Index: third_party/google_benchmark/src/string_util.cc |
diff --git a/third_party/google_benchmark/src/string_util.cc b/third_party/google_benchmark/src/string_util.cc |
new file mode 100644 |
index 0000000000000000000000000000000000000000..cd4e7cfde57c100b5a128ce341ee93a8bd18272e |
--- /dev/null |
+++ b/third_party/google_benchmark/src/string_util.cc |
@@ -0,0 +1,172 @@ |
+#include "string_util.h" |
+ |
+#include <array> |
+#include <cmath> |
+#include <cstdarg> |
+#include <cstdio> |
+#include <memory> |
+#include <sstream> |
+ |
+#include "arraysize.h" |
+ |
+namespace benchmark { |
+namespace { |
+ |
+// kilo, Mega, Giga, Tera, Peta, Exa, Zetta, Yotta. |
+const char kBigSIUnits[] = "kMGTPEZY"; |
+// Kibi, Mebi, Gibi, Tebi, Pebi, Exbi, Zebi, Yobi. |
+const char kBigIECUnits[] = "KMGTPEZY"; |
+// milli, micro, nano, pico, femto, atto, zepto, yocto. |
+const char kSmallSIUnits[] = "munpfazy"; |
+ |
+// We require that all three arrays have the same size. |
+static_assert(arraysize(kBigSIUnits) == arraysize(kBigIECUnits), |
+ "SI and IEC unit arrays must be the same size"); |
+static_assert(arraysize(kSmallSIUnits) == arraysize(kBigSIUnits), |
+ "Small SI and Big SI unit arrays must be the same size"); |
+ |
+static const int64_t kUnitsSize = arraysize(kBigSIUnits); |
+ |
+} // end anonymous namespace |
+ |
+void ToExponentAndMantissa(double val, double thresh, int precision, |
+ double one_k, std::string* mantissa, |
+ int64_t* exponent) { |
+ std::stringstream mantissa_stream; |
+ |
+ if (val < 0) { |
+ mantissa_stream << "-"; |
+ val = -val; |
+ } |
+ |
+ // Adjust threshold so that it never excludes things which can't be rendered |
+ // in 'precision' digits. |
+ const double adjusted_threshold = |
+ std::max(thresh, 1.0 / std::pow(10.0, precision)); |
+ const double big_threshold = adjusted_threshold * one_k; |
+ const double small_threshold = adjusted_threshold; |
+ // Values in ]simple_threshold,small_threshold[ will be printed as-is |
+ const double simple_threshold = 0.01; |
+ |
+ if (val > big_threshold) { |
+ // Positive powers |
+ double scaled = val; |
+ for (size_t i = 0; i < arraysize(kBigSIUnits); ++i) { |
+ scaled /= one_k; |
+ if (scaled <= big_threshold) { |
+ mantissa_stream << scaled; |
+ *exponent = i + 1; |
+ *mantissa = mantissa_stream.str(); |
+ return; |
+ } |
+ } |
+ mantissa_stream << val; |
+ *exponent = 0; |
+ } else if (val < small_threshold) { |
+ // Negative powers |
+ if (val < simple_threshold) { |
+ double scaled = val; |
+ for (size_t i = 0; i < arraysize(kSmallSIUnits); ++i) { |
+ scaled *= one_k; |
+ if (scaled >= small_threshold) { |
+ mantissa_stream << scaled; |
+ *exponent = -static_cast<int64_t>(i + 1); |
+ *mantissa = mantissa_stream.str(); |
+ return; |
+ } |
+ } |
+ } |
+ mantissa_stream << val; |
+ *exponent = 0; |
+ } else { |
+ mantissa_stream << val; |
+ *exponent = 0; |
+ } |
+ *mantissa = mantissa_stream.str(); |
+} |
+ |
+std::string ExponentToPrefix(int64_t exponent, bool iec) { |
+ if (exponent == 0) return ""; |
+ |
+ const int64_t index = (exponent > 0 ? exponent - 1 : -exponent - 1); |
+ if (index >= kUnitsSize) return ""; |
+ |
+ const char* array = |
+ (exponent > 0 ? (iec ? kBigIECUnits : kBigSIUnits) : kSmallSIUnits); |
+ if (iec) |
+ return array[index] + std::string("i"); |
+ else |
+ return std::string(1, array[index]); |
+} |
+ |
+std::string ToBinaryStringFullySpecified(double value, double threshold, |
+ int precision) { |
+ std::string mantissa; |
+ int64_t exponent; |
+ ToExponentAndMantissa(value, threshold, precision, 1024.0, &mantissa, |
+ &exponent); |
+ return mantissa + ExponentToPrefix(exponent, false); |
+} |
+ |
+void AppendHumanReadable(int n, std::string* str) { |
+ std::stringstream ss; |
+ // Round down to the nearest SI prefix. |
+ ss << ToBinaryStringFullySpecified(n, 1.0, 0); |
+ *str += ss.str(); |
+} |
+ |
+std::string HumanReadableNumber(double n) { |
+ // 1.1 means that figures up to 1.1k should be shown with the next unit down; |
+ // this softens edge effects. |
+ // 1 means that we should show one decimal place of precision. |
+ return ToBinaryStringFullySpecified(n, 1.1, 1); |
+} |
+ |
+std::string StringPrintFImp(const char* msg, va_list args) { |
+ // we might need a second shot at this, so pre-emptivly make a copy |
+ va_list args_cp; |
+ va_copy(args_cp, args); |
+ |
+ // TODO(ericwf): use std::array for first attempt to avoid one memory |
+ // allocation guess what the size might be |
+ std::array<char, 256> local_buff; |
+ std::size_t size = local_buff.size(); |
+ // 2015-10-08: vsnprintf is used instead of snd::vsnprintf due to a limitation |
+ // in the android-ndk |
+ auto ret = vsnprintf(local_buff.data(), size, msg, args_cp); |
+ |
+ va_end(args_cp); |
+ |
+ // handle empty expansion |
+ if (ret == 0) return std::string{}; |
+ if (static_cast<std::size_t>(ret) < size) |
+ return std::string(local_buff.data()); |
+ |
+ // we did not provide a long enough buffer on our first attempt. |
+ // add 1 to size to account for null-byte in size cast to prevent overflow |
+ size = static_cast<std::size_t>(ret) + 1; |
+ auto buff_ptr = std::unique_ptr<char[]>(new char[size]); |
+ // 2015-10-08: vsnprintf is used instead of snd::vsnprintf due to a limitation |
+ // in the android-ndk |
+ ret = vsnprintf(buff_ptr.get(), size, msg, args); |
+ return std::string(buff_ptr.get()); |
+} |
+ |
+std::string StringPrintF(const char* format, ...) { |
+ va_list args; |
+ va_start(args, format); |
+ std::string tmp = StringPrintFImp(format, args); |
+ va_end(args); |
+ return tmp; |
+} |
+ |
+void ReplaceAll(std::string* str, const std::string& from, |
+ const std::string& to) { |
+ std::size_t start = 0; |
+ while ((start = str->find(from, start)) != std::string::npos) { |
+ str->replace(start, from.length(), to); |
+ start += to.length(); |
+ } |
+} |
+ |
+} // end namespace benchmark |