OLD | NEW |
(Empty) | |
| 1 /////////////////////////////////////////////////////////////////////////////// |
| 2 // |
| 3 /// \file block_buffer_encoder.c |
| 4 /// \brief Single-call .xz Block encoder |
| 5 // |
| 6 // Author: Lasse Collin |
| 7 // |
| 8 // This file has been put into the public domain. |
| 9 // You can do whatever you want with this file. |
| 10 // |
| 11 /////////////////////////////////////////////////////////////////////////////// |
| 12 |
| 13 #include "block_encoder.h" |
| 14 #include "filter_encoder.h" |
| 15 #include "lzma2_encoder.h" |
| 16 #include "check.h" |
| 17 |
| 18 |
| 19 /// Estimate the maximum size of the Block Header and Check fields for |
| 20 /// a Block that uses LZMA2 uncompressed chunks. We could use |
| 21 /// lzma_block_header_size() but this is simpler. |
| 22 /// |
| 23 /// Block Header Size + Block Flags + Compressed Size |
| 24 /// + Uncompressed Size + Filter Flags for LZMA2 + CRC32 + Check |
| 25 /// and round up to the next multiple of four to take Header Padding |
| 26 /// into account. |
| 27 #define HEADERS_BOUND ((1 + 1 + 2 * LZMA_VLI_BYTES_MAX + 3 + 4 \ |
| 28 + LZMA_CHECK_SIZE_MAX + 3) & ~3) |
| 29 |
| 30 |
| 31 static lzma_vli |
| 32 lzma2_bound(lzma_vli uncompressed_size) |
| 33 { |
| 34 // Prevent integer overflow in overhead calculation. |
| 35 if (uncompressed_size > COMPRESSED_SIZE_MAX) |
| 36 return 0; |
| 37 |
| 38 // Calculate the exact overhead of the LZMA2 headers: Round |
| 39 // uncompressed_size up to the next multiple of LZMA2_CHUNK_MAX, |
| 40 // multiply by the size of per-chunk header, and add one byte for |
| 41 // the end marker. |
| 42 const lzma_vli overhead = ((uncompressed_size + LZMA2_CHUNK_MAX - 1) |
| 43 / LZMA2_CHUNK_MAX) |
| 44 * LZMA2_HEADER_UNCOMPRESSED + 1; |
| 45 |
| 46 // Catch the possible integer overflow. |
| 47 if (COMPRESSED_SIZE_MAX - overhead < uncompressed_size) |
| 48 return 0; |
| 49 |
| 50 return uncompressed_size + overhead; |
| 51 } |
| 52 |
| 53 |
| 54 extern LZMA_API(size_t) |
| 55 lzma_block_buffer_bound(size_t uncompressed_size) |
| 56 { |
| 57 // For now, if the data doesn't compress, we always use uncompressed |
| 58 // chunks of LZMA2. In future we may use Subblock filter too, but |
| 59 // but for simplicity we probably will still use the same bound |
| 60 // calculation even though Subblock filter would have slightly less |
| 61 // overhead. |
| 62 lzma_vli lzma2_size = lzma2_bound(uncompressed_size); |
| 63 if (lzma2_size == 0) |
| 64 return 0; |
| 65 |
| 66 // Take Block Padding into account. |
| 67 lzma2_size = (lzma2_size + 3) & ~LZMA_VLI_C(3); |
| 68 |
| 69 #if SIZE_MAX < LZMA_VLI_MAX |
| 70 // Catch the possible integer overflow on 32-bit systems. There's no |
| 71 // overflow on 64-bit systems, because lzma2_bound() already takes |
| 72 // into account the size of the headers in the Block. |
| 73 if (SIZE_MAX - HEADERS_BOUND < lzma2_size) |
| 74 return 0; |
| 75 #endif |
| 76 |
| 77 return HEADERS_BOUND + lzma2_size; |
| 78 } |
| 79 |
| 80 |
| 81 static lzma_ret |
| 82 block_encode_uncompressed(lzma_block *block, const uint8_t *in, size_t in_size, |
| 83 uint8_t *out, size_t *out_pos, size_t out_size) |
| 84 { |
| 85 // TODO: Figure out if the last filter is LZMA2 or Subblock and use |
| 86 // that filter to encode the uncompressed chunks. |
| 87 |
| 88 // Use LZMA2 uncompressed chunks. We wouldn't need a dictionary at |
| 89 // all, but LZMA2 always requires a dictionary, so use the minimum |
| 90 // value to minimize memory usage of the decoder. |
| 91 lzma_options_lzma lzma2 = { |
| 92 .dict_size = LZMA_DICT_SIZE_MIN, |
| 93 }; |
| 94 |
| 95 lzma_filter filters[2]; |
| 96 filters[0].id = LZMA_FILTER_LZMA2; |
| 97 filters[0].options = &lzma2; |
| 98 filters[1].id = LZMA_VLI_UNKNOWN; |
| 99 |
| 100 // Set the above filter options to *block temporarily so that we can |
| 101 // encode the Block Header. |
| 102 lzma_filter *filters_orig = block->filters; |
| 103 block->filters = filters; |
| 104 |
| 105 if (lzma_block_header_size(block) != LZMA_OK) { |
| 106 block->filters = filters_orig; |
| 107 return LZMA_PROG_ERROR; |
| 108 } |
| 109 |
| 110 // Check that there's enough output space. The caller has already |
| 111 // set block->compressed_size to what lzma2_bound() has returned, |
| 112 // so we can reuse that value. We know that compressed_size is a |
| 113 // known valid VLI and header_size is a small value so their sum |
| 114 // will never overflow. |
| 115 assert(block->compressed_size == lzma2_bound(in_size)); |
| 116 if (out_size - *out_pos |
| 117 < block->header_size + block->compressed_size) { |
| 118 block->filters = filters_orig; |
| 119 return LZMA_BUF_ERROR; |
| 120 } |
| 121 |
| 122 if (lzma_block_header_encode(block, out + *out_pos) != LZMA_OK) { |
| 123 block->filters = filters_orig; |
| 124 return LZMA_PROG_ERROR; |
| 125 } |
| 126 |
| 127 block->filters = filters_orig; |
| 128 *out_pos += block->header_size; |
| 129 |
| 130 // Encode the data using LZMA2 uncompressed chunks. |
| 131 size_t in_pos = 0; |
| 132 uint8_t control = 0x01; // Dictionary reset |
| 133 |
| 134 while (in_pos < in_size) { |
| 135 // Control byte: Indicate uncompressed chunk, of which |
| 136 // the first resets the dictionary. |
| 137 out[(*out_pos)++] = control; |
| 138 control = 0x02; // No dictionary reset |
| 139 |
| 140 // Size of the uncompressed chunk |
| 141 const size_t copy_size |
| 142 = my_min(in_size - in_pos, LZMA2_CHUNK_MAX); |
| 143 out[(*out_pos)++] = (copy_size - 1) >> 8; |
| 144 out[(*out_pos)++] = (copy_size - 1) & 0xFF; |
| 145 |
| 146 // The actual data |
| 147 assert(*out_pos + copy_size <= out_size); |
| 148 memcpy(out + *out_pos, in + in_pos, copy_size); |
| 149 |
| 150 in_pos += copy_size; |
| 151 *out_pos += copy_size; |
| 152 } |
| 153 |
| 154 // End marker |
| 155 out[(*out_pos)++] = 0x00; |
| 156 assert(*out_pos <= out_size); |
| 157 |
| 158 return LZMA_OK; |
| 159 } |
| 160 |
| 161 |
| 162 static lzma_ret |
| 163 block_encode_normal(lzma_block *block, lzma_allocator *allocator, |
| 164 const uint8_t *in, size_t in_size, |
| 165 uint8_t *out, size_t *out_pos, size_t out_size) |
| 166 { |
| 167 // Find out the size of the Block Header. |
| 168 block->compressed_size = lzma2_bound(in_size); |
| 169 if (block->compressed_size == 0) |
| 170 return LZMA_DATA_ERROR; |
| 171 |
| 172 block->uncompressed_size = in_size; |
| 173 return_if_error(lzma_block_header_size(block)); |
| 174 |
| 175 // Reserve space for the Block Header and skip it for now. |
| 176 if (out_size - *out_pos <= block->header_size) |
| 177 return LZMA_BUF_ERROR; |
| 178 |
| 179 const size_t out_start = *out_pos; |
| 180 *out_pos += block->header_size; |
| 181 |
| 182 // Limit out_size so that we stop encoding if the output would grow |
| 183 // bigger than what uncompressed Block would be. |
| 184 if (out_size - *out_pos > block->compressed_size) |
| 185 out_size = *out_pos + block->compressed_size; |
| 186 |
| 187 // TODO: In many common cases this could be optimized to use |
| 188 // significantly less memory. |
| 189 lzma_next_coder raw_encoder = LZMA_NEXT_CODER_INIT; |
| 190 lzma_ret ret = lzma_raw_encoder_init( |
| 191 &raw_encoder, allocator, block->filters); |
| 192 |
| 193 if (ret == LZMA_OK) { |
| 194 size_t in_pos = 0; |
| 195 ret = raw_encoder.code(raw_encoder.coder, allocator, |
| 196 in, &in_pos, in_size, out, out_pos, out_size, |
| 197 LZMA_FINISH); |
| 198 } |
| 199 |
| 200 // NOTE: This needs to be run even if lzma_raw_encoder_init() failed. |
| 201 lzma_next_end(&raw_encoder, allocator); |
| 202 |
| 203 if (ret == LZMA_STREAM_END) { |
| 204 // Compression was successful. Write the Block Header. |
| 205 block->compressed_size |
| 206 = *out_pos - (out_start + block->header_size); |
| 207 ret = lzma_block_header_encode(block, out + out_start); |
| 208 if (ret != LZMA_OK) |
| 209 ret = LZMA_PROG_ERROR; |
| 210 |
| 211 } else if (ret == LZMA_OK) { |
| 212 // Output buffer became full. |
| 213 ret = LZMA_BUF_ERROR; |
| 214 } |
| 215 |
| 216 // Reset *out_pos if something went wrong. |
| 217 if (ret != LZMA_OK) |
| 218 *out_pos = out_start; |
| 219 |
| 220 return ret; |
| 221 } |
| 222 |
| 223 |
| 224 extern LZMA_API(lzma_ret) |
| 225 lzma_block_buffer_encode(lzma_block *block, lzma_allocator *allocator, |
| 226 const uint8_t *in, size_t in_size, |
| 227 uint8_t *out, size_t *out_pos, size_t out_size) |
| 228 { |
| 229 // Sanity checks |
| 230 if (block == NULL || block->filters == NULL |
| 231 || (in == NULL && in_size != 0) || out == NULL |
| 232 || out_pos == NULL || *out_pos > out_size) |
| 233 return LZMA_PROG_ERROR; |
| 234 |
| 235 // Check the version field. |
| 236 if (block->version != 0) |
| 237 return LZMA_OPTIONS_ERROR; |
| 238 |
| 239 // Size of a Block has to be a multiple of four, so limit the size |
| 240 // here already. This way we don't need to check it again when adding |
| 241 // Block Padding. |
| 242 out_size -= (out_size - *out_pos) & 3; |
| 243 |
| 244 // Get the size of the Check field. |
| 245 const size_t check_size = lzma_check_size(block->check); |
| 246 if (check_size == UINT32_MAX) |
| 247 return LZMA_PROG_ERROR; |
| 248 |
| 249 // Reserve space for the Check field. |
| 250 if (out_size - *out_pos <= check_size) |
| 251 return LZMA_BUF_ERROR; |
| 252 |
| 253 out_size -= check_size; |
| 254 |
| 255 // Do the actual compression. |
| 256 const lzma_ret ret = block_encode_normal(block, allocator, |
| 257 in, in_size, out, out_pos, out_size); |
| 258 if (ret != LZMA_OK) { |
| 259 // If the error was something else than output buffer |
| 260 // becoming full, return the error now. |
| 261 if (ret != LZMA_BUF_ERROR) |
| 262 return ret; |
| 263 |
| 264 // The data was uncompressible (at least with the options |
| 265 // given to us) or the output buffer was too small. Use the |
| 266 // uncompressed chunks of LZMA2 to wrap the data into a valid |
| 267 // Block. If we haven't been given enough output space, even |
| 268 // this may fail. |
| 269 return_if_error(block_encode_uncompressed(block, in, in_size, |
| 270 out, out_pos, out_size)); |
| 271 } |
| 272 |
| 273 assert(*out_pos <= out_size); |
| 274 |
| 275 // Block Padding. No buffer overflow here, because we already adjusted |
| 276 // out_size so that (out_size - out_start) is a multiple of four. |
| 277 // Thus, if the buffer is full, the loop body can never run. |
| 278 for (size_t i = (size_t)(block->compressed_size); i & 3; ++i) { |
| 279 assert(*out_pos < out_size); |
| 280 out[(*out_pos)++] = 0x00; |
| 281 } |
| 282 |
| 283 // If there's no Check field, we are done now. |
| 284 if (check_size > 0) { |
| 285 // Calculate the integrity check. We reserved space for |
| 286 // the Check field earlier so we don't need to check for |
| 287 // available output space here. |
| 288 lzma_check_state check; |
| 289 lzma_check_init(&check, block->check); |
| 290 lzma_check_update(&check, block->check, in, in_size); |
| 291 lzma_check_finish(&check, block->check); |
| 292 |
| 293 memcpy(block->raw_check, check.buffer.u8, check_size); |
| 294 memcpy(out + *out_pos, check.buffer.u8, check_size); |
| 295 *out_pos += check_size; |
| 296 } |
| 297 |
| 298 return LZMA_OK; |
| 299 } |
OLD | NEW |