Index: third_party/WebKit/LayoutTests/webaudio/BiquadFilter/tail-time-lowpass.html |
diff --git a/third_party/WebKit/LayoutTests/webaudio/BiquadFilter/tail-time-lowpass.html b/third_party/WebKit/LayoutTests/webaudio/BiquadFilter/tail-time-lowpass.html |
new file mode 100644 |
index 0000000000000000000000000000000000000000..dc0426371a19453512c3f2f28e506d1650390190 |
--- /dev/null |
+++ b/third_party/WebKit/LayoutTests/webaudio/BiquadFilter/tail-time-lowpass.html |
@@ -0,0 +1,168 @@ |
+<!doctype html> |
+<html> |
+ <head> |
+ <title>Test Biquad Tail-Time</title> |
+ <script src="../../resources/testharness.js"></script> |
+ <script src="../../resources/testharnessreport.js"></script> |
+ <script src="../resources/audit-util.js"></script> |
+ <script src="../resources/audit.js"></script> |
+ <script src="../resources/biquad-filters.js"></script> |
+ <script src="test-tail-time.js"></script> |
+ </head> |
+ |
+ <body> |
+ <script> |
+ let audit = Audit.createTaskRunner(); |
+ |
+ let sampleRate = 16384; |
+ let renderSeconds = 1; |
+ |
+ // For a lowpass filter: |
+ // b0 = (1-cos(w0))/2 |
+ // b1 = 1-cos(w0) |
+ // b2 = (1-cos(w0))/2 |
+ // a0 = 1 + alpha |
+ // a1 = -2*cos(w0) |
+ // a2 = 1 - alpha |
+ // |
+ // where alpha = sin(w0)/(2*10^(Q/20)) and w0 = 2*%pi*f0/Fs. |
+ // |
+ // Equivalently a1 = -2*cos(w0)/(1+alpha), a2 = (1-alpha)/(1+alpha). The |
+ // poles of this filter are at |
+ // |
+ // cos(w0)/(1+alpha) +/- sqrt(alpha^2-sin(w0)^2)/(1+alpha) |
+ // |
+ // But alpha^2-sin(w0)^2 = sin(w0)^2*(1/4/10^(Q/10) - 1). Thus the poles |
+ // are complex if 1/4/10^(Q/10) < 1; real distinct if 1/4/10^(Q/10) > 1; |
+ // and repeated if 1/4/10^(Q/10) = 1. |
+ |
+ // Array of tests to run. |descripton| is the task description for |
+ // audit.define. |parameters| is option for |testTailTime|. |
+ let tests = [ |
+ { |
+ descripton: |
+ {label: 'lpf-complex-roots', description: 'complex roots'}, |
+ sampleRate: sampleRate, |
+ renderDuration: renderSeconds, |
+ parameters: { |
+ prefix: 'LPF complex roots', |
+ filterOptions: {type: 'lowpass', Q: 40, frequency: sampleRate / 4} |
+ }, |
+ // Node computed tail frame is 2079.4 which matches the real tail, so |
+ // tail output should be exactly 0. |
+ threshold: 0, |
+ }, |
+ { |
+ descripton: { |
+ label: 'lpf-real-distinct-roots', |
+ description: 'real distinct roots' |
+ }, |
+ sampleRate: sampleRate, |
+ renderDuration: renderSeconds, |
+ parameters: { |
+ prefix: 'LPF real distinct roots', |
+ filterOptions: |
+ {type: 'lowpass', Q: -50, frequency: sampleRate / 8} |
+ }, |
+ // Node computed tail frame is 1699 which matches the real tail, so |
+ // tail output should be exactly 0. |
+ threshold: 0, |
+ }, |
+ { |
+ descripton: |
+ {label: 'lpf-repeated-root', description: 'repeated real root'}, |
+ sampleRate: sampleRate, |
+ renderDuration: renderSeconds, |
+ parameters: { |
+ prefix: 'LPF repeated roots (approximately)', |
+ // For a repeated root, we need 1/4/10^(Q/10) = 1, or Q = |
+ // -10*log(4)/log(10). This isn't exactly representable as a float, |
+ // we the roots might not actually be repeated. In fact the roots |
+ // are actually complex at 6.402396e-5*exp(i*1.570796). |
+ filterOptions: { |
+ type: 'lowpass', |
+ Q: -10 * Math.log10(4), |
+ frequency: sampleRate / 4 |
+ } |
+ }, |
+ // Node computed tail frame is 2.9 which matches the real tail, so |
+ // tail output should be exactly 0. |
+ threshold: 0, |
+ }, |
+ { |
+ descripton: {label: 'lpf-real-roots-2', description: 'complex roots'}, |
+ sampleRate: sampleRate, |
+ renderDuration: renderSeconds, |
+ parameters: { |
+ prefix: 'LPF repeated roots 2', |
+ // This tests an extreme case where approximate impulse response is |
+ // h(n) = C*r^(n-1) and C < 1/32768. Thus, the impulse response is |
+ // always less than the response threshold of 1/32768. |
+ filterOptions: |
+ {type: 'lowpass', Q: -100, frequency: sampleRate / 4} |
+ }, |
+ // Node computed tail frame is 0 which matches the real tail, so |
+ // tail output should be exactly 0. |
+ threshold: 0, |
+ }, |
+ { |
+ descripton: 'huge tail', |
+ // The BiquadFilter has an internal maximum tail of 30 sec so we want |
+ // to render for at least 30 sec to test this. Use the smallest |
+ // sample rate we can to limit memory and CPU usage! |
+ sampleRate: 3000, |
+ renderDuration: 31, |
+ parameters: { |
+ prefix: 'LPF repeated roots (approximately)', |
+ hugeTaileTime: true, |
+ // For the record, for this lowpass filter, the computed tail time |
+ // is approximately 2830.23 sec, with poles at |
+ // 0.999998960442086*exp(i*0.209439510236777). This is very close to |
+ // being marginally stable. |
+ filterOptions: { |
+ type: 'lowpass', |
+ Q: 100, |
+ frequency: 100, |
+ }, |
+ // Node computed tail frame is 8.49069e6 which is clamped to 30 sec |
+ // so tail output should be exactly 0 after 30 sec. |
+ threshold: 0, |
+ }, |
+ }, |
+ { |
+ descripton: 'ginormous tail', |
+ // Or this lowpass filter, the complex poles are actually computed to |
+ // be on the unit circle so the tail infinite. This just tests that |
+ // nothing bad happens in computing the tail time. Thus, any small |
+ // sample rate and short duration for the test; the results aren't |
+ // really interesting. (But they must pass, of course!) |
+ sampleRate: 3000, |
+ renderDuration: 0.25, |
+ parameters: { |
+ prefix: 'LPF repeated roots (approximately)', |
+ filterOptions: { |
+ type: 'lowpass', |
+ Q: 500, |
+ frequency: 100, |
+ }, |
+ }, |
+ // Node computed tail frame is 90000 which matches the real tail, so |
+ // tail output should be exactly 0. |
+ threshold: 0, |
+ } |
+ ] |
+ |
+ // Define an appropriate task for each test. |
+ tests.forEach(entry => { |
+ audit.define(entry.descripton, (task, should) => { |
+ let context = new OfflineAudioContext( |
+ 1, entry.renderDuration * entry.sampleRate, entry.sampleRate); |
+ testTailTime(should, context, entry.parameters) |
+ .then(() => task.done()); |
+ }); |
+ }); |
+ |
+ audit.run(); |
+ </script> |
+ </body> |
+</html> |