Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(1345)

Unified Diff: third_party/google_benchmark/include/benchmark/benchmark_api.h

Issue 2865663003: Adding Google benchmarking library. (Closed)
Patch Set: Sketch. Created 3 years, 7 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: third_party/google_benchmark/include/benchmark/benchmark_api.h
diff --git a/third_party/google_benchmark/include/benchmark/benchmark_api.h b/third_party/google_benchmark/include/benchmark/benchmark_api.h
new file mode 100644
index 0000000000000000000000000000000000000000..1e853e2cd4e0a327d6647a17dcf5caa4e6b0086b
--- /dev/null
+++ b/third_party/google_benchmark/include/benchmark/benchmark_api.h
@@ -0,0 +1,915 @@
+// Support for registering benchmarks for functions.
+
+/* Example usage:
+// Define a function that executes the code to be measured a
+// specified number of times:
+static void BM_StringCreation(benchmark::State& state) {
+ while (state.KeepRunning())
+ std::string empty_string;
+}
+
+// Register the function as a benchmark
+BENCHMARK(BM_StringCreation);
+
+// Define another benchmark
+static void BM_StringCopy(benchmark::State& state) {
+ std::string x = "hello";
+ while (state.KeepRunning())
+ std::string copy(x);
+}
+BENCHMARK(BM_StringCopy);
+
+// Augment the main() program to invoke benchmarks if specified
+// via the --benchmarks command line flag. E.g.,
+// my_unittest --benchmark_filter=all
+// my_unittest --benchmark_filter=BM_StringCreation
+// my_unittest --benchmark_filter=String
+// my_unittest --benchmark_filter='Copy|Creation'
+int main(int argc, char** argv) {
+ benchmark::Initialize(&argc, argv);
+ benchmark::RunSpecifiedBenchmarks();
+ return 0;
+}
+
+// Sometimes a family of microbenchmarks can be implemented with
+// just one routine that takes an extra argument to specify which
+// one of the family of benchmarks to run. For example, the following
+// code defines a family of microbenchmarks for measuring the speed
+// of memcpy() calls of different lengths:
+
+static void BM_memcpy(benchmark::State& state) {
+ char* src = new char[state.range(0)]; char* dst = new char[state.range(0)];
+ memset(src, 'x', state.range(0));
+ while (state.KeepRunning())
+ memcpy(dst, src, state.range(0));
+ state.SetBytesProcessed(int64_t(state.iterations()) *
+ int64_t(state.range(0)));
+ delete[] src; delete[] dst;
+}
+BENCHMARK(BM_memcpy)->Arg(8)->Arg(64)->Arg(512)->Arg(1<<10)->Arg(8<<10);
+
+// The preceding code is quite repetitive, and can be replaced with the
+// following short-hand. The following invocation will pick a few
+// appropriate arguments in the specified range and will generate a
+// microbenchmark for each such argument.
+BENCHMARK(BM_memcpy)->Range(8, 8<<10);
+
+// You might have a microbenchmark that depends on two inputs. For
+// example, the following code defines a family of microbenchmarks for
+// measuring the speed of set insertion.
+static void BM_SetInsert(benchmark::State& state) {
+ while (state.KeepRunning()) {
+ state.PauseTiming();
+ set<int> data = ConstructRandomSet(state.range(0));
+ state.ResumeTiming();
+ for (int j = 0; j < state.range(1); ++j)
+ data.insert(RandomNumber());
+ }
+}
+BENCHMARK(BM_SetInsert)
+ ->Args({1<<10, 1})
+ ->Args({1<<10, 8})
+ ->Args({1<<10, 64})
+ ->Args({1<<10, 512})
+ ->Args({8<<10, 1})
+ ->Args({8<<10, 8})
+ ->Args({8<<10, 64})
+ ->Args({8<<10, 512});
+
+// The preceding code is quite repetitive, and can be replaced with
+// the following short-hand. The following macro will pick a few
+// appropriate arguments in the product of the two specified ranges
+// and will generate a microbenchmark for each such pair.
+BENCHMARK(BM_SetInsert)->Ranges({{1<<10, 8<<10}, {1, 512}});
+
+// For more complex patterns of inputs, passing a custom function
+// to Apply allows programmatic specification of an
+// arbitrary set of arguments to run the microbenchmark on.
+// The following example enumerates a dense range on
+// one parameter, and a sparse range on the second.
+static void CustomArguments(benchmark::internal::Benchmark* b) {
+ for (int i = 0; i <= 10; ++i)
+ for (int j = 32; j <= 1024*1024; j *= 8)
+ b->Args({i, j});
+}
+BENCHMARK(BM_SetInsert)->Apply(CustomArguments);
+
+// Templated microbenchmarks work the same way:
+// Produce then consume 'size' messages 'iters' times
+// Measures throughput in the absence of multiprogramming.
+template <class Q> int BM_Sequential(benchmark::State& state) {
+ Q q;
+ typename Q::value_type v;
+ while (state.KeepRunning()) {
+ for (int i = state.range(0); i--; )
+ q.push(v);
+ for (int e = state.range(0); e--; )
+ q.Wait(&v);
+ }
+ // actually messages, not bytes:
+ state.SetBytesProcessed(
+ static_cast<int64_t>(state.iterations())*state.range(0));
+}
+BENCHMARK_TEMPLATE(BM_Sequential, WaitQueue<int>)->Range(1<<0, 1<<10);
+
+Use `Benchmark::MinTime(double t)` to set the minimum time used to run the
+benchmark. This option overrides the `benchmark_min_time` flag.
+
+void BM_test(benchmark::State& state) {
+ ... body ...
+}
+BENCHMARK(BM_test)->MinTime(2.0); // Run for at least 2 seconds.
+
+In a multithreaded test, it is guaranteed that none of the threads will start
+until all have called KeepRunning, and all will have finished before KeepRunning
+returns false. As such, any global setup or teardown you want to do can be
+wrapped in a check against the thread index:
+
+static void BM_MultiThreaded(benchmark::State& state) {
+ if (state.thread_index == 0) {
+ // Setup code here.
+ }
+ while (state.KeepRunning()) {
+ // Run the test as normal.
+ }
+ if (state.thread_index == 0) {
+ // Teardown code here.
+ }
+}
+BENCHMARK(BM_MultiThreaded)->Threads(4);
+
+
+If a benchmark runs a few milliseconds it may be hard to visually compare the
+measured times, since the output data is given in nanoseconds per default. In
+order to manually set the time unit, you can specify it manually:
+
+BENCHMARK(BM_test)->Unit(benchmark::kMillisecond);
+*/
+
+#ifndef BENCHMARK_BENCHMARK_API_H_
+#define BENCHMARK_BENCHMARK_API_H_
+
+#include <assert.h>
+#include <stddef.h>
+#include <stdint.h>
+
+#include <string>
+#include <vector>
+#include <map>
+
+#include "macros.h"
+
+#if defined(BENCHMARK_HAS_CXX11)
+#include <type_traits>
+#include <initializer_list>
+#include <utility>
+#endif
+
+#if defined(_MSC_VER)
+#include <intrin.h> // for _ReadWriteBarrier
+#endif
+
+namespace benchmark {
+class BenchmarkReporter;
+
+void Initialize(int* argc, char** argv);
+
+// Report to stdout all arguments in 'argv' as unrecognized except the first.
+// Returns true there is at least on unrecognized argument (i.e. 'argc' > 1).
+bool ReportUnrecognizedArguments(int argc, char** argv);
+
+// Generate a list of benchmarks matching the specified --benchmark_filter flag
+// and if --benchmark_list_tests is specified return after printing the name
+// of each matching benchmark. Otherwise run each matching benchmark and
+// report the results.
+//
+// The second and third overload use the specified 'console_reporter' and
+// 'file_reporter' respectively. 'file_reporter' will write to the file
+// specified
+// by '--benchmark_output'. If '--benchmark_output' is not given the
+// 'file_reporter' is ignored.
+//
+// RETURNS: The number of matching benchmarks.
+size_t RunSpecifiedBenchmarks();
+size_t RunSpecifiedBenchmarks(BenchmarkReporter* console_reporter);
+size_t RunSpecifiedBenchmarks(BenchmarkReporter* console_reporter,
+ BenchmarkReporter* file_reporter);
+
+// If this routine is called, peak memory allocation past this point in the
+// benchmark is reported at the end of the benchmark report line. (It is
+// computed by running the benchmark once with a single iteration and a memory
+// tracer.)
+// TODO(dominic)
+// void MemoryUsage();
+
+namespace internal {
+class Benchmark;
+class BenchmarkImp;
+class BenchmarkFamilies;
+
+void UseCharPointer(char const volatile*);
+
+// Take ownership of the pointer and register the benchmark. Return the
+// registered benchmark.
+Benchmark* RegisterBenchmarkInternal(Benchmark*);
+
+// Ensure that the standard streams are properly initialized in every TU.
+int InitializeStreams();
+BENCHMARK_UNUSED static int stream_init_anchor = InitializeStreams();
+
+} // end namespace internal
+
+
+#if !defined(__GNUC__) || defined(__pnacl__) || defined(EMSCRIPTN)
+# define BENCHMARK_HAS_NO_INLINE_ASSEMBLY
+#endif
+
+// The DoNotOptimize(...) function can be used to prevent a value or
+// expression from being optimized away by the compiler. This function is
+// intended to add little to no overhead.
+// See: https://youtu.be/nXaxk27zwlk?t=2441
+#ifndef BENCHMARK_HAS_NO_INLINE_ASSEMBLY
+template <class Tp>
+inline BENCHMARK_ALWAYS_INLINE void DoNotOptimize(Tp const& value) {
+ asm volatile("" : : "g"(value) : "memory");
+}
+// Force the compiler to flush pending writes to global memory. Acts as an
+// effective read/write barrier
+inline BENCHMARK_ALWAYS_INLINE void ClobberMemory() {
+ asm volatile("" : : : "memory");
+}
+#elif defined(_MSC_VER)
+template <class Tp>
+inline BENCHMARK_ALWAYS_INLINE void DoNotOptimize(Tp const& value) {
+ internal::UseCharPointer(&reinterpret_cast<char const volatile&>(value));
+ _ReadWriteBarrier();
+}
+
+inline BENCHMARK_ALWAYS_INLINE void ClobberMemory() {
+ _ReadWriteBarrier();
+}
+#else
+template <class Tp>
+inline BENCHMARK_ALWAYS_INLINE void DoNotOptimize(Tp const& value) {
+ internal::UseCharPointer(&reinterpret_cast<char const volatile&>(value));
+}
+// FIXME Add ClobberMemory() for non-gnu and non-msvc compilers
+#endif
+
+
+
+// This class is used for user-defined counters.
+class Counter {
+public:
+
+ enum Flags {
+ kDefaults = 0,
+ // Mark the counter as a rate. It will be presented divided
+ // by the duration of the benchmark.
+ kIsRate = 1,
+ // Mark the counter as a thread-average quantity. It will be
+ // presented divided by the number of threads.
+ kAvgThreads = 2,
+ // Mark the counter as a thread-average rate. See above.
+ kAvgThreadsRate = kIsRate|kAvgThreads
+ };
+
+ double value;
+ Flags flags;
+
+ BENCHMARK_ALWAYS_INLINE
+ Counter(double v = 0., Flags f = kDefaults) : value(v), flags(f) {}
+
+ BENCHMARK_ALWAYS_INLINE operator double const& () const { return value; }
+ BENCHMARK_ALWAYS_INLINE operator double & () { return value; }
+
+};
+
+// This is the container for the user-defined counters.
+typedef std::map<std::string, Counter> UserCounters;
+
+
+// TimeUnit is passed to a benchmark in order to specify the order of magnitude
+// for the measured time.
+enum TimeUnit { kNanosecond, kMicrosecond, kMillisecond };
+
+// BigO is passed to a benchmark in order to specify the asymptotic
+// computational
+// complexity for the benchmark. In case oAuto is selected, complexity will be
+// calculated automatically to the best fit.
+enum BigO { oNone, o1, oN, oNSquared, oNCubed, oLogN, oNLogN, oAuto, oLambda };
+
+// BigOFunc is passed to a benchmark in order to specify the asymptotic
+// computational complexity for the benchmark.
+typedef double(BigOFunc)(int);
+
+namespace internal {
+class ThreadTimer;
+class ThreadManager;
+
+#if defined(BENCHMARK_HAS_CXX11)
+enum ReportMode : unsigned {
+#else
+enum ReportMode {
+#endif
+ RM_Unspecified, // The mode has not been manually specified
+ RM_Default, // The mode is user-specified as default.
+ RM_ReportAggregatesOnly
+};
+}
+
+// State is passed to a running Benchmark and contains state for the
+// benchmark to use.
+class State {
+ public:
+ // Returns true if the benchmark should continue through another iteration.
+ // NOTE: A benchmark may not return from the test until KeepRunning() has
+ // returned false.
+ bool KeepRunning() {
+ if (BENCHMARK_BUILTIN_EXPECT(!started_, false)) {
+ StartKeepRunning();
+ }
+ bool const res = total_iterations_++ < max_iterations;
+ if (BENCHMARK_BUILTIN_EXPECT(!res, false)) {
+ FinishKeepRunning();
+ }
+ return res;
+ }
+
+ // REQUIRES: timer is running and 'SkipWithError(...)' has not been called
+ // by the current thread.
+ // Stop the benchmark timer. If not called, the timer will be
+ // automatically stopped after KeepRunning() returns false for the first time.
+ //
+ // For threaded benchmarks the PauseTiming() function only pauses the timing
+ // for the current thread.
+ //
+ // NOTE: The "real time" measurement is per-thread. If different threads
+ // report different measurements the largest one is reported.
+ //
+ // NOTE: PauseTiming()/ResumeTiming() are relatively
+ // heavyweight, and so their use should generally be avoided
+ // within each benchmark iteration, if possible.
+ void PauseTiming();
+
+ // REQUIRES: timer is not running and 'SkipWithError(...)' has not been called
+ // by the current thread.
+ // Start the benchmark timer. The timer is NOT running on entrance to the
+ // benchmark function. It begins running after the first call to KeepRunning()
+ //
+ // NOTE: PauseTiming()/ResumeTiming() are relatively
+ // heavyweight, and so their use should generally be avoided
+ // within each benchmark iteration, if possible.
+ void ResumeTiming();
+
+ // REQUIRES: 'SkipWithError(...)' has not been called previously by the
+ // current thread.
+ // Skip any future iterations of the 'KeepRunning()' loop in the current
+ // thread and report an error with the specified 'msg'. After this call
+ // the user may explicitly 'return' from the benchmark.
+ //
+ // For threaded benchmarks only the current thread stops executing and future
+ // calls to `KeepRunning()` will block until all threads have completed
+ // the `KeepRunning()` loop. If multiple threads report an error only the
+ // first error message is used.
+ //
+ // NOTE: Calling 'SkipWithError(...)' does not cause the benchmark to exit
+ // the current scope immediately. If the function is called from within
+ // the 'KeepRunning()' loop the current iteration will finish. It is the users
+ // responsibility to exit the scope as needed.
+ void SkipWithError(const char* msg);
+
+ // REQUIRES: called exactly once per iteration of the KeepRunning loop.
+ // Set the manually measured time for this benchmark iteration, which
+ // is used instead of automatically measured time if UseManualTime() was
+ // specified.
+ //
+ // For threaded benchmarks the final value will be set to the largest
+ // reported values.
+ void SetIterationTime(double seconds);
+
+ // Set the number of bytes processed by the current benchmark
+ // execution. This routine is typically called once at the end of a
+ // throughput oriented benchmark. If this routine is called with a
+ // value > 0, the report is printed in MB/sec instead of nanoseconds
+ // per iteration.
+ //
+ // REQUIRES: a benchmark has exited its KeepRunning loop.
+ BENCHMARK_ALWAYS_INLINE
+ void SetBytesProcessed(size_t bytes) { bytes_processed_ = bytes; }
+
+ BENCHMARK_ALWAYS_INLINE
+ size_t bytes_processed() const { return bytes_processed_; }
+
+ // If this routine is called with complexity_n > 0 and complexity report is
+ // requested for the
+ // family benchmark, then current benchmark will be part of the computation
+ // and complexity_n will
+ // represent the length of N.
+ BENCHMARK_ALWAYS_INLINE
+ void SetComplexityN(int complexity_n) { complexity_n_ = complexity_n; }
+
+ BENCHMARK_ALWAYS_INLINE
+ int complexity_length_n() { return complexity_n_; }
+
+ // If this routine is called with items > 0, then an items/s
+ // label is printed on the benchmark report line for the currently
+ // executing benchmark. It is typically called at the end of a processing
+ // benchmark where a processing items/second output is desired.
+ //
+ // REQUIRES: a benchmark has exited its KeepRunning loop.
+ BENCHMARK_ALWAYS_INLINE
+ void SetItemsProcessed(size_t items) { items_processed_ = items; }
+
+ BENCHMARK_ALWAYS_INLINE
+ size_t items_processed() const { return items_processed_; }
+
+ // If this routine is called, the specified label is printed at the
+ // end of the benchmark report line for the currently executing
+ // benchmark. Example:
+ // static void BM_Compress(benchmark::State& state) {
+ // ...
+ // double compress = input_size / output_size;
+ // state.SetLabel(StringPrintf("compress:%.1f%%", 100.0*compression));
+ // }
+ // Produces output that looks like:
+ // BM_Compress 50 50 14115038 compress:27.3%
+ //
+ // REQUIRES: a benchmark has exited its KeepRunning loop.
+ void SetLabel(const char* label);
+
+ void BENCHMARK_ALWAYS_INLINE SetLabel(const std::string& str) {
+ this->SetLabel(str.c_str());
+ }
+
+ // Range arguments for this run. CHECKs if the argument has been set.
+ BENCHMARK_ALWAYS_INLINE
+ int range(std::size_t pos = 0) const {
+ assert(range_.size() > pos);
+ return range_[pos];
+ }
+
+ BENCHMARK_DEPRECATED_MSG("use 'range(0)' instead")
+ int range_x() const { return range(0); }
+
+ BENCHMARK_DEPRECATED_MSG("use 'range(1)' instead")
+ int range_y() const { return range(1); }
+
+ BENCHMARK_ALWAYS_INLINE
+ size_t iterations() const { return total_iterations_; }
+
+ private:
+ bool started_;
+ bool finished_;
+ size_t total_iterations_;
+
+ std::vector<int> range_;
+
+ size_t bytes_processed_;
+ size_t items_processed_;
+
+ int complexity_n_;
+
+ bool error_occurred_;
+
+ public:
+ // Container for user-defined counters.
+ UserCounters counters;
+ // Index of the executing thread. Values from [0, threads).
+ const int thread_index;
+ // Number of threads concurrently executing the benchmark.
+ const int threads;
+ const size_t max_iterations;
+
+ // TODO make me private
+ State(size_t max_iters, const std::vector<int>& ranges, int thread_i,
+ int n_threads, internal::ThreadTimer* timer,
+ internal::ThreadManager* manager);
+
+ private:
+ void StartKeepRunning();
+ void FinishKeepRunning();
+ internal::ThreadTimer* timer_;
+ internal::ThreadManager* manager_;
+ BENCHMARK_DISALLOW_COPY_AND_ASSIGN(State);
+};
+
+namespace internal {
+
+typedef void(Function)(State&);
+
+// ------------------------------------------------------
+// Benchmark registration object. The BENCHMARK() macro expands
+// into an internal::Benchmark* object. Various methods can
+// be called on this object to change the properties of the benchmark.
+// Each method returns "this" so that multiple method calls can
+// chained into one expression.
+class Benchmark {
+ public:
+ virtual ~Benchmark();
+
+ // Note: the following methods all return "this" so that multiple
+ // method calls can be chained together in one expression.
+
+ // Run this benchmark once with "x" as the extra argument passed
+ // to the function.
+ // REQUIRES: The function passed to the constructor must accept an arg1.
+ Benchmark* Arg(int x);
+
+ // Run this benchmark with the given time unit for the generated output report
+ Benchmark* Unit(TimeUnit unit);
+
+ // Run this benchmark once for a number of values picked from the
+ // range [start..limit]. (start and limit are always picked.)
+ // REQUIRES: The function passed to the constructor must accept an arg1.
+ Benchmark* Range(int start, int limit);
+
+ // Run this benchmark once for all values in the range [start..limit] with
+ // specific step
+ // REQUIRES: The function passed to the constructor must accept an arg1.
+ Benchmark* DenseRange(int start, int limit, int step = 1);
+
+ // Run this benchmark once with "args" as the extra arguments passed
+ // to the function.
+ // REQUIRES: The function passed to the constructor must accept arg1, arg2 ...
+ Benchmark* Args(const std::vector<int>& args);
+
+ // Equivalent to Args({x, y})
+ // NOTE: This is a legacy C++03 interface provided for compatibility only.
+ // New code should use 'Args'.
+ Benchmark* ArgPair(int x, int y) {
+ std::vector<int> args;
+ args.push_back(x);
+ args.push_back(y);
+ return Args(args);
+ }
+
+ // Run this benchmark once for a number of values picked from the
+ // ranges [start..limit]. (starts and limits are always picked.)
+ // REQUIRES: The function passed to the constructor must accept arg1, arg2 ...
+ Benchmark* Ranges(const std::vector<std::pair<int, int> >& ranges);
+
+ // Equivalent to ArgNames({name})
+ Benchmark* ArgName(const std::string& name);
+
+ // Set the argument names to display in the benchmark name. If not called,
+ // only argument values will be shown.
+ Benchmark* ArgNames(const std::vector<std::string>& names);
+
+ // Equivalent to Ranges({{lo1, hi1}, {lo2, hi2}}).
+ // NOTE: This is a legacy C++03 interface provided for compatibility only.
+ // New code should use 'Ranges'.
+ Benchmark* RangePair(int lo1, int hi1, int lo2, int hi2) {
+ std::vector<std::pair<int, int> > ranges;
+ ranges.push_back(std::make_pair(lo1, hi1));
+ ranges.push_back(std::make_pair(lo2, hi2));
+ return Ranges(ranges);
+ }
+
+ // Pass this benchmark object to *func, which can customize
+ // the benchmark by calling various methods like Arg, Args,
+ // Threads, etc.
+ Benchmark* Apply(void (*func)(Benchmark* benchmark));
+
+ // Set the range multiplier for non-dense range. If not called, the range
+ // multiplier kRangeMultiplier will be used.
+ Benchmark* RangeMultiplier(int multiplier);
+
+ // Set the minimum amount of time to use when running this benchmark. This
+ // option overrides the `benchmark_min_time` flag.
+ // REQUIRES: `t > 0` and `Iterations` has not been called on this benchmark.
+ Benchmark* MinTime(double t);
+
+ // Specify the amount of iterations that should be run by this benchmark.
+ // REQUIRES: 'n > 0' and `MinTime` has not been called on this benchmark.
+ //
+ // NOTE: This function should only be used when *exact* iteration control is
+ // needed and never to control or limit how long a benchmark runs, where
+ // `--benchmark_min_time=N` or `MinTime(...)` should be used instead.
+ Benchmark* Iterations(size_t n);
+
+ // Specify the amount of times to repeat this benchmark. This option overrides
+ // the `benchmark_repetitions` flag.
+ // REQUIRES: `n > 0`
+ Benchmark* Repetitions(int n);
+
+ // Specify if each repetition of the benchmark should be reported separately
+ // or if only the final statistics should be reported. If the benchmark
+ // is not repeated then the single result is always reported.
+ Benchmark* ReportAggregatesOnly(bool v = true);
+
+ // If a particular benchmark is I/O bound, runs multiple threads internally or
+ // if for some reason CPU timings are not representative, call this method. If
+ // called, the elapsed time will be used to control how many iterations are
+ // run, and in the printing of items/second or MB/seconds values. If not
+ // called, the cpu time used by the benchmark will be used.
+ Benchmark* UseRealTime();
+
+ // If a benchmark must measure time manually (e.g. if GPU execution time is
+ // being
+ // measured), call this method. If called, each benchmark iteration should
+ // call
+ // SetIterationTime(seconds) to report the measured time, which will be used
+ // to control how many iterations are run, and in the printing of items/second
+ // or MB/second values.
+ Benchmark* UseManualTime();
+
+ // Set the asymptotic computational complexity for the benchmark. If called
+ // the asymptotic computational complexity will be shown on the output.
+ Benchmark* Complexity(BigO complexity = benchmark::oAuto);
+
+ // Set the asymptotic computational complexity for the benchmark. If called
+ // the asymptotic computational complexity will be shown on the output.
+ Benchmark* Complexity(BigOFunc* complexity);
+
+ // Support for running multiple copies of the same benchmark concurrently
+ // in multiple threads. This may be useful when measuring the scaling
+ // of some piece of code.
+
+ // Run one instance of this benchmark concurrently in t threads.
+ Benchmark* Threads(int t);
+
+ // Pick a set of values T from [min_threads,max_threads].
+ // min_threads and max_threads are always included in T. Run this
+ // benchmark once for each value in T. The benchmark run for a
+ // particular value t consists of t threads running the benchmark
+ // function concurrently. For example, consider:
+ // BENCHMARK(Foo)->ThreadRange(1,16);
+ // This will run the following benchmarks:
+ // Foo in 1 thread
+ // Foo in 2 threads
+ // Foo in 4 threads
+ // Foo in 8 threads
+ // Foo in 16 threads
+ Benchmark* ThreadRange(int min_threads, int max_threads);
+
+ // For each value n in the range, run this benchmark once using n threads.
+ // min_threads and max_threads are always included in the range.
+ // stride specifies the increment. E.g. DenseThreadRange(1, 8, 3) starts
+ // a benchmark with 1, 4, 7 and 8 threads.
+ Benchmark* DenseThreadRange(int min_threads, int max_threads, int stride = 1);
+
+ // Equivalent to ThreadRange(NumCPUs(), NumCPUs())
+ Benchmark* ThreadPerCpu();
+
+ virtual void Run(State& state) = 0;
+
+ // Used inside the benchmark implementation
+ struct Instance;
+
+ protected:
+ explicit Benchmark(const char* name);
+ Benchmark(Benchmark const&);
+ void SetName(const char* name);
+
+ int ArgsCnt() const;
+
+ static void AddRange(std::vector<int>* dst, int lo, int hi, int mult);
+
+ private:
+ friend class BenchmarkFamilies;
+
+ std::string name_;
+ ReportMode report_mode_;
+ std::vector<std::string> arg_names_; // Args for all benchmark runs
+ std::vector<std::vector<int> > args_; // Args for all benchmark runs
+ TimeUnit time_unit_;
+ int range_multiplier_;
+ double min_time_;
+ size_t iterations_;
+ int repetitions_;
+ bool use_real_time_;
+ bool use_manual_time_;
+ BigO complexity_;
+ BigOFunc* complexity_lambda_;
+ std::vector<int> thread_counts_;
+
+ Benchmark& operator=(Benchmark const&);
+};
+
+} // namespace internal
+
+// Create and register a benchmark with the specified 'name' that invokes
+// the specified functor 'fn'.
+//
+// RETURNS: A pointer to the registered benchmark.
+internal::Benchmark* RegisterBenchmark(const char* name,
+ internal::Function* fn);
+
+#if defined(BENCHMARK_HAS_CXX11)
+template <class Lambda>
+internal::Benchmark* RegisterBenchmark(const char* name, Lambda&& fn);
+#endif
+
+namespace internal {
+// The class used to hold all Benchmarks created from static function.
+// (ie those created using the BENCHMARK(...) macros.
+class FunctionBenchmark : public Benchmark {
+ public:
+ FunctionBenchmark(const char* name, Function* func)
+ : Benchmark(name), func_(func) {}
+
+ virtual void Run(State& st);
+
+ private:
+ Function* func_;
+};
+
+#ifdef BENCHMARK_HAS_CXX11
+template <class Lambda>
+class LambdaBenchmark : public Benchmark {
+ public:
+ virtual void Run(State& st) { lambda_(st); }
+
+ private:
+ template <class OLambda>
+ LambdaBenchmark(const char* name, OLambda&& lam)
+ : Benchmark(name), lambda_(std::forward<OLambda>(lam)) {}
+
+ LambdaBenchmark(LambdaBenchmark const&) = delete;
+
+ private:
+ template <class Lam>
+ friend Benchmark* ::benchmark::RegisterBenchmark(const char*, Lam&&);
+
+ Lambda lambda_;
+};
+#endif
+
+} // end namespace internal
+
+inline internal::Benchmark* RegisterBenchmark(const char* name,
+ internal::Function* fn) {
+ return internal::RegisterBenchmarkInternal(
+ ::new internal::FunctionBenchmark(name, fn));
+}
+
+#ifdef BENCHMARK_HAS_CXX11
+template <class Lambda>
+internal::Benchmark* RegisterBenchmark(const char* name, Lambda&& fn) {
+ using BenchType =
+ internal::LambdaBenchmark<typename std::decay<Lambda>::type>;
+ return internal::RegisterBenchmarkInternal(
+ ::new BenchType(name, std::forward<Lambda>(fn)));
+}
+#endif
+
+#if defined(BENCHMARK_HAS_CXX11) && \
+ (!defined(BENCHMARK_GCC_VERSION) || BENCHMARK_GCC_VERSION >= 409)
+template <class Lambda, class... Args>
+internal::Benchmark* RegisterBenchmark(const char* name, Lambda&& fn,
+ Args&&... args) {
+ return benchmark::RegisterBenchmark(
+ name, [=](benchmark::State& st) { fn(st, args...); });
+}
+#else
+#define BENCHMARK_HAS_NO_VARIADIC_REGISTER_BENCHMARK
+#endif
+
+// The base class for all fixture tests.
+class Fixture : public internal::Benchmark {
+ public:
+ Fixture() : internal::Benchmark("") {}
+
+ virtual void Run(State& st) {
+ this->SetUp(st);
+ this->BenchmarkCase(st);
+ this->TearDown(st);
+ }
+
+ // These will be deprecated ...
+ virtual void SetUp(const State&) {}
+ virtual void TearDown(const State&) {}
+ // ... In favor of these.
+ virtual void SetUp(State& st) { SetUp(const_cast<const State&>(st)); }
+ virtual void TearDown(State& st) { TearDown(const_cast<const State&>(st)); }
+
+ protected:
+ virtual void BenchmarkCase(State&) = 0;
+};
+
+} // end namespace benchmark
+
+// ------------------------------------------------------
+// Macro to register benchmarks
+
+// Check that __COUNTER__ is defined and that __COUNTER__ increases by 1
+// every time it is expanded. X + 1 == X + 0 is used in case X is defined to be
+// empty. If X is empty the expression becomes (+1 == +0).
+#if defined(__COUNTER__) && (__COUNTER__ + 1 == __COUNTER__ + 0)
+#define BENCHMARK_PRIVATE_UNIQUE_ID __COUNTER__
+#else
+#define BENCHMARK_PRIVATE_UNIQUE_ID __LINE__
+#endif
+
+// Helpers for generating unique variable names
+#define BENCHMARK_PRIVATE_NAME(n) \
+ BENCHMARK_PRIVATE_CONCAT(_benchmark_, BENCHMARK_PRIVATE_UNIQUE_ID, n)
+#define BENCHMARK_PRIVATE_CONCAT(a, b, c) BENCHMARK_PRIVATE_CONCAT2(a, b, c)
+#define BENCHMARK_PRIVATE_CONCAT2(a, b, c) a##b##c
+
+#define BENCHMARK_PRIVATE_DECLARE(n) \
+ static ::benchmark::internal::Benchmark* BENCHMARK_PRIVATE_NAME(n) \
+ BENCHMARK_UNUSED
+
+#define BENCHMARK(n) \
+ BENCHMARK_PRIVATE_DECLARE(n) = \
+ (::benchmark::internal::RegisterBenchmarkInternal( \
+ new ::benchmark::internal::FunctionBenchmark(#n, n)))
+
+// Old-style macros
+#define BENCHMARK_WITH_ARG(n, a) BENCHMARK(n)->Arg((a))
+#define BENCHMARK_WITH_ARG2(n, a1, a2) BENCHMARK(n)->Args({(a1), (a2)})
+#define BENCHMARK_WITH_UNIT(n, t) BENCHMARK(n)->Unit((t))
+#define BENCHMARK_RANGE(n, lo, hi) BENCHMARK(n)->Range((lo), (hi))
+#define BENCHMARK_RANGE2(n, l1, h1, l2, h2) \
+ BENCHMARK(n)->RangePair({{(l1), (h1)}, {(l2), (h2)}})
+
+#if __cplusplus >= 201103L
+
+// Register a benchmark which invokes the function specified by `func`
+// with the additional arguments specified by `...`.
+//
+// For example:
+//
+// template <class ...ExtraArgs>`
+// void BM_takes_args(benchmark::State& state, ExtraArgs&&... extra_args) {
+// [...]
+//}
+// /* Registers a benchmark named "BM_takes_args/int_string_test` */
+// BENCHMARK_CAPTURE(BM_takes_args, int_string_test, 42, std::string("abc"));
+#define BENCHMARK_CAPTURE(func, test_case_name, ...) \
+ BENCHMARK_PRIVATE_DECLARE(func) = \
+ (::benchmark::internal::RegisterBenchmarkInternal( \
+ new ::benchmark::internal::FunctionBenchmark( \
+ #func "/" #test_case_name, \
+ [](::benchmark::State& st) { func(st, __VA_ARGS__); })))
+
+#endif // __cplusplus >= 11
+
+// This will register a benchmark for a templatized function. For example:
+//
+// template<int arg>
+// void BM_Foo(int iters);
+//
+// BENCHMARK_TEMPLATE(BM_Foo, 1);
+//
+// will register BM_Foo<1> as a benchmark.
+#define BENCHMARK_TEMPLATE1(n, a) \
+ BENCHMARK_PRIVATE_DECLARE(n) = \
+ (::benchmark::internal::RegisterBenchmarkInternal( \
+ new ::benchmark::internal::FunctionBenchmark(#n "<" #a ">", n<a>)))
+
+#define BENCHMARK_TEMPLATE2(n, a, b) \
+ BENCHMARK_PRIVATE_DECLARE(n) = \
+ (::benchmark::internal::RegisterBenchmarkInternal( \
+ new ::benchmark::internal::FunctionBenchmark(#n "<" #a "," #b ">", \
+ n<a, b>)))
+
+#if __cplusplus >= 201103L
+#define BENCHMARK_TEMPLATE(n, ...) \
+ BENCHMARK_PRIVATE_DECLARE(n) = \
+ (::benchmark::internal::RegisterBenchmarkInternal( \
+ new ::benchmark::internal::FunctionBenchmark( \
+ #n "<" #__VA_ARGS__ ">", n<__VA_ARGS__>)))
+#else
+#define BENCHMARK_TEMPLATE(n, a) BENCHMARK_TEMPLATE1(n, a)
+#endif
+
+#define BENCHMARK_PRIVATE_DECLARE_F(BaseClass, Method) \
+ class BaseClass##_##Method##_Benchmark : public BaseClass { \
+ public: \
+ BaseClass##_##Method##_Benchmark() : BaseClass() { \
+ this->SetName(#BaseClass "/" #Method); \
+ } \
+ \
+ protected: \
+ virtual void BenchmarkCase(::benchmark::State&); \
+ };
+
+#define BENCHMARK_DEFINE_F(BaseClass, Method) \
+ BENCHMARK_PRIVATE_DECLARE_F(BaseClass, Method) \
+ void BaseClass##_##Method##_Benchmark::BenchmarkCase
+
+#define BENCHMARK_REGISTER_F(BaseClass, Method) \
+ BENCHMARK_PRIVATE_REGISTER_F(BaseClass##_##Method##_Benchmark)
+
+#define BENCHMARK_PRIVATE_REGISTER_F(TestName) \
+ BENCHMARK_PRIVATE_DECLARE(TestName) = \
+ (::benchmark::internal::RegisterBenchmarkInternal(new TestName()))
+
+// This macro will define and register a benchmark within a fixture class.
+#define BENCHMARK_F(BaseClass, Method) \
+ BENCHMARK_PRIVATE_DECLARE_F(BaseClass, Method) \
+ BENCHMARK_REGISTER_F(BaseClass, Method); \
+ void BaseClass##_##Method##_Benchmark::BenchmarkCase
+
+// Helper macro to create a main routine in a test that runs the benchmarks
+#define BENCHMARK_MAIN() \
+ int main(int argc, char** argv) { \
+ ::benchmark::Initialize(&argc, argv); \
+ if (::benchmark::ReportUnrecognizedArguments(argc, argv)) return 1; \
+ ::benchmark::RunSpecifiedBenchmarks(); \
+ }
+
+#endif // BENCHMARK_BENCHMARK_API_H_
« no previous file with comments | « third_party/google_benchmark/include/benchmark/benchmark.h ('k') | third_party/google_benchmark/include/benchmark/macros.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698