OLD | NEW |
| (Empty) |
1 // Copyright 2016 The Chromium Authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #include "device/generic_sensor/platform_sensor_reader_win.h" | |
6 | |
7 #include <Sensors.h> | |
8 #include <objbase.h> | |
9 | |
10 #include "base/callback.h" | |
11 #include "base/memory/ptr_util.h" | |
12 #include "base/threading/thread_task_runner_handle.h" | |
13 #include "base/time/time.h" | |
14 #include "base/win/iunknown_impl.h" | |
15 #include "base/win/scoped_propvariant.h" | |
16 #include "device/generic_sensor/generic_sensor_consts.h" | |
17 #include "device/generic_sensor/public/cpp/platform_sensor_configuration.h" | |
18 #include "device/generic_sensor/public/cpp/sensor_reading.h" | |
19 | |
20 namespace device { | |
21 | |
22 // Init params for the PlatformSensorReaderWin. | |
23 struct ReaderInitParams { | |
24 // ISensorDataReport::GetSensorValue is not const, therefore, report | |
25 // cannot be passed as const ref. | |
26 // ISensorDataReport* report - report that contains new sensor data. | |
27 // SensorReading* reading - out parameter that must be populated. | |
28 // Returns HRESULT - S_OK on success, otherwise error code. | |
29 using ReaderFunctor = base::Callback<HRESULT(ISensorDataReport* report, | |
30 SensorReading* reading)>; | |
31 SENSOR_TYPE_ID sensor_type_id; | |
32 ReaderFunctor reader_func; | |
33 unsigned long min_reporting_interval_ms = 0; | |
34 }; | |
35 | |
36 namespace { | |
37 | |
38 // Gets value from the report for provided key. | |
39 bool GetReadingValueForProperty(REFPROPERTYKEY key, | |
40 ISensorDataReport* report, | |
41 double* value) { | |
42 DCHECK(value); | |
43 base::win::ScopedPropVariant variant_value; | |
44 if (SUCCEEDED(report->GetSensorValue(key, variant_value.Receive()))) { | |
45 if (variant_value.get().vt == VT_R8) | |
46 *value = variant_value.get().dblVal; | |
47 else if (variant_value.get().vt == VT_R4) | |
48 *value = variant_value.get().fltVal; | |
49 else | |
50 return false; | |
51 return true; | |
52 } | |
53 | |
54 *value = 0; | |
55 return false; | |
56 } | |
57 | |
58 // Ambient light sensor reader initialization parameters. | |
59 std::unique_ptr<ReaderInitParams> CreateAmbientLightReaderInitParams() { | |
60 auto params = base::MakeUnique<ReaderInitParams>(); | |
61 params->sensor_type_id = SENSOR_TYPE_AMBIENT_LIGHT; | |
62 params->reader_func = | |
63 base::Bind([](ISensorDataReport* report, SensorReading* reading) { | |
64 double lux = 0.0; | |
65 if (!GetReadingValueForProperty(SENSOR_DATA_TYPE_LIGHT_LEVEL_LUX, | |
66 report, &lux)) { | |
67 return E_FAIL; | |
68 } | |
69 reading->values[0] = lux; | |
70 return S_OK; | |
71 }); | |
72 return params; | |
73 } | |
74 | |
75 // Accelerometer sensor reader initialization parameters. | |
76 std::unique_ptr<ReaderInitParams> CreateAccelerometerReaderInitParams() { | |
77 auto params = base::MakeUnique<ReaderInitParams>(); | |
78 params->sensor_type_id = SENSOR_TYPE_ACCELEROMETER_3D; | |
79 params->reader_func = | |
80 base::Bind([](ISensorDataReport* report, SensorReading* reading) { | |
81 double x = 0.0; | |
82 double y = 0.0; | |
83 double z = 0.0; | |
84 if (!GetReadingValueForProperty(SENSOR_DATA_TYPE_ACCELERATION_X_G, | |
85 report, &x) || | |
86 !GetReadingValueForProperty(SENSOR_DATA_TYPE_ACCELERATION_Y_G, | |
87 report, &y) || | |
88 !GetReadingValueForProperty(SENSOR_DATA_TYPE_ACCELERATION_Z_G, | |
89 report, &z)) { | |
90 return E_FAIL; | |
91 } | |
92 | |
93 // Windows uses coordinate system where Z axis points down from device | |
94 // screen, therefore, using right hand notation, we have to reverse | |
95 // sign for each axis. Values are converted from G/s^2 to m/s^2. | |
96 reading->values[0] = -x * kMeanGravity; | |
97 reading->values[1] = -y * kMeanGravity; | |
98 reading->values[2] = -z * kMeanGravity; | |
99 return S_OK; | |
100 }); | |
101 return params; | |
102 } | |
103 | |
104 // Gyroscope sensor reader initialization parameters. | |
105 std::unique_ptr<ReaderInitParams> CreateGyroscopeReaderInitParams() { | |
106 auto params = base::MakeUnique<ReaderInitParams>(); | |
107 params->sensor_type_id = SENSOR_TYPE_GYROMETER_3D; | |
108 params->reader_func = base::Bind([](ISensorDataReport* report, | |
109 SensorReading* reading) { | |
110 double x = 0.0; | |
111 double y = 0.0; | |
112 double z = 0.0; | |
113 if (!GetReadingValueForProperty( | |
114 SENSOR_DATA_TYPE_ANGULAR_VELOCITY_X_DEGREES_PER_SECOND, report, | |
115 &x) || | |
116 !GetReadingValueForProperty( | |
117 SENSOR_DATA_TYPE_ANGULAR_VELOCITY_Y_DEGREES_PER_SECOND, report, | |
118 &y) || | |
119 !GetReadingValueForProperty( | |
120 SENSOR_DATA_TYPE_ANGULAR_VELOCITY_Z_DEGREES_PER_SECOND, report, | |
121 &z)) { | |
122 return E_FAIL; | |
123 } | |
124 | |
125 // Windows uses coordinate system where Z axis points down from device | |
126 // screen, therefore, using right hand notation, we have to reverse | |
127 // sign for each axis. Values are converted from deg to rad. | |
128 reading->values[0] = -x * kRadiansInDegrees; | |
129 reading->values[1] = -y * kRadiansInDegrees; | |
130 reading->values[2] = -z * kRadiansInDegrees; | |
131 return S_OK; | |
132 }); | |
133 return params; | |
134 } | |
135 | |
136 // Magnetometer sensor reader initialization parameters. | |
137 std::unique_ptr<ReaderInitParams> CreateMagnetometerReaderInitParams() { | |
138 auto params = base::MakeUnique<ReaderInitParams>(); | |
139 params->sensor_type_id = SENSOR_TYPE_COMPASS_3D; | |
140 params->reader_func = | |
141 base::Bind([](ISensorDataReport* report, SensorReading* reading) { | |
142 double x = 0.0; | |
143 double y = 0.0; | |
144 double z = 0.0; | |
145 if (!GetReadingValueForProperty( | |
146 SENSOR_DATA_TYPE_MAGNETIC_FIELD_STRENGTH_X_MILLIGAUSS, report, | |
147 &x) || | |
148 !GetReadingValueForProperty( | |
149 SENSOR_DATA_TYPE_MAGNETIC_FIELD_STRENGTH_Y_MILLIGAUSS, report, | |
150 &y) || | |
151 !GetReadingValueForProperty( | |
152 SENSOR_DATA_TYPE_MAGNETIC_FIELD_STRENGTH_Z_MILLIGAUSS, report, | |
153 &z)) { | |
154 return E_FAIL; | |
155 } | |
156 | |
157 // Windows uses coordinate system where Z axis points down from device | |
158 // screen, therefore, using right hand notation, we have to reverse | |
159 // sign for each axis. Values are converted from Milligaus to | |
160 // Microtesla. | |
161 reading->values[0] = -x * kMicroteslaInMilligauss; | |
162 reading->values[1] = -y * kMicroteslaInMilligauss; | |
163 reading->values[2] = -z * kMicroteslaInMilligauss; | |
164 return S_OK; | |
165 }); | |
166 return params; | |
167 } | |
168 | |
169 // AbsoluteOrientation sensor reader initialization parameters. | |
170 std::unique_ptr<ReaderInitParams> CreateAbsoluteOrientationReaderInitParams() { | |
171 auto params = base::MakeUnique<ReaderInitParams>(); | |
172 params->sensor_type_id = SENSOR_TYPE_AGGREGATED_DEVICE_ORIENTATION; | |
173 params->reader_func = | |
174 base::Bind([](ISensorDataReport* report, SensorReading* reading) { | |
175 base::win::ScopedPropVariant quat_variant; | |
176 HRESULT hr = report->GetSensorValue(SENSOR_DATA_TYPE_QUATERNION, | |
177 quat_variant.Receive()); | |
178 if (FAILED(hr) || quat_variant.get().vt != (VT_VECTOR | VT_UI1) || | |
179 quat_variant.get().caub.cElems < 16) { | |
180 return E_FAIL; | |
181 } | |
182 | |
183 float* quat = reinterpret_cast<float*>(quat_variant.get().caub.pElems); | |
184 | |
185 // Windows uses coordinate system where Z axis points down from device | |
186 // screen, therefore, using right hand notation, we have to reverse | |
187 // sign for each quaternion component. | |
188 reading->values[0] = -quat[0]; // x*sin(Theta/2) | |
189 reading->values[1] = -quat[1]; // y*sin(Theta/2) | |
190 reading->values[2] = -quat[2]; // z*sin(Theta/2) | |
191 reading->values[3] = quat[3]; // cos(Theta/2) | |
192 return S_OK; | |
193 }); | |
194 return params; | |
195 } | |
196 | |
197 // Creates ReaderInitParams params structure. To implement support for new | |
198 // sensor types, new switch case should be added and appropriate fields must | |
199 // be set: | |
200 // sensor_type_id - GUID of the sensor supported by Windows. | |
201 // reader_func - Functor that is responsible to populate SensorReading from | |
202 // ISensorDataReport data. | |
203 std::unique_ptr<ReaderInitParams> CreateReaderInitParamsForSensor( | |
204 mojom::SensorType type) { | |
205 switch (type) { | |
206 case mojom::SensorType::AMBIENT_LIGHT: | |
207 return CreateAmbientLightReaderInitParams(); | |
208 case mojom::SensorType::ACCELEROMETER: | |
209 return CreateAccelerometerReaderInitParams(); | |
210 case mojom::SensorType::GYROSCOPE: | |
211 return CreateGyroscopeReaderInitParams(); | |
212 case mojom::SensorType::MAGNETOMETER: | |
213 return CreateMagnetometerReaderInitParams(); | |
214 case mojom::SensorType::ABSOLUTE_ORIENTATION: | |
215 return CreateAbsoluteOrientationReaderInitParams(); | |
216 default: | |
217 NOTIMPLEMENTED(); | |
218 return nullptr; | |
219 } | |
220 } | |
221 | |
222 } // namespace | |
223 | |
224 // Class that implements ISensorEvents and IUnknown interfaces and used | |
225 // by ISensor interface to dispatch state and data change events. | |
226 class EventListener : public ISensorEvents, public base::win::IUnknownImpl { | |
227 public: | |
228 explicit EventListener(PlatformSensorReaderWin* platform_sensor_reader) | |
229 : platform_sensor_reader_(platform_sensor_reader) { | |
230 DCHECK(platform_sensor_reader_); | |
231 } | |
232 | |
233 // IUnknown interface | |
234 ULONG STDMETHODCALLTYPE AddRef() override { return IUnknownImpl::AddRef(); } | |
235 ULONG STDMETHODCALLTYPE Release() override { return IUnknownImpl::Release(); } | |
236 | |
237 STDMETHODIMP QueryInterface(REFIID riid, void** ppv) override { | |
238 if (riid == __uuidof(ISensorEvents)) { | |
239 *ppv = static_cast<ISensorEvents*>(this); | |
240 AddRef(); | |
241 return S_OK; | |
242 } | |
243 return IUnknownImpl::QueryInterface(riid, ppv); | |
244 } | |
245 | |
246 protected: | |
247 ~EventListener() override = default; | |
248 | |
249 // ISensorEvents interface | |
250 STDMETHODIMP OnEvent(ISensor*, REFGUID, IPortableDeviceValues*) override { | |
251 return S_OK; | |
252 } | |
253 | |
254 STDMETHODIMP OnLeave(REFSENSOR_ID sensor_id) override { | |
255 // If event listener is active and sensor is disconnected, notify client | |
256 // about the error. | |
257 platform_sensor_reader_->SensorError(); | |
258 platform_sensor_reader_->StopSensor(); | |
259 return S_OK; | |
260 } | |
261 | |
262 STDMETHODIMP OnStateChanged(ISensor* sensor, SensorState state) override { | |
263 if (sensor == nullptr) | |
264 return E_INVALIDARG; | |
265 | |
266 if (state != SensorState::SENSOR_STATE_READY && | |
267 state != SensorState::SENSOR_STATE_INITIALIZING) { | |
268 platform_sensor_reader_->SensorError(); | |
269 platform_sensor_reader_->StopSensor(); | |
270 } | |
271 return S_OK; | |
272 } | |
273 | |
274 STDMETHODIMP OnDataUpdated(ISensor* sensor, | |
275 ISensorDataReport* report) override { | |
276 if (sensor == nullptr || report == nullptr) | |
277 return E_INVALIDARG; | |
278 | |
279 // To get precise timestamp, we need to get delta between timestamp | |
280 // provided in the report and current system time. Then the delta in | |
281 // milliseconds is substracted from current high resolution timestamp. | |
282 SYSTEMTIME report_time; | |
283 HRESULT hr = report->GetTimestamp(&report_time); | |
284 if (FAILED(hr)) | |
285 return hr; | |
286 | |
287 base::TimeTicks ticks_now = base::TimeTicks::Now(); | |
288 base::Time time_now = base::Time::NowFromSystemTime(); | |
289 | |
290 base::Time::Exploded exploded; | |
291 exploded.year = report_time.wYear; | |
292 exploded.month = report_time.wMonth; | |
293 exploded.day_of_week = report_time.wDayOfWeek; | |
294 exploded.day_of_month = report_time.wDay; | |
295 exploded.hour = report_time.wHour; | |
296 exploded.minute = report_time.wMinute; | |
297 exploded.second = report_time.wSecond; | |
298 exploded.millisecond = report_time.wMilliseconds; | |
299 | |
300 base::Time timestamp; | |
301 if (!base::Time::FromUTCExploded(exploded, ×tamp)) | |
302 return E_FAIL; | |
303 | |
304 base::TimeDelta delta = time_now - timestamp; | |
305 | |
306 SensorReading reading; | |
307 reading.timestamp = ((ticks_now - delta) - base::TimeTicks()).InSecondsF(); | |
308 | |
309 // Discard update events that have non-monotonically increasing timestamp. | |
310 if (last_sensor_reading_.timestamp > reading.timestamp) | |
311 return E_FAIL; | |
312 | |
313 hr = platform_sensor_reader_->SensorReadingChanged(report, &reading); | |
314 if (SUCCEEDED(hr)) | |
315 last_sensor_reading_ = reading; | |
316 return hr; | |
317 } | |
318 | |
319 private: | |
320 PlatformSensorReaderWin* const platform_sensor_reader_; | |
321 SensorReading last_sensor_reading_; | |
322 | |
323 DISALLOW_COPY_AND_ASSIGN(EventListener); | |
324 }; | |
325 | |
326 // static | |
327 std::unique_ptr<PlatformSensorReaderWin> PlatformSensorReaderWin::Create( | |
328 mojom::SensorType type, | |
329 base::win::ScopedComPtr<ISensorManager> sensor_manager) { | |
330 DCHECK(sensor_manager); | |
331 | |
332 auto params = CreateReaderInitParamsForSensor(type); | |
333 if (!params) | |
334 return nullptr; | |
335 | |
336 auto sensor = GetSensorForType(params->sensor_type_id, sensor_manager); | |
337 if (!sensor) | |
338 return nullptr; | |
339 | |
340 base::win::ScopedPropVariant min_interval; | |
341 HRESULT hr = sensor->GetProperty(SENSOR_PROPERTY_MIN_REPORT_INTERVAL, | |
342 min_interval.Receive()); | |
343 if (SUCCEEDED(hr) && min_interval.get().vt == VT_UI4) | |
344 params->min_reporting_interval_ms = min_interval.get().ulVal; | |
345 | |
346 GUID interests[] = {SENSOR_EVENT_STATE_CHANGED, SENSOR_EVENT_DATA_UPDATED}; | |
347 hr = sensor->SetEventInterest(interests, arraysize(interests)); | |
348 if (FAILED(hr)) | |
349 return nullptr; | |
350 | |
351 return base::WrapUnique( | |
352 new PlatformSensorReaderWin(sensor, std::move(params))); | |
353 } | |
354 | |
355 // static | |
356 base::win::ScopedComPtr<ISensor> PlatformSensorReaderWin::GetSensorForType( | |
357 REFSENSOR_TYPE_ID sensor_type, | |
358 base::win::ScopedComPtr<ISensorManager> sensor_manager) { | |
359 base::win::ScopedComPtr<ISensor> sensor; | |
360 base::win::ScopedComPtr<ISensorCollection> sensor_collection; | |
361 HRESULT hr = sensor_manager->GetSensorsByType( | |
362 sensor_type, sensor_collection.GetAddressOf()); | |
363 if (FAILED(hr) || !sensor_collection) | |
364 return sensor; | |
365 | |
366 ULONG count = 0; | |
367 hr = sensor_collection->GetCount(&count); | |
368 if (SUCCEEDED(hr) && count > 0) | |
369 sensor_collection->GetAt(0, sensor.GetAddressOf()); | |
370 return sensor; | |
371 } | |
372 | |
373 PlatformSensorReaderWin::PlatformSensorReaderWin( | |
374 base::win::ScopedComPtr<ISensor> sensor, | |
375 std::unique_ptr<ReaderInitParams> params) | |
376 : init_params_(std::move(params)), | |
377 task_runner_(base::ThreadTaskRunnerHandle::Get()), | |
378 sensor_active_(false), | |
379 client_(nullptr), | |
380 sensor_(sensor), | |
381 event_listener_(new EventListener(this)), | |
382 weak_factory_(this) { | |
383 DCHECK(init_params_); | |
384 DCHECK(!init_params_->reader_func.is_null()); | |
385 DCHECK(sensor_); | |
386 } | |
387 | |
388 void PlatformSensorReaderWin::SetClient(Client* client) { | |
389 base::AutoLock autolock(lock_); | |
390 // Can be null. | |
391 client_ = client; | |
392 } | |
393 | |
394 void PlatformSensorReaderWin::StopSensor() { | |
395 base::AutoLock autolock(lock_); | |
396 if (sensor_active_) { | |
397 sensor_->SetEventSink(nullptr); | |
398 sensor_active_ = false; | |
399 } | |
400 } | |
401 | |
402 PlatformSensorReaderWin::~PlatformSensorReaderWin() { | |
403 DCHECK(task_runner_->BelongsToCurrentThread()); | |
404 } | |
405 | |
406 bool PlatformSensorReaderWin::StartSensor( | |
407 const PlatformSensorConfiguration& configuration) { | |
408 base::AutoLock autolock(lock_); | |
409 | |
410 if (!SetReportingInterval(configuration)) | |
411 return false; | |
412 | |
413 if (!sensor_active_) { | |
414 task_runner_->PostTask( | |
415 FROM_HERE, base::Bind(&PlatformSensorReaderWin::ListenSensorEvent, | |
416 weak_factory_.GetWeakPtr())); | |
417 sensor_active_ = true; | |
418 } | |
419 | |
420 return true; | |
421 } | |
422 | |
423 void PlatformSensorReaderWin::ListenSensorEvent() { | |
424 // Set event listener. | |
425 if (FAILED(sensor_->SetEventSink(event_listener_.get()))) { | |
426 SensorError(); | |
427 StopSensor(); | |
428 } | |
429 } | |
430 | |
431 bool PlatformSensorReaderWin::SetReportingInterval( | |
432 const PlatformSensorConfiguration& configuration) { | |
433 base::win::ScopedComPtr<IPortableDeviceValues> props; | |
434 if (SUCCEEDED(::CoCreateInstance(CLSID_PortableDeviceValues, nullptr, | |
435 CLSCTX_ALL, IID_PPV_ARGS(&props)))) { | |
436 unsigned interval = | |
437 (1 / configuration.frequency()) * base::Time::kMillisecondsPerSecond; | |
438 | |
439 HRESULT hr = props->SetUnsignedIntegerValue( | |
440 SENSOR_PROPERTY_CURRENT_REPORT_INTERVAL, interval); | |
441 | |
442 if (SUCCEEDED(hr)) { | |
443 base::win::ScopedComPtr<IPortableDeviceValues> return_props; | |
444 hr = sensor_->SetProperties(props.Get(), return_props.GetAddressOf()); | |
445 return SUCCEEDED(hr); | |
446 } | |
447 } | |
448 return false; | |
449 } | |
450 | |
451 HRESULT PlatformSensorReaderWin::SensorReadingChanged( | |
452 ISensorDataReport* report, | |
453 SensorReading* reading) const { | |
454 if (!client_) | |
455 return E_FAIL; | |
456 | |
457 HRESULT hr = init_params_->reader_func.Run(report, reading); | |
458 if (SUCCEEDED(hr)) | |
459 client_->OnReadingUpdated(*reading); | |
460 return hr; | |
461 } | |
462 | |
463 void PlatformSensorReaderWin::SensorError() { | |
464 if (client_) | |
465 client_->OnSensorError(); | |
466 } | |
467 | |
468 unsigned long PlatformSensorReaderWin::GetMinimalReportingIntervalMs() const { | |
469 return init_params_->min_reporting_interval_ms; | |
470 } | |
471 | |
472 } // namespace device | |
OLD | NEW |