i); |
| 172 |
| 173 coder->sequence = SEQ_INDICATOR; |
| 174 coder->index = i; |
| 175 coder->pos = 0; |
| 176 coder->crc32 = 0; |
| 177 |
| 178 return; |
| 179 } |
| 180 |
| 181 |
| 182 extern lzma_ret |
| 183 lzma_index_encoder_init(lzma_next_coder *next, lzma_allocator *allocator, |
| 184 const lzma_index *i) |
| 185 { |
| 186 lzma_next_coder_init(&lzma_index_encoder_init, next, allocator); |
| 187 |
| 188 if (i == NULL) |
| 189 return LZMA_PROG_ERROR; |
| 190 |
| 191 if (next->coder == NULL) { |
| 192 next->coder = lzma_alloc(sizeof(lzma_coder), allocator); |
| 193 if (next->coder == NULL) |
| 194 return LZMA_MEM_ERROR; |
| 195 |
| 196 next->code = &index_encode; |
| 197 next->end = &index_encoder_end; |
| 198 } |
| 199 |
| 200 index_encoder_reset(next->coder, i); |
| 201 |
| 202 return LZMA_OK; |
| 203 } |
| 204 |
| 205 |
| 206 extern LZMA_API(lzma_ret) |
| 207 lzma_index_encoder(lzma_stream *strm, const lzma_index *i) |
| 208 { |
| 209 lzma_next_strm_init(lzma_index_encoder_init, strm, i); |
| 210 |
| 211 strm->internal->supported_actions[LZMA_RUN] = true; |
| 212 |
| 213 return LZMA_OK; |
| 214 } |
| 215 |
| 216 |
| 217 extern LZMA_API(lzma_ret) |
| 218 lzma_index_buffer_encode(const lzma_index *i, |
| 219 uint8_t *out, size_t *out_pos, size_t out_size) |
| 220 { |
| 221 // Validate the arguments. |
| 222 if (i == NULL || out == NULL || out_pos == NULL || *out_pos > out_size) |
| 223 return LZMA_PROG_ERROR; |
| 224 |
| 225 // Don't try to encode if there's not enough output space. |
| 226 if (out_size - *out_pos < lzma_index_size(i)) |
| 227 return LZMA_BUF_ERROR; |
| 228 |
| 229 // The Index encoder needs just one small data structure so we can |
| 230 // allocate it on stack. |
| 231 lzma_coder coder; |
| 232 index_encoder_reset(&coder, i); |
| 233 |
| 234 // Do the actual encoding. This should never fail, but store |
| 235 // the original *out_pos just in case. |
| 236 const size_t out_start = *out_pos; |
| 237 lzma_ret ret = index_encode(&coder, NULL, NULL, NULL, 0, |
| 238 out, out_pos, out_size, LZMA_RUN); |
| 239 |
| 240 if (ret == LZMA_STREAM_END) { |
| 241 ret = LZMA_OK; |
| 242 } else { |
| 243 // We should never get here, but just in case, restore the |
| 244 // output position and set the error accordingly if something |
| 245 // goes wrong and debugging isn't enabled. |
| 246 assert(0); |
| 247 *out_pos = out_start; |
| 248 ret = LZMA_PROG_ERROR; |
| 249 } |
| 250 |
| 251 return ret; |
| 252 } |
OLD | NEW |