Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(905)

Unified Diff: third_party/google_benchmark/README.md

Issue 2865663003: Adding Google benchmarking library. (Closed)
Patch Set: Sketch. Created 3 years, 7 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « third_party/google_benchmark/README.chromium ('k') | third_party/google_benchmark/appveyor.yml » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: third_party/google_benchmark/README.md
diff --git a/third_party/google_benchmark/README.md b/third_party/google_benchmark/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..2430d93bf9c52aea19027f921310ab98f8a6b223
--- /dev/null
+++ b/third_party/google_benchmark/README.md
@@ -0,0 +1,726 @@
+# benchmark
+[![Build Status](https://travis-ci.org/google/benchmark.svg?branch=master)](https://travis-ci.org/google/benchmark)
+[![Build status](https://ci.appveyor.com/api/projects/status/u0qsyp7t1tk7cpxs/branch/master?svg=true)](https://ci.appveyor.com/project/google/benchmark/branch/master)
+[![Coverage Status](https://coveralls.io/repos/google/benchmark/badge.svg)](https://coveralls.io/r/google/benchmark)
+
+A library to support the benchmarking of functions, similar to unit-tests.
+
+Discussion group: https://groups.google.com/d/forum/benchmark-discuss
+
+IRC channel: https://freenode.net #googlebenchmark
+
+[Known issues and common problems](#known-issues)
+
+[Additional Tooling Documentation](docs/tools.md)
+
+## Example usage
+### Basic usage
+Define a function that executes the code to be measured.
+
+```c++
+static void BM_StringCreation(benchmark::State& state) {
+ while (state.KeepRunning())
+ std::string empty_string;
+}
+// Register the function as a benchmark
+BENCHMARK(BM_StringCreation);
+
+// Define another benchmark
+static void BM_StringCopy(benchmark::State& state) {
+ std::string x = "hello";
+ while (state.KeepRunning())
+ std::string copy(x);
+}
+BENCHMARK(BM_StringCopy);
+
+BENCHMARK_MAIN();
+```
+
+### Passing arguments
+Sometimes a family of benchmarks can be implemented with just one routine that
+takes an extra argument to specify which one of the family of benchmarks to
+run. For example, the following code defines a family of benchmarks for
+measuring the speed of `memcpy()` calls of different lengths:
+
+```c++
+static void BM_memcpy(benchmark::State& state) {
+ char* src = new char[state.range(0)];
+ char* dst = new char[state.range(0)];
+ memset(src, 'x', state.range(0));
+ while (state.KeepRunning())
+ memcpy(dst, src, state.range(0));
+ state.SetBytesProcessed(int64_t(state.iterations()) *
+ int64_t(state.range(0)));
+ delete[] src;
+ delete[] dst;
+}
+BENCHMARK(BM_memcpy)->Arg(8)->Arg(64)->Arg(512)->Arg(1<<10)->Arg(8<<10);
+```
+
+The preceding code is quite repetitive, and can be replaced with the following
+short-hand. The following invocation will pick a few appropriate arguments in
+the specified range and will generate a benchmark for each such argument.
+
+```c++
+BENCHMARK(BM_memcpy)->Range(8, 8<<10);
+```
+
+By default the arguments in the range are generated in multiples of eight and
+the command above selects [ 8, 64, 512, 4k, 8k ]. In the following code the
+range multiplier is changed to multiples of two.
+
+```c++
+BENCHMARK(BM_memcpy)->RangeMultiplier(2)->Range(8, 8<<10);
+```
+Now arguments generated are [ 8, 16, 32, 64, 128, 256, 512, 1024, 2k, 4k, 8k ].
+
+You might have a benchmark that depends on two or more inputs. For example, the
+following code defines a family of benchmarks for measuring the speed of set
+insertion.
+
+```c++
+static void BM_SetInsert(benchmark::State& state) {
+ while (state.KeepRunning()) {
+ state.PauseTiming();
+ std::set<int> data = ConstructRandomSet(state.range(0));
+ state.ResumeTiming();
+ for (int j = 0; j < state.range(1); ++j)
+ data.insert(RandomNumber());
+ }
+}
+BENCHMARK(BM_SetInsert)
+ ->Args({1<<10, 1})
+ ->Args({1<<10, 8})
+ ->Args({1<<10, 64})
+ ->Args({1<<10, 512})
+ ->Args({8<<10, 1})
+ ->Args({8<<10, 8})
+ ->Args({8<<10, 64})
+ ->Args({8<<10, 512});
+```
+
+The preceding code is quite repetitive, and can be replaced with the following
+short-hand. The following macro will pick a few appropriate arguments in the
+product of the two specified ranges and will generate a benchmark for each such
+pair.
+
+```c++
+BENCHMARK(BM_SetInsert)->Ranges({{1<<10, 8<<10}, {1, 512}});
+```
+
+For more complex patterns of inputs, passing a custom function to `Apply` allows
+programmatic specification of an arbitrary set of arguments on which to run the
+benchmark. The following example enumerates a dense range on one parameter,
+and a sparse range on the second.
+
+```c++
+static void CustomArguments(benchmark::internal::Benchmark* b) {
+ for (int i = 0; i <= 10; ++i)
+ for (int j = 32; j <= 1024*1024; j *= 8)
+ b->Args({i, j});
+}
+BENCHMARK(BM_SetInsert)->Apply(CustomArguments);
+```
+
+### Calculate asymptotic complexity (Big O)
+Asymptotic complexity might be calculated for a family of benchmarks. The
+following code will calculate the coefficient for the high-order term in the
+running time and the normalized root-mean square error of string comparison.
+
+```c++
+static void BM_StringCompare(benchmark::State& state) {
+ std::string s1(state.range(0), '-');
+ std::string s2(state.range(0), '-');
+ while (state.KeepRunning()) {
+ benchmark::DoNotOptimize(s1.compare(s2));
+ }
+ state.SetComplexityN(state.range(0));
+}
+BENCHMARK(BM_StringCompare)
+ ->RangeMultiplier(2)->Range(1<<10, 1<<18)->Complexity(benchmark::oN);
+```
+
+As shown in the following invocation, asymptotic complexity might also be
+calculated automatically.
+
+```c++
+BENCHMARK(BM_StringCompare)
+ ->RangeMultiplier(2)->Range(1<<10, 1<<18)->Complexity();
+```
+
+The following code will specify asymptotic complexity with a lambda function,
+that might be used to customize high-order term calculation.
+
+```c++
+BENCHMARK(BM_StringCompare)->RangeMultiplier(2)
+ ->Range(1<<10, 1<<18)->Complexity([](int n)->double{return n; });
+```
+
+### Templated benchmarks
+Templated benchmarks work the same way: This example produces and consumes
+messages of size `sizeof(v)` `range_x` times. It also outputs throughput in the
+absence of multiprogramming.
+
+```c++
+template <class Q> int BM_Sequential(benchmark::State& state) {
+ Q q;
+ typename Q::value_type v;
+ while (state.KeepRunning()) {
+ for (int i = state.range(0); i--; )
+ q.push(v);
+ for (int e = state.range(0); e--; )
+ q.Wait(&v);
+ }
+ // actually messages, not bytes:
+ state.SetBytesProcessed(
+ static_cast<int64_t>(state.iterations())*state.range(0));
+}
+BENCHMARK_TEMPLATE(BM_Sequential, WaitQueue<int>)->Range(1<<0, 1<<10);
+```
+
+Three macros are provided for adding benchmark templates.
+
+```c++
+#if __cplusplus >= 201103L // C++11 and greater.
+#define BENCHMARK_TEMPLATE(func, ...) // Takes any number of parameters.
+#else // C++ < C++11
+#define BENCHMARK_TEMPLATE(func, arg1)
+#endif
+#define BENCHMARK_TEMPLATE1(func, arg1)
+#define BENCHMARK_TEMPLATE2(func, arg1, arg2)
+```
+
+## Passing arbitrary arguments to a benchmark
+In C++11 it is possible to define a benchmark that takes an arbitrary number
+of extra arguments. The `BENCHMARK_CAPTURE(func, test_case_name, ...args)`
+macro creates a benchmark that invokes `func` with the `benchmark::State` as
+the first argument followed by the specified `args...`.
+The `test_case_name` is appended to the name of the benchmark and
+should describe the values passed.
+
+```c++
+template <class ...ExtraArgs>`
+void BM_takes_args(benchmark::State& state, ExtraArgs&&... extra_args) {
+ [...]
+}
+// Registers a benchmark named "BM_takes_args/int_string_test` that passes
+// the specified values to `extra_args`.
+BENCHMARK_CAPTURE(BM_takes_args, int_string_test, 42, std::string("abc"));
+```
+Note that elements of `...args` may refer to global variables. Users should
+avoid modifying global state inside of a benchmark.
+
+## Using RegisterBenchmark(name, fn, args...)
+
+The `RegisterBenchmark(name, func, args...)` function provides an alternative
+way to create and register benchmarks.
+`RegisterBenchmark(name, func, args...)` creates, registers, and returns a
+pointer to a new benchmark with the specified `name` that invokes
+`func(st, args...)` where `st` is a `benchmark::State` object.
+
+Unlike the `BENCHMARK` registration macros, which can only be used at the global
+scope, the `RegisterBenchmark` can be called anywhere. This allows for
+benchmark tests to be registered programmatically.
+
+Additionally `RegisterBenchmark` allows any callable object to be registered
+as a benchmark. Including capturing lambdas and function objects. This
+allows the creation
+
+For Example:
+```c++
+auto BM_test = [](benchmark::State& st, auto Inputs) { /* ... */ };
+
+int main(int argc, char** argv) {
+ for (auto& test_input : { /* ... */ })
+ benchmark::RegisterBenchmark(test_input.name(), BM_test, test_input);
+ benchmark::Initialize(&argc, argv);
+ benchmark::RunSpecifiedBenchmarks();
+}
+```
+
+### Multithreaded benchmarks
+In a multithreaded test (benchmark invoked by multiple threads simultaneously),
+it is guaranteed that none of the threads will start until all have called
+`KeepRunning`, and all will have finished before KeepRunning returns false. As
+such, any global setup or teardown can be wrapped in a check against the thread
+index:
+
+```c++
+static void BM_MultiThreaded(benchmark::State& state) {
+ if (state.thread_index == 0) {
+ // Setup code here.
+ }
+ while (state.KeepRunning()) {
+ // Run the test as normal.
+ }
+ if (state.thread_index == 0) {
+ // Teardown code here.
+ }
+}
+BENCHMARK(BM_MultiThreaded)->Threads(2);
+```
+
+If the benchmarked code itself uses threads and you want to compare it to
+single-threaded code, you may want to use real-time ("wallclock") measurements
+for latency comparisons:
+
+```c++
+BENCHMARK(BM_test)->Range(8, 8<<10)->UseRealTime();
+```
+
+Without `UseRealTime`, CPU time is used by default.
+
+
+## Manual timing
+For benchmarking something for which neither CPU time nor real-time are
+correct or accurate enough, completely manual timing is supported using
+the `UseManualTime` function.
+
+When `UseManualTime` is used, the benchmarked code must call
+`SetIterationTime` once per iteration of the `KeepRunning` loop to
+report the manually measured time.
+
+An example use case for this is benchmarking GPU execution (e.g. OpenCL
+or CUDA kernels, OpenGL or Vulkan or Direct3D draw calls), which cannot
+be accurately measured using CPU time or real-time. Instead, they can be
+measured accurately using a dedicated API, and these measurement results
+can be reported back with `SetIterationTime`.
+
+```c++
+static void BM_ManualTiming(benchmark::State& state) {
+ int microseconds = state.range(0);
+ std::chrono::duration<double, std::micro> sleep_duration {
+ static_cast<double>(microseconds)
+ };
+
+ while (state.KeepRunning()) {
+ auto start = std::chrono::high_resolution_clock::now();
+ // Simulate some useful workload with a sleep
+ std::this_thread::sleep_for(sleep_duration);
+ auto end = std::chrono::high_resolution_clock::now();
+
+ auto elapsed_seconds =
+ std::chrono::duration_cast<std::chrono::duration<double>>(
+ end - start);
+
+ state.SetIterationTime(elapsed_seconds.count());
+ }
+}
+BENCHMARK(BM_ManualTiming)->Range(1, 1<<17)->UseManualTime();
+```
+
+### Preventing optimisation
+To prevent a value or expression from being optimized away by the compiler
+the `benchmark::DoNotOptimize(...)` and `benchmark::ClobberMemory()`
+functions can be used.
+
+```c++
+static void BM_test(benchmark::State& state) {
+ while (state.KeepRunning()) {
+ int x = 0;
+ for (int i=0; i < 64; ++i) {
+ benchmark::DoNotOptimize(x += i);
+ }
+ }
+}
+```
+
+`DoNotOptimize(<expr>)` forces the *result* of `<expr>` to be stored in either
+memory or a register. For GNU based compilers it acts as read/write barrier
+for global memory. More specifically it forces the compiler to flush pending
+writes to memory and reload any other values as necessary.
+
+Note that `DoNotOptimize(<expr>)` does not prevent optimizations on `<expr>`
+in any way. `<expr>` may even be removed entirely when the result is already
+known. For example:
+
+```c++
+ /* Example 1: `<expr>` is removed entirely. */
+ int foo(int x) { return x + 42; }
+ while (...) DoNotOptimize(foo(0)); // Optimized to DoNotOptimize(42);
+
+ /* Example 2: Result of '<expr>' is only reused */
+ int bar(int) __attribute__((const));
+ while (...) DoNotOptimize(bar(0)); // Optimized to:
+ // int __result__ = bar(0);
+ // while (...) DoNotOptimize(__result__);
+```
+
+The second tool for preventing optimizations is `ClobberMemory()`. In essence
+`ClobberMemory()` forces the compiler to perform all pending writes to global
+memory. Memory managed by block scope objects must be "escaped" using
+`DoNotOptimize(...)` before it can be clobbered. In the below example
+`ClobberMemory()` prevents the call to `v.push_back(42)` from being optimized
+away.
+
+```c++
+static void BM_vector_push_back(benchmark::State& state) {
+ while (state.KeepRunning()) {
+ std::vector<int> v;
+ v.reserve(1);
+ benchmark::DoNotOptimize(v.data()); // Allow v.data() to be clobbered.
+ v.push_back(42);
+ benchmark::ClobberMemory(); // Force 42 to be written to memory.
+ }
+}
+```
+
+Note that `ClobberMemory()` is only available for GNU or MSVC based compilers.
+
+### Set time unit manually
+If a benchmark runs a few milliseconds it may be hard to visually compare the
+measured times, since the output data is given in nanoseconds per default. In
+order to manually set the time unit, you can specify it manually:
+
+```c++
+BENCHMARK(BM_test)->Unit(benchmark::kMillisecond);
+```
+
+## Controlling number of iterations
+In all cases, the number of iterations for which the benchmark is run is
+governed by the amount of time the benchmark takes. Concretely, the number of
+iterations is at least one, not more than 1e9, until CPU time is greater than
+the minimum time, or the wallclock time is 5x minimum time. The minimum time is
+set as a flag `--benchmark_min_time` or per benchmark by calling `MinTime` on
+the registered benchmark object.
+
+## Reporting the mean and standard devation by repeated benchmarks
+By default each benchmark is run once and that single result is reported.
+However benchmarks are often noisy and a single result may not be representative
+of the overall behavior. For this reason it's possible to repeatedly rerun the
+benchmark.
+
+The number of runs of each benchmark is specified globally by the
+`--benchmark_repetitions` flag or on a per benchmark basis by calling
+`Repetitions` on the registered benchmark object. When a benchmark is run
+more than once the mean and standard deviation of the runs will be reported.
+
+Additionally the `--benchmark_report_aggregates_only={true|false}` flag or
+`ReportAggregatesOnly(bool)` function can be used to change how repeated tests
+are reported. By default the result of each repeated run is reported. When this
+option is 'true' only the mean and standard deviation of the runs is reported.
+Calling `ReportAggregatesOnly(bool)` on a registered benchmark object overrides
+the value of the flag for that benchmark.
+
+## Fixtures
+Fixture tests are created by
+first defining a type that derives from ::benchmark::Fixture and then
+creating/registering the tests using the following macros:
+
+* `BENCHMARK_F(ClassName, Method)`
+* `BENCHMARK_DEFINE_F(ClassName, Method)`
+* `BENCHMARK_REGISTER_F(ClassName, Method)`
+
+For Example:
+
+```c++
+class MyFixture : public benchmark::Fixture {};
+
+BENCHMARK_F(MyFixture, FooTest)(benchmark::State& st) {
+ while (st.KeepRunning()) {
+ ...
+ }
+}
+
+BENCHMARK_DEFINE_F(MyFixture, BarTest)(benchmark::State& st) {
+ while (st.KeepRunning()) {
+ ...
+ }
+}
+/* BarTest is NOT registered */
+BENCHMARK_REGISTER_F(MyFixture, BarTest)->Threads(2);
+/* BarTest is now registered */
+```
+
+
+## User-defined counters
+
+You can add your own counters with user-defined names. The example below
+will add columns "Foo", "Bar" and "Baz" in its output:
+
+```c++
+static void UserCountersExample1(benchmark::State& state) {
+ double numFoos = 0, numBars = 0, numBazs = 0;
+ while (state.KeepRunning()) {
+ // ... count Foo,Bar,Baz events
+ }
+ state.counters["Foo"] = numFoos;
+ state.counters["Bar"] = numBars;
+ state.counters["Baz"] = numBazs;
+}
+```
+
+The `state.counters` object is a `std::map` with `std::string` keys
+and `Counter` values. The latter is a `double`-like class, via an implicit
+conversion to `double&`. Thus you can use all of the standard arithmetic
+assignment operators (`=,+=,-=,*=,/=`) to change the value of each counter.
+
+In multithreaded benchmarks, each counter is set on the calling thread only.
+When the benchmark finishes, the counters from each thread will be summed;
+the resulting sum is the value which will be shown for the benchmark.
+
+The `Counter` constructor accepts two parameters: the value as a `double`
+and a bit flag which allows you to show counters as rates and/or as
+per-thread averages:
+
+```c++
+ // sets a simple counter
+ state.counters["Foo"] = numFoos;
+
+ // Set the counter as a rate. It will be presented divided
+ // by the duration of the benchmark.
+ state.counters["FooRate"] = Counter(numFoos, benchmark::Counter::kIsRate);
+
+ // Set the counter as a thread-average quantity. It will
+ // be presented divided by the number of threads.
+ state.counters["FooAvg"] = Counter(numFoos, benchmark::Counter::kAvgThreads);
+
+ // There's also a combined flag:
+ state.counters["FooAvgRate"] = Counter(numFoos,benchmark::Counter::kAvgThreadsRate);
+```
+
+When you're compiling in C++11 mode or later you can use `insert()` with
+`std::initializer_list`:
+
+```c++
+ // With C++11, this can be done:
+ state.counters.insert({{"Foo", numFoos}, {"Bar", numBars}, {"Baz", numBazs}});
+ // ... instead of:
+ state.counters["Foo"] = numFoos;
+ state.counters["Bar"] = numBars;
+ state.counters["Baz"] = numBazs;
+```
+
+### Counter reporting
+
+When using the console reporter, by default, user counters are are printed at
+the end after the table, the same way as ``bytes_processed`` and
+``items_processed``. This is best for cases in which there are few counters,
+or where there are only a couple of lines per benchmark. Here's an example of
+the default output:
+
+```
+------------------------------------------------------------------------------
+Benchmark Time CPU Iterations UserCounters...
+------------------------------------------------------------------------------
+BM_UserCounter/threads:8 2248 ns 10277 ns 68808 Bar=16 Bat=40 Baz=24 Foo=8
+BM_UserCounter/threads:1 9797 ns 9788 ns 71523 Bar=2 Bat=5 Baz=3 Foo=1024m
+BM_UserCounter/threads:2 4924 ns 9842 ns 71036 Bar=4 Bat=10 Baz=6 Foo=2
+BM_UserCounter/threads:4 2589 ns 10284 ns 68012 Bar=8 Bat=20 Baz=12 Foo=4
+BM_UserCounter/threads:8 2212 ns 10287 ns 68040 Bar=16 Bat=40 Baz=24 Foo=8
+BM_UserCounter/threads:16 1782 ns 10278 ns 68144 Bar=32 Bat=80 Baz=48 Foo=16
+BM_UserCounter/threads:32 1291 ns 10296 ns 68256 Bar=64 Bat=160 Baz=96 Foo=32
+BM_UserCounter/threads:4 2615 ns 10307 ns 68040 Bar=8 Bat=20 Baz=12 Foo=4
+BM_Factorial 26 ns 26 ns 26608979 40320
+BM_Factorial/real_time 26 ns 26 ns 26587936 40320
+BM_CalculatePiRange/1 16 ns 16 ns 45704255 0
+BM_CalculatePiRange/8 73 ns 73 ns 9520927 3.28374
+BM_CalculatePiRange/64 609 ns 609 ns 1140647 3.15746
+BM_CalculatePiRange/512 4900 ns 4901 ns 142696 3.14355
+```
+
+If this doesn't suit you, you can print each counter as a table column by
+passing the flag `--benchmark_counters_tabular=true` to the benchmark
+application. This is best for cases in which there are a lot of counters, or
+a lot of lines per individual benchmark. Note that this will trigger a
+reprinting of the table header any time the counter set changes between
+individual benchmarks. Here's an example of corresponding output when
+`--benchmark_counters_tabular=true` is passed:
+
+```
+---------------------------------------------------------------------------------------
+Benchmark Time CPU Iterations Bar Bat Baz Foo
+---------------------------------------------------------------------------------------
+BM_UserCounter/threads:8 2198 ns 9953 ns 70688 16 40 24 8
+BM_UserCounter/threads:1 9504 ns 9504 ns 73787 2 5 3 1
+BM_UserCounter/threads:2 4775 ns 9550 ns 72606 4 10 6 2
+BM_UserCounter/threads:4 2508 ns 9951 ns 70332 8 20 12 4
+BM_UserCounter/threads:8 2055 ns 9933 ns 70344 16 40 24 8
+BM_UserCounter/threads:16 1610 ns 9946 ns 70720 32 80 48 16
+BM_UserCounter/threads:32 1192 ns 9948 ns 70496 64 160 96 32
+BM_UserCounter/threads:4 2506 ns 9949 ns 70332 8 20 12 4
+--------------------------------------------------------------
+Benchmark Time CPU Iterations
+--------------------------------------------------------------
+BM_Factorial 26 ns 26 ns 26392245 40320
+BM_Factorial/real_time 26 ns 26 ns 26494107 40320
+BM_CalculatePiRange/1 15 ns 15 ns 45571597 0
+BM_CalculatePiRange/8 74 ns 74 ns 9450212 3.28374
+BM_CalculatePiRange/64 595 ns 595 ns 1173901 3.15746
+BM_CalculatePiRange/512 4752 ns 4752 ns 147380 3.14355
+BM_CalculatePiRange/4k 37970 ns 37972 ns 18453 3.14184
+BM_CalculatePiRange/32k 303733 ns 303744 ns 2305 3.14162
+BM_CalculatePiRange/256k 2434095 ns 2434186 ns 288 3.1416
+BM_CalculatePiRange/1024k 9721140 ns 9721413 ns 71 3.14159
+BM_CalculatePi/threads:8 2255 ns 9943 ns 70936
+```
+Note above the additional header printed when the benchmark changes from
+``BM_UserCounter`` to ``BM_Factorial``. This is because ``BM_Factorial`` does
+not have the same counter set as ``BM_UserCounter``.
+
+## Exiting Benchmarks in Error
+
+When errors caused by external influences, such as file I/O and network
+communication, occur within a benchmark the
+`State::SkipWithError(const char* msg)` function can be used to skip that run
+of benchmark and report the error. Note that only future iterations of the
+`KeepRunning()` are skipped. Users may explicitly return to exit the
+benchmark immediately.
+
+The `SkipWithError(...)` function may be used at any point within the benchmark,
+including before and after the `KeepRunning()` loop.
+
+For example:
+
+```c++
+static void BM_test(benchmark::State& state) {
+ auto resource = GetResource();
+ if (!resource.good()) {
+ state.SkipWithError("Resource is not good!");
+ // KeepRunning() loop will not be entered.
+ }
+ while (state.KeepRunning()) {
+ auto data = resource.read_data();
+ if (!resource.good()) {
+ state.SkipWithError("Failed to read data!");
+ break; // Needed to skip the rest of the iteration.
+ }
+ do_stuff(data);
+ }
+}
+```
+
+## Running a subset of the benchmarks
+
+The `--benchmark_filter=<regex>` option can be used to only run the benchmarks
+which match the specified `<regex>`. For example:
+
+```bash
+$ ./run_benchmarks.x --benchmark_filter=BM_memcpy/32
+Run on (1 X 2300 MHz CPU )
+2016-06-25 19:34:24
+Benchmark Time CPU Iterations
+----------------------------------------------------
+BM_memcpy/32 11 ns 11 ns 79545455
+BM_memcpy/32k 2181 ns 2185 ns 324074
+BM_memcpy/32 12 ns 12 ns 54687500
+BM_memcpy/32k 1834 ns 1837 ns 357143
+```
+
+
+## Output Formats
+The library supports multiple output formats. Use the
+`--benchmark_format=<console|json|csv>` flag to set the format type. `console`
+is the default format.
+
+The Console format is intended to be a human readable format. By default
+the format generates color output. Context is output on stderr and the
+tabular data on stdout. Example tabular output looks like:
+```
+Benchmark Time(ns) CPU(ns) Iterations
+----------------------------------------------------------------------
+BM_SetInsert/1024/1 28928 29349 23853 133.097kB/s 33.2742k items/s
+BM_SetInsert/1024/8 32065 32913 21375 949.487kB/s 237.372k items/s
+BM_SetInsert/1024/10 33157 33648 21431 1.13369MB/s 290.225k items/s
+```
+
+The JSON format outputs human readable json split into two top level attributes.
+The `context` attribute contains information about the run in general, including
+information about the CPU and the date.
+The `benchmarks` attribute contains a list of ever benchmark run. Example json
+output looks like:
+```json
+{
+ "context": {
+ "date": "2015/03/17-18:40:25",
+ "num_cpus": 40,
+ "mhz_per_cpu": 2801,
+ "cpu_scaling_enabled": false,
+ "build_type": "debug"
+ },
+ "benchmarks": [
+ {
+ "name": "BM_SetInsert/1024/1",
+ "iterations": 94877,
+ "real_time": 29275,
+ "cpu_time": 29836,
+ "bytes_per_second": 134066,
+ "items_per_second": 33516
+ },
+ {
+ "name": "BM_SetInsert/1024/8",
+ "iterations": 21609,
+ "real_time": 32317,
+ "cpu_time": 32429,
+ "bytes_per_second": 986770,
+ "items_per_second": 246693
+ },
+ {
+ "name": "BM_SetInsert/1024/10",
+ "iterations": 21393,
+ "real_time": 32724,
+ "cpu_time": 33355,
+ "bytes_per_second": 1199226,
+ "items_per_second": 299807
+ }
+ ]
+}
+```
+
+The CSV format outputs comma-separated values. The `context` is output on stderr
+and the CSV itself on stdout. Example CSV output looks like:
+```
+name,iterations,real_time,cpu_time,bytes_per_second,items_per_second,label
+"BM_SetInsert/1024/1",65465,17890.7,8407.45,475768,118942,
+"BM_SetInsert/1024/8",116606,18810.1,9766.64,3.27646e+06,819115,
+"BM_SetInsert/1024/10",106365,17238.4,8421.53,4.74973e+06,1.18743e+06,
+```
+
+## Output Files
+The library supports writing the output of the benchmark to a file specified
+by `--benchmark_out=<filename>`. The format of the output can be specified
+using `--benchmark_out_format={json|console|csv}`. Specifying
+`--benchmark_out` does not suppress the console output.
+
+## Debug vs Release
+By default, benchmark builds as a debug library. You will see a warning in the output when this is the case. To build it as a release library instead, use:
+
+```
+cmake -DCMAKE_BUILD_TYPE=Release
+```
+
+To enable link-time optimisation, use
+
+```
+cmake -DCMAKE_BUILD_TYPE=Release -DBENCHMARK_ENABLE_LTO=true
+```
+
+## Linking against the library
+When using gcc, it is necessary to link against pthread to avoid runtime exceptions.
+This is due to how gcc implements std::thread.
+See [issue #67](https://github.com/google/benchmark/issues/67) for more details.
+
+## Compiler Support
+
+Google Benchmark uses C++11 when building the library. As such we require
+a modern C++ toolchain, both compiler and standard library.
+
+The following minimum versions are strongly recommended build the library:
+
+* GCC 4.8
+* Clang 3.4
+* Visual Studio 2013
+* Intel 2015 Update 1
+
+Anything older *may* work.
+
+Note: Using the library and its headers in C++03 is supported. C++11 is only
+required to build the library.
+
+# Known Issues
+
+### Windows
+
+* Users must manually link `shlwapi.lib`. Failure to do so may result
+in unresolved symbols.
+
« no previous file with comments | « third_party/google_benchmark/README.chromium ('k') | third_party/google_benchmark/appveyor.yml » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698