OLD | NEW |
1 /* | 1 /* |
2 * Copyright (C) 2010 Google Inc. All rights reserved. | 2 * Copyright (C) 2010 Google Inc. All rights reserved. |
3 * | 3 * |
4 * Redistribution and use in source and binary forms, with or without | 4 * Redistribution and use in source and binary forms, with or without |
5 * modification, are permitted provided that the following conditions | 5 * modification, are permitted provided that the following conditions |
6 * are met: | 6 * are met: |
7 * | 7 * |
8 * 1. Redistributions of source code must retain the above copyright | 8 * 1. Redistributions of source code must retain the above copyright |
9 * notice, this list of conditions and the following disclaimer. | 9 * notice, this list of conditions and the following disclaimer. |
10 * 2. Redistributions in binary form must reproduce the above copyright | 10 * 2. Redistributions in binary form must reproduce the above copyright |
(...skipping 573 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
584 std::complex<double> denominator = | 584 std::complex<double> denominator = |
585 std::complex<double>(1, 0) + (a1 + a2 * z) * z; | 585 std::complex<double>(1, 0) + (a1 + a2 * z) * z; |
586 std::complex<double> response = numerator / denominator; | 586 std::complex<double> response = numerator / denominator; |
587 mag_response[k] = static_cast<float>(abs(response)); | 587 mag_response[k] = static_cast<float>(abs(response)); |
588 phase_response[k] = | 588 phase_response[k] = |
589 static_cast<float>(atan2(imag(response), real(response))); | 589 static_cast<float>(atan2(imag(response), real(response))); |
590 } | 590 } |
591 } | 591 } |
592 } | 592 } |
593 | 593 |
| 594 static double RepeatedRootResponse(double n, |
| 595 double c1, |
| 596 double c2, |
| 597 double r, |
| 598 double log_eps) { |
| 599 // The response is h(n) = r^(n-2)*[c1*(n+1)*r^2+c2]. We're looking |
| 600 // for n such that |h(n)| = eps. Equivalently, we want a root |
| 601 // of the equation log(|h(n)|) - log(eps) = 0 or |
| 602 // |
| 603 // (n-2)*log(r) + log(|c1*(n+1)*r^2+c2|) - log(eps) |
| 604 // |
| 605 // This helps with finding a nuemrical solution because this |
| 606 // approximately linearizes the response for large n. |
| 607 |
| 608 return (n - 2) * log(r) + log(fabs(c1 * (n + 1) * r * r + c2)) - log_eps; |
| 609 } |
| 610 |
| 611 // Regula Falsi root finder, Illinois variant |
| 612 // (https://en.wikipedia.org/wiki/False_position_method#The_Illinois_algorithm). |
| 613 // |
| 614 // This finds a root of the repeated root response where the root is |
| 615 // assumed to lie between |low| and |high|. The response is given by |
| 616 // |c1|, |c2|, and |r| as determined by |RepeatedRootResponse|. |
| 617 // |log_eps| is the log the the maximum allowed amplitude in the |
| 618 // response. |
| 619 static double RootFinder(double low, |
| 620 double high, |
| 621 double log_eps, |
| 622 double c1, |
| 623 double c2, |
| 624 double r) { |
| 625 // Desired accuray of the root (in frames). This doesn't need to be |
| 626 // super-accurate, so half frame is good enough, and should be less |
| 627 // than 1 because the algorithm may prematurely terminate. |
| 628 const double kAccuracyThreshold = 0.5; |
| 629 // Max number of iterations to do. If we haven't converged by now, |
| 630 // just return whatever we've found. |
| 631 const int kMaxIterations = 10; |
| 632 |
| 633 int side = 0; |
| 634 double root = 0; |
| 635 double f_low = RepeatedRootResponse(low, c1, c2, r, log_eps); |
| 636 double f_high = RepeatedRootResponse(high, c1, c2, r, log_eps); |
| 637 |
| 638 // The function values must be finite and have opposite signs! |
| 639 DCHECK(std::isfinite(f_low)); |
| 640 DCHECK(std::isfinite(f_high)); |
| 641 DCHECK_LE(f_low * f_high, 0); |
| 642 |
| 643 int iteration; |
| 644 for (iteration = 0; iteration < kMaxIterations; ++iteration) { |
| 645 root = (f_low * high - f_high * low) / (f_low - f_high); |
| 646 if (fabs(high - low) < kAccuracyThreshold * fabs(high + low)) |
| 647 break; |
| 648 double fr = RepeatedRootResponse(root, c1, c2, r, log_eps); |
| 649 |
| 650 DCHECK(std::isfinite(fr)); |
| 651 |
| 652 if (fr * f_high > 0) { |
| 653 // fr and f_high have same sign. Copy root to f_high |
| 654 high = root; |
| 655 f_high = fr; |
| 656 side = -1; |
| 657 } else if (f_low * fr > 0) { |
| 658 // fr and f_low have same sign. Copy root to f_low |
| 659 low = root; |
| 660 f_low = fr; |
| 661 if (side == 1) |
| 662 f_high /= 2; |
| 663 side = 1; |
| 664 } else { |
| 665 // f_low * fr looks like zero, so assume we've converged. |
| 666 break; |
| 667 } |
| 668 } |
| 669 |
| 670 // Want to know if the max number of iterations is ever exceeded so |
| 671 // we can understand why that happened. |
| 672 DCHECK_LT(iteration, kMaxIterations); |
| 673 |
| 674 return root; |
| 675 } |
| 676 |
| 677 double Biquad::TailFrame(int coef_index, double max_frame) { |
| 678 // The Biquad filter is given by |
| 679 // |
| 680 // H(z) = (b0 + b1/z + b2/z^2)/(1 + a1/z + a2/z^2). |
| 681 // |
| 682 // To compute the tail time, compute the impulse response, h(n), of |
| 683 // H(z), which we can do analytically. From this impulse response, |
| 684 // find the value n0 where |h(n)| <= eps for n >= n0. |
| 685 // |
| 686 // Assume first that the two poles of H(z) are not repeated, say r1 |
| 687 // and r2. Then, we can compute a partial fraction expansion of |
| 688 // H(z): |
| 689 // |
| 690 // H(z) = (b0+b1/z+b2/z^2)/[(1-r1/z)*(1-r2/z)] |
| 691 // = b0 + C2/(z-r2) - C1/(z-r1) |
| 692 // |
| 693 // where |
| 694 // C2 = (b0*r2^2+b1*r2+b2)/(r2-r1) |
| 695 // C1 = (b0*r1^2+b1*r1+b2)/(r2-r1) |
| 696 // |
| 697 // Expand H(z) then this in powers of 1/z gives: |
| 698 // |
| 699 // H(z) = b0 -(C2/r2+C1/r1) + sum(C2*r2^(i-1)/z^i + C1*r1^(i-1)/z^i) |
| 700 // |
| 701 // Thus, for n > 1 (we don't care about small n), |
| 702 // |
| 703 // h(n) = C2*r2^(n-1) + C1*r1^(n-1) |
| 704 // |
| 705 // We need to find n0 such that |h(n)| < eps for n > n0. |
| 706 // |
| 707 // Case 1: r1 and r2 are real and distinct, with |r1|>=|r2|. |
| 708 // |
| 709 // Then |
| 710 // |
| 711 // h(n) = C1*r1^(n-1)*(1 + C2/C1*(r2/r1)^(n-1)) |
| 712 // |
| 713 // so |
| 714 // |
| 715 // |h(n)| = |C1|*|r|^(n-1)*|1+C2/C1*(r2/r1)^(n-1)| |
| 716 // <= |C1|*|r|^(n-1)*[1 + |C2/C1|*|r2/r1|^(n-1)] |
| 717 // <= |C1|*|r|^(n-1)*[1 + |C2/C1|] |
| 718 // |
| 719 // by using the triangle inequality and the fact that |r2|<=|r1|. |
| 720 // And we want |h(n)|<=eps which is true if |
| 721 // |
| 722 // |C1|*|r|^(n-1)*[1 + |C2/C1|] <= eps |
| 723 // |
| 724 // or |
| 725 // |
| 726 // n >= 1 + log(eps/C)/log(|r1|) |
| 727 // |
| 728 // where C = |C1|*[1+|C2/C1|] = |C1| + |C2|. |
| 729 // |
| 730 // Case 2: r1 and r2 are complex |
| 731 // |
| 732 // Thne we can write r1=r*exp(i*p) and r2=r*exp(-i*p). So, |
| 733 // |
| 734 // |h(n)| = |C2*r^(n-1)*exp(-i*p*(n-1)) + C1*r^(n-1)*exp(i*p*(n-1))| |
| 735 // = |C1|*r^(n-1)*|1 + C2/C1*exp(-i*p*(n-1))/exp(i*n*(n-1))| |
| 736 // <= |C1|*r^(n-1)*[1 + |C2/C1|] |
| 737 // |
| 738 // Again, this is easily solved to give |
| 739 // |
| 740 // n >= 1 + log(eps/C)/log(r) |
| 741 // |
| 742 // where C = |C1|*[1+|C2/C1|] = |C1| + |C2|. |
| 743 // |
| 744 // Case 3: Repeated roots, r1=r2=r. |
| 745 // |
| 746 // In this case, |
| 747 // |
| 748 // H(z) = (b0+b1/z+b2/z^2)/[(1-r/z)^2 |
| 749 // |
| 750 // Expanding this in powers of 1/z gives: |
| 751 // |
| 752 // H(z) = C1*sum((i+1)*r^i/z^i) - C2 * sum(r^(i-2)/z^i) + b2/r^2 |
| 753 // = b2/r^2 + sum([C1*(i+1)*r^i + C2*r^(i-2)]/z^i) |
| 754 // where |
| 755 // C1 = (b0*r^2+b1*r+b2)/r^2 |
| 756 // C2 = b1*r+2*b2 |
| 757 // |
| 758 // Thus, the impulse response is |
| 759 // |
| 760 // h(n) = C1*(n+1)*r^n + C2*r^(n-2) |
| 761 // = r^(n-2)*[C1*(n+1)*r^2+C2] |
| 762 // |
| 763 // So |
| 764 // |
| 765 // |h(n)| = |r|^(n-2)*|C1*(n+1)*r^2+C2| |
| 766 // |
| 767 // To find n such that |h(n)| < eps, we need a numerical method in |
| 768 // general, so there's no real reason to simplify this or use other |
| 769 // approximations. Just solve |h(n)|=eps directly. |
| 770 // |
| 771 // Thus, for an set of filter coefficients, we can compute the tail |
| 772 // time. |
| 773 // |
| 774 |
| 775 // If the maximum amplitude of the impulse response is less than |
| 776 // this, we assume that we've reached the tail of the response. |
| 777 // Currently, this means that the impulse is less than 1 bit of a |
| 778 // 16-bit PCM value. |
| 779 const double kMaxTailAmplitude = 1 / 32768.0; |
| 780 |
| 781 // Find the roots of 1+a1/z+a2/z^2 = 0. Or equivalently, |
| 782 // z^2+a1*z+a2 = 0. From the quadratic formula the roots are |
| 783 // (-a1+/-sqrt(a1^2-4*a2))/2. |
| 784 |
| 785 double a1 = a1_[coef_index]; |
| 786 double a2 = a2_[coef_index]; |
| 787 double b0 = b0_[coef_index]; |
| 788 double b1 = b1_[coef_index]; |
| 789 double b2 = b2_[coef_index]; |
| 790 |
| 791 double tail_frame = 0; |
| 792 double discrim = a1 * a1 - 4 * a2; |
| 793 |
| 794 if (discrim > 0) { |
| 795 // Compute the real roots so that r1 has the largest magnitude. |
| 796 double r1; |
| 797 double r2; |
| 798 if (a1 < 0) { |
| 799 r1 = (-a1 + sqrt(discrim)) / 2; |
| 800 } else { |
| 801 r1 = (-a1 - sqrt(discrim)) / 2; |
| 802 } |
| 803 r2 = a2 / r1; |
| 804 |
| 805 double c1 = (b0 * r1 * r1 + b1 * r1 + b2) / (r2 - r1); |
| 806 double c2 = (b0 * r2 * r2 + b1 * r2 + b2) / (r2 - r1); |
| 807 |
| 808 DCHECK(std::isfinite(r1)); |
| 809 DCHECK(std::isfinite(r2)); |
| 810 DCHECK(std::isfinite(c1)); |
| 811 DCHECK(std::isfinite(c2)); |
| 812 |
| 813 // It's possible for kMaxTailAmplitude to be greater than c1 + c2. |
| 814 // This may produce a negative tail frame. Just clamp the tail |
| 815 // frame to 0. |
| 816 tail_frame = clampTo( |
| 817 1 + log(kMaxTailAmplitude / (fabs(c1) + fabs(c2))) / log(r1), 0); |
| 818 |
| 819 DCHECK(std::isfinite(tail_frame)); |
| 820 } else if (discrim < 0) { |
| 821 // Two complex roots. |
| 822 // One root is -a1/2 + i*sqrt(-discrim)/2. |
| 823 double x = -a1 / 2; |
| 824 double y = sqrt(-discrim) / 2; |
| 825 std::complex<double> r1(x, y); |
| 826 std::complex<double> r2(x, -y); |
| 827 double r = hypot(x, y); |
| 828 |
| 829 DCHECK(std::isfinite(r)); |
| 830 |
| 831 // It's possible for r to be 1. (LPF with Q very large can cause this.) |
| 832 if (r == 1) { |
| 833 tail_frame = max_frame; |
| 834 } else { |
| 835 double c1 = abs((b0 * r1 * r1 + b1 * r1 + b2) / (r2 - r1)); |
| 836 double c2 = abs((b0 * r2 * r2 + b1 * r2 + b2) / (r2 - r1)); |
| 837 |
| 838 DCHECK(std::isfinite(c1)); |
| 839 DCHECK(std::isfinite(c2)); |
| 840 |
| 841 tail_frame = 1 + log(kMaxTailAmplitude / (c1 + c2)) / log(r); |
| 842 DCHECK(std::isfinite(tail_frame)); |
| 843 } |
| 844 } else { |
| 845 // Repeated roots. This should be pretty rare because all the |
| 846 // coefficients need to be just the right values to get a |
| 847 // discriminant of exactly zero. |
| 848 double r = -a1 / 2; |
| 849 |
| 850 if (r == 0) { |
| 851 // Double pole at 0. This just delays the signal by 2 frames, |
| 852 // so set the tail frame to 2. |
| 853 tail_frame = 2; |
| 854 } else { |
| 855 double c1 = (b0 * r * r + b1 * r + b2) / (r * r); |
| 856 double c2 = b1 * r + 2 * b2; |
| 857 |
| 858 DCHECK(std::isfinite(c1)); |
| 859 DCHECK(std::isfinite(c2)); |
| 860 |
| 861 // It can happen that c1=c2=0. This basically means that H(z) = |
| 862 // constant, which is the limiting case for several of the |
| 863 // biquad filters. |
| 864 if (c1 == 0 && c2 == 0) { |
| 865 tail_frame = 0; |
| 866 } else { |
| 867 // The function c*(n+1)*r^n is not monotonic, but it's easy to |
| 868 // find the max point since the derivative is |
| 869 // c*r^n*(1+(n+1)*log(r)). This has a root at |
| 870 // -(1+log(r))/log(r). so we can start our search from that |
| 871 // point to max_frames. |
| 872 |
| 873 double low = clampTo(-(1 + log(r)) / log(r), 1.0, |
| 874 static_cast<double>(max_frame - 1)); |
| 875 double high = max_frame; |
| 876 |
| 877 DCHECK(std::isfinite(low)); |
| 878 DCHECK(std::isfinite(high)); |
| 879 |
| 880 tail_frame = RootFinder(low, high, log(kMaxTailAmplitude), c1, c2, r); |
| 881 } |
| 882 } |
| 883 } |
| 884 |
| 885 return tail_frame; |
| 886 } |
| 887 |
594 } // namespace blink | 888 } // namespace blink |
OLD | NEW |