Index: third_party/google_benchmark/src/complexity.cc |
diff --git a/third_party/google_benchmark/src/complexity.cc b/third_party/google_benchmark/src/complexity.cc |
new file mode 100644 |
index 0000000000000000000000000000000000000000..a4c57c434a573bef13831d14e6218037d24000ab |
--- /dev/null |
+++ b/third_party/google_benchmark/src/complexity.cc |
@@ -0,0 +1,324 @@ |
+// Copyright 2016 Ismael Jimenez Martinez. All rights reserved. |
+// |
+// Licensed under the Apache License, Version 2.0 (the "License"); |
+// you may not use this file except in compliance with the License. |
+// You may obtain a copy of the License at |
+// |
+// http://www.apache.org/licenses/LICENSE-2.0 |
+// |
+// Unless required by applicable law or agreed to in writing, software |
+// distributed under the License is distributed on an "AS IS" BASIS, |
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
+// See the License for the specific language governing permissions and |
+// limitations under the License. |
+ |
+// Source project : https://github.com/ismaelJimenez/cpp.leastsq |
+// Adapted to be used with google benchmark |
+ |
+#include "benchmark/benchmark_api.h" |
+ |
+#include <algorithm> |
+#include <cmath> |
+#include "check.h" |
+#include "complexity.h" |
+#include "stat.h" |
+ |
+namespace benchmark { |
+ |
+// Internal function to calculate the different scalability forms |
+BigOFunc* FittingCurve(BigO complexity) { |
+ switch (complexity) { |
+ case oN: |
+ return [](int n) -> double { return n; }; |
+ case oNSquared: |
+ return [](int n) -> double { return std::pow(n, 2); }; |
+ case oNCubed: |
+ return [](int n) -> double { return std::pow(n, 3); }; |
+ case oLogN: |
+ return [](int n) { return log2(n); }; |
+ case oNLogN: |
+ return [](int n) { return n * log2(n); }; |
+ case o1: |
+ default: |
+ return [](int) { return 1.0; }; |
+ } |
+} |
+ |
+// Function to return an string for the calculated complexity |
+std::string GetBigOString(BigO complexity) { |
+ switch (complexity) { |
+ case oN: |
+ return "N"; |
+ case oNSquared: |
+ return "N^2"; |
+ case oNCubed: |
+ return "N^3"; |
+ case oLogN: |
+ return "lgN"; |
+ case oNLogN: |
+ return "NlgN"; |
+ case o1: |
+ return "(1)"; |
+ default: |
+ return "f(N)"; |
+ } |
+} |
+ |
+// Find the coefficient for the high-order term in the running time, by |
+// minimizing the sum of squares of relative error, for the fitting curve |
+// given by the lambda expresion. |
+// - n : Vector containing the size of the benchmark tests. |
+// - time : Vector containing the times for the benchmark tests. |
+// - fitting_curve : lambda expresion (e.g. [](int n) {return n; };). |
+ |
+// For a deeper explanation on the algorithm logic, look the README file at |
+// http://github.com/ismaelJimenez/Minimal-Cpp-Least-Squared-Fit |
+ |
+LeastSq MinimalLeastSq(const std::vector<int>& n, |
+ const std::vector<double>& time, |
+ BigOFunc* fitting_curve) { |
+ double sigma_gn = 0.0; |
+ double sigma_gn_squared = 0.0; |
+ double sigma_time = 0.0; |
+ double sigma_time_gn = 0.0; |
+ |
+ // Calculate least square fitting parameter |
+ for (size_t i = 0; i < n.size(); ++i) { |
+ double gn_i = fitting_curve(n[i]); |
+ sigma_gn += gn_i; |
+ sigma_gn_squared += gn_i * gn_i; |
+ sigma_time += time[i]; |
+ sigma_time_gn += time[i] * gn_i; |
+ } |
+ |
+ LeastSq result; |
+ result.complexity = oLambda; |
+ |
+ // Calculate complexity. |
+ result.coef = sigma_time_gn / sigma_gn_squared; |
+ |
+ // Calculate RMS |
+ double rms = 0.0; |
+ for (size_t i = 0; i < n.size(); ++i) { |
+ double fit = result.coef * fitting_curve(n[i]); |
+ rms += pow((time[i] - fit), 2); |
+ } |
+ |
+ // Normalized RMS by the mean of the observed values |
+ double mean = sigma_time / n.size(); |
+ result.rms = sqrt(rms / n.size()) / mean; |
+ |
+ return result; |
+} |
+ |
+// Find the coefficient for the high-order term in the running time, by |
+// minimizing the sum of squares of relative error. |
+// - n : Vector containing the size of the benchmark tests. |
+// - time : Vector containing the times for the benchmark tests. |
+// - complexity : If different than oAuto, the fitting curve will stick to |
+// this one. If it is oAuto, it will be calculated the best |
+// fitting curve. |
+LeastSq MinimalLeastSq(const std::vector<int>& n, |
+ const std::vector<double>& time, const BigO complexity) { |
+ CHECK_EQ(n.size(), time.size()); |
+ CHECK_GE(n.size(), 2); // Do not compute fitting curve is less than two |
+ // benchmark runs are given |
+ CHECK_NE(complexity, oNone); |
+ |
+ LeastSq best_fit; |
+ |
+ if (complexity == oAuto) { |
+ std::vector<BigO> fit_curves = {oLogN, oN, oNLogN, oNSquared, oNCubed}; |
+ |
+ // Take o1 as default best fitting curve |
+ best_fit = MinimalLeastSq(n, time, FittingCurve(o1)); |
+ best_fit.complexity = o1; |
+ |
+ // Compute all possible fitting curves and stick to the best one |
+ for (const auto& fit : fit_curves) { |
+ LeastSq current_fit = MinimalLeastSq(n, time, FittingCurve(fit)); |
+ if (current_fit.rms < best_fit.rms) { |
+ best_fit = current_fit; |
+ best_fit.complexity = fit; |
+ } |
+ } |
+ } else { |
+ best_fit = MinimalLeastSq(n, time, FittingCurve(complexity)); |
+ best_fit.complexity = complexity; |
+ } |
+ |
+ return best_fit; |
+} |
+ |
+std::vector<BenchmarkReporter::Run> ComputeStats( |
+ const std::vector<BenchmarkReporter::Run>& reports) { |
+ typedef BenchmarkReporter::Run Run; |
+ std::vector<Run> results; |
+ |
+ auto error_count = |
+ std::count_if(reports.begin(), reports.end(), |
+ [](Run const& run) { return run.error_occurred; }); |
+ |
+ if (reports.size() - error_count < 2) { |
+ // We don't report aggregated data if there was a single run. |
+ return results; |
+ } |
+ // Accumulators. |
+ Stat1_d real_accumulated_time_stat; |
+ Stat1_d cpu_accumulated_time_stat; |
+ Stat1_d bytes_per_second_stat; |
+ Stat1_d items_per_second_stat; |
+ // All repetitions should be run with the same number of iterations so we |
+ // can take this information from the first benchmark. |
+ int64_t const run_iterations = reports.front().iterations; |
+ // create stats for user counters |
+ struct CounterStat { |
+ Counter c; |
+ Stat1_d s; |
+ }; |
+ std::map< std::string, CounterStat > counter_stats; |
+ for(Run const& r : reports) { |
+ for(auto const& cnt : r.counters) { |
+ auto it = counter_stats.find(cnt.first); |
+ if(it == counter_stats.end()) { |
+ counter_stats.insert({cnt.first, {cnt.second, Stat1_d{}}}); |
+ } else { |
+ CHECK_EQ(counter_stats[cnt.first].c.flags, cnt.second.flags); |
+ } |
+ } |
+ } |
+ |
+ // Populate the accumulators. |
+ for (Run const& run : reports) { |
+ CHECK_EQ(reports[0].benchmark_name, run.benchmark_name); |
+ CHECK_EQ(run_iterations, run.iterations); |
+ if (run.error_occurred) continue; |
+ real_accumulated_time_stat += |
+ Stat1_d(run.real_accumulated_time / run.iterations, run.iterations); |
+ cpu_accumulated_time_stat += |
+ Stat1_d(run.cpu_accumulated_time / run.iterations, run.iterations); |
+ items_per_second_stat += Stat1_d(run.items_per_second, run.iterations); |
+ bytes_per_second_stat += Stat1_d(run.bytes_per_second, run.iterations); |
+ // user counters |
+ for(auto const& cnt : run.counters) { |
+ auto it = counter_stats.find(cnt.first); |
+ CHECK_NE(it, counter_stats.end()); |
+ it->second.s += Stat1_d(cnt.second, run.iterations); |
+ } |
+ } |
+ |
+ // Get the data from the accumulator to BenchmarkReporter::Run's. |
+ Run mean_data; |
+ mean_data.benchmark_name = reports[0].benchmark_name + "_mean"; |
+ mean_data.iterations = run_iterations; |
+ mean_data.real_accumulated_time = |
+ real_accumulated_time_stat.Mean() * run_iterations; |
+ mean_data.cpu_accumulated_time = |
+ cpu_accumulated_time_stat.Mean() * run_iterations; |
+ mean_data.bytes_per_second = bytes_per_second_stat.Mean(); |
+ mean_data.items_per_second = items_per_second_stat.Mean(); |
+ mean_data.time_unit = reports[0].time_unit; |
+ // user counters |
+ for(auto const& kv : counter_stats) { |
+ auto c = Counter(kv.second.s.Mean(), counter_stats[kv.first].c.flags); |
+ mean_data.counters[kv.first] = c; |
+ } |
+ |
+ // Only add label to mean/stddev if it is same for all runs |
+ mean_data.report_label = reports[0].report_label; |
+ for (std::size_t i = 1; i < reports.size(); i++) { |
+ if (reports[i].report_label != reports[0].report_label) { |
+ mean_data.report_label = ""; |
+ break; |
+ } |
+ } |
+ |
+ Run stddev_data; |
+ stddev_data.benchmark_name = reports[0].benchmark_name + "_stddev"; |
+ stddev_data.report_label = mean_data.report_label; |
+ stddev_data.iterations = 0; |
+ stddev_data.real_accumulated_time = real_accumulated_time_stat.StdDev(); |
+ stddev_data.cpu_accumulated_time = cpu_accumulated_time_stat.StdDev(); |
+ stddev_data.bytes_per_second = bytes_per_second_stat.StdDev(); |
+ stddev_data.items_per_second = items_per_second_stat.StdDev(); |
+ stddev_data.time_unit = reports[0].time_unit; |
+ // user counters |
+ for(auto const& kv : counter_stats) { |
+ auto c = Counter(kv.second.s.StdDev(), counter_stats[kv.first].c.flags); |
+ stddev_data.counters[kv.first] = c; |
+ } |
+ |
+ results.push_back(mean_data); |
+ results.push_back(stddev_data); |
+ return results; |
+} |
+ |
+std::vector<BenchmarkReporter::Run> ComputeBigO( |
+ const std::vector<BenchmarkReporter::Run>& reports) { |
+ typedef BenchmarkReporter::Run Run; |
+ std::vector<Run> results; |
+ |
+ if (reports.size() < 2) return results; |
+ |
+ // Accumulators. |
+ std::vector<int> n; |
+ std::vector<double> real_time; |
+ std::vector<double> cpu_time; |
+ |
+ // Populate the accumulators. |
+ for (const Run& run : reports) { |
+ CHECK_GT(run.complexity_n, 0) << "Did you forget to call SetComplexityN?"; |
+ n.push_back(run.complexity_n); |
+ real_time.push_back(run.real_accumulated_time / run.iterations); |
+ cpu_time.push_back(run.cpu_accumulated_time / run.iterations); |
+ } |
+ |
+ LeastSq result_cpu; |
+ LeastSq result_real; |
+ |
+ if (reports[0].complexity == oLambda) { |
+ result_cpu = MinimalLeastSq(n, cpu_time, reports[0].complexity_lambda); |
+ result_real = MinimalLeastSq(n, real_time, reports[0].complexity_lambda); |
+ } else { |
+ result_cpu = MinimalLeastSq(n, cpu_time, reports[0].complexity); |
+ result_real = MinimalLeastSq(n, real_time, result_cpu.complexity); |
+ } |
+ std::string benchmark_name = |
+ reports[0].benchmark_name.substr(0, reports[0].benchmark_name.find('/')); |
+ |
+ // Get the data from the accumulator to BenchmarkReporter::Run's. |
+ Run big_o; |
+ big_o.benchmark_name = benchmark_name + "_BigO"; |
+ big_o.iterations = 0; |
+ big_o.real_accumulated_time = result_real.coef; |
+ big_o.cpu_accumulated_time = result_cpu.coef; |
+ big_o.report_big_o = true; |
+ big_o.complexity = result_cpu.complexity; |
+ |
+ // All the time results are reported after being multiplied by the |
+ // time unit multiplier. But since RMS is a relative quantity it |
+ // should not be multiplied at all. So, here, we _divide_ it by the |
+ // multiplier so that when it is multiplied later the result is the |
+ // correct one. |
+ double multiplier = GetTimeUnitMultiplier(reports[0].time_unit); |
+ |
+ // Only add label to mean/stddev if it is same for all runs |
+ Run rms; |
+ big_o.report_label = reports[0].report_label; |
+ rms.benchmark_name = benchmark_name + "_RMS"; |
+ rms.report_label = big_o.report_label; |
+ rms.iterations = 0; |
+ rms.real_accumulated_time = result_real.rms / multiplier; |
+ rms.cpu_accumulated_time = result_cpu.rms / multiplier; |
+ rms.report_rms = true; |
+ rms.complexity = result_cpu.complexity; |
+ // don't forget to keep the time unit, or we won't be able to |
+ // recover the correct value. |
+ rms.time_unit = reports[0].time_unit; |
+ |
+ results.push_back(big_o); |
+ results.push_back(rms); |
+ return results; |
+} |
+ |
+} // end namespace benchmark |