Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(847)

Unified Diff: runtime/vm/intrinsifier_mips.cc

Issue 2858623002: Remove MIPS support (Closed)
Patch Set: Merge and cleanup Created 3 years, 6 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « runtime/vm/intermediate_language_mips.cc ('k') | runtime/vm/malloc_hooks_mips.cc » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: runtime/vm/intrinsifier_mips.cc
diff --git a/runtime/vm/intrinsifier_mips.cc b/runtime/vm/intrinsifier_mips.cc
deleted file mode 100644
index 1dca1af5810a6cbcd0fb7948334d4004b51cc3c8..0000000000000000000000000000000000000000
--- a/runtime/vm/intrinsifier_mips.cc
+++ /dev/null
@@ -1,2444 +0,0 @@
-// Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file
-// for details. All rights reserved. Use of this source code is governed by a
-// BSD-style license that can be found in the LICENSE file.
-
-#include "vm/globals.h" // Needed here to get TARGET_ARCH_MIPS.
-#if defined(TARGET_ARCH_MIPS)
-
-#include "vm/intrinsifier.h"
-
-#include "vm/assembler.h"
-#include "vm/dart_entry.h"
-#include "vm/flow_graph_compiler.h"
-#include "vm/object.h"
-#include "vm/object_store.h"
-#include "vm/regexp_assembler.h"
-#include "vm/symbols.h"
-#include "vm/timeline.h"
-
-namespace dart {
-
-// When entering intrinsics code:
-// S4: Arguments descriptor
-// RA: Return address
-// The S4 register can be destroyed only if there is no slow-path, i.e.
-// if the intrinsified method always executes a return.
-// The FP register should not be modified, because it is used by the profiler.
-// The PP and THR registers (see constants_mips.h) must be preserved.
-
-#define __ assembler->
-
-
-intptr_t Intrinsifier::ParameterSlotFromSp() {
- return -1;
-}
-
-
-static bool IsABIPreservedRegister(Register reg) {
- return ((1 << reg) & kAbiPreservedCpuRegs) != 0;
-}
-
-void Intrinsifier::IntrinsicCallPrologue(Assembler* assembler) {
- ASSERT(IsABIPreservedRegister(CODE_REG));
- ASSERT(IsABIPreservedRegister(ARGS_DESC_REG));
- ASSERT(IsABIPreservedRegister(CALLEE_SAVED_TEMP));
- ASSERT(CALLEE_SAVED_TEMP != CODE_REG);
- ASSERT(CALLEE_SAVED_TEMP != ARGS_DESC_REG);
-
- assembler->Comment("IntrinsicCallPrologue");
- assembler->mov(CALLEE_SAVED_TEMP, LRREG);
-}
-
-
-void Intrinsifier::IntrinsicCallEpilogue(Assembler* assembler) {
- assembler->Comment("IntrinsicCallEpilogue");
- assembler->mov(LRREG, CALLEE_SAVED_TEMP);
-}
-
-
-// Intrinsify only for Smi value and index. Non-smi values need a store buffer
-// update. Array length is always a Smi.
-void Intrinsifier::ObjectArraySetIndexed(Assembler* assembler) {
- if (Isolate::Current()->type_checks()) {
- return;
- }
-
- Label fall_through;
- __ lw(T1, Address(SP, 1 * kWordSize)); // Index.
- __ andi(CMPRES1, T1, Immediate(kSmiTagMask));
- // Index not Smi.
- __ bne(CMPRES1, ZR, &fall_through);
-
- __ lw(T0, Address(SP, 2 * kWordSize)); // Array.
- // Range check.
- __ lw(T3, FieldAddress(T0, Array::length_offset())); // Array length.
- // Runtime throws exception.
- __ BranchUnsignedGreaterEqual(T1, T3, &fall_through);
-
- // Note that T1 is Smi, i.e, times 2.
- ASSERT(kSmiTagShift == 1);
- __ lw(T2, Address(SP, 0 * kWordSize)); // Value.
- __ sll(T1, T1, 1); // T1 is Smi.
- __ addu(T1, T0, T1);
- __ StoreIntoObject(T0, FieldAddress(T1, Array::data_offset()), T2);
- // Caller is responsible for preserving the value if necessary.
- __ Ret();
- __ Bind(&fall_through);
-}
-
-
-// Allocate a GrowableObjectArray using the backing array specified.
-// On stack: type argument (+1), data (+0).
-void Intrinsifier::GrowableArray_Allocate(Assembler* assembler) {
- // The newly allocated object is returned in V0.
- const intptr_t kTypeArgumentsOffset = 1 * kWordSize;
- const intptr_t kArrayOffset = 0 * kWordSize;
- Label fall_through;
-
- // Try allocating in new space.
- const Class& cls = Class::Handle(
- Isolate::Current()->object_store()->growable_object_array_class());
- __ TryAllocate(cls, &fall_through, V0, T1);
-
- // Store backing array object in growable array object.
- __ lw(T1, Address(SP, kArrayOffset)); // Data argument.
- // V0 is new, no barrier needed.
- __ StoreIntoObjectNoBarrier(
- V0, FieldAddress(V0, GrowableObjectArray::data_offset()), T1);
-
- // V0: new growable array object start as a tagged pointer.
- // Store the type argument field in the growable array object.
- __ lw(T1, Address(SP, kTypeArgumentsOffset)); // Type argument.
- __ StoreIntoObjectNoBarrier(
- V0, FieldAddress(V0, GrowableObjectArray::type_arguments_offset()), T1);
- // Set the length field in the growable array object to 0.
- __ Ret(); // Returns the newly allocated object in V0.
- __ delay_slot()->sw(ZR,
- FieldAddress(V0, GrowableObjectArray::length_offset()));
-
- __ Bind(&fall_through);
-}
-
-
-// Add an element to growable array if it doesn't need to grow, otherwise
-// call into regular code.
-// On stack: growable array (+1), value (+0).
-void Intrinsifier::GrowableArray_add(Assembler* assembler) {
- // In checked mode we need to type-check the incoming argument.
- if (Isolate::Current()->type_checks()) return;
- Label fall_through;
- __ lw(T0, Address(SP, 1 * kWordSize)); // Array.
- __ lw(T1, FieldAddress(T0, GrowableObjectArray::length_offset()));
- // T1: length.
- __ lw(T2, FieldAddress(T0, GrowableObjectArray::data_offset()));
- // T2: data.
- __ lw(T3, FieldAddress(T2, Array::length_offset()));
- // Compare length with capacity.
- // T3: capacity.
- __ beq(T1, T3, &fall_through); // Must grow data.
- const int32_t value_one = reinterpret_cast<int32_t>(Smi::New(1));
- // len = len + 1;
- __ addiu(T3, T1, Immediate(value_one));
- __ sw(T3, FieldAddress(T0, GrowableObjectArray::length_offset()));
- __ lw(T0, Address(SP, 0 * kWordSize)); // Value.
- ASSERT(kSmiTagShift == 1);
- __ sll(T1, T1, 1);
- __ addu(T1, T2, T1);
- __ StoreIntoObject(T2, FieldAddress(T1, Array::data_offset()), T0);
- __ LoadObject(T7, Object::null_object());
- __ Ret();
- __ delay_slot()->mov(V0, T7);
- __ Bind(&fall_through);
-}
-
-
-#define TYPED_ARRAY_ALLOCATION(type_name, cid, max_len, scale_shift) \
- Label fall_through; \
- const intptr_t kArrayLengthStackOffset = 0 * kWordSize; \
- NOT_IN_PRODUCT(__ MaybeTraceAllocation(cid, T2, &fall_through)); \
- __ lw(T2, Address(SP, kArrayLengthStackOffset)); /* Array length. */ \
- /* Check that length is a positive Smi. */ \
- /* T2: requested array length argument. */ \
- __ andi(CMPRES1, T2, Immediate(kSmiTagMask)); \
- __ bne(CMPRES1, ZR, &fall_through); \
- __ BranchSignedLess(T2, Immediate(0), &fall_through); \
- __ SmiUntag(T2); \
- /* Check for maximum allowed length. */ \
- /* T2: untagged array length. */ \
- __ BranchSignedGreater(T2, Immediate(max_len), &fall_through); \
- __ sll(T2, T2, scale_shift); \
- const intptr_t fixed_size_plus_alignment_padding = \
- sizeof(Raw##type_name) + kObjectAlignment - 1; \
- __ AddImmediate(T2, fixed_size_plus_alignment_padding); \
- __ LoadImmediate(TMP, -kObjectAlignment); \
- __ and_(T2, T2, TMP); \
- Heap::Space space = Heap::kNew; \
- __ lw(T3, Address(THR, Thread::heap_offset())); \
- __ lw(V0, Address(T3, Heap::TopOffset(space))); \
- \
- /* T2: allocation size. */ \
- __ addu(T1, V0, T2); \
- /* Branch on unsigned overflow. */ \
- __ BranchUnsignedLess(T1, V0, &fall_through); \
- \
- /* Check if the allocation fits into the remaining space. */ \
- /* V0: potential new object start. */ \
- /* T1: potential next object start. */ \
- /* T2: allocation size. */ \
- /* T3: heap. */ \
- __ lw(T4, Address(T3, Heap::EndOffset(space))); \
- __ BranchUnsignedGreaterEqual(T1, T4, &fall_through); \
- \
- /* Successfully allocated the object(s), now update top to point to */ \
- /* next object start and initialize the object. */ \
- __ sw(T1, Address(T3, Heap::TopOffset(space))); \
- __ AddImmediate(V0, kHeapObjectTag); \
- NOT_IN_PRODUCT(__ UpdateAllocationStatsWithSize(cid, T2, T4, space)); \
- /* Initialize the tags. */ \
- /* V0: new object start as a tagged pointer. */ \
- /* T1: new object end address. */ \
- /* T2: allocation size. */ \
- { \
- Label size_tag_overflow, done; \
- __ BranchUnsignedGreater(T2, Immediate(RawObject::SizeTag::kMaxSizeTag), \
- &size_tag_overflow); \
- __ b(&done); \
- __ delay_slot()->sll(T2, T2, \
- RawObject::kSizeTagPos - kObjectAlignmentLog2); \
- \
- __ Bind(&size_tag_overflow); \
- __ mov(T2, ZR); \
- __ Bind(&done); \
- \
- /* Get the class index and insert it into the tags. */ \
- __ LoadImmediate(TMP, RawObject::ClassIdTag::encode(cid)); \
- __ or_(T2, T2, TMP); \
- __ sw(T2, FieldAddress(V0, type_name::tags_offset())); /* Tags. */ \
- } \
- /* Set the length field. */ \
- /* V0: new object start as a tagged pointer. */ \
- /* T1: new object end address. */ \
- __ lw(T2, Address(SP, kArrayLengthStackOffset)); /* Array length. */ \
- __ StoreIntoObjectNoBarrier( \
- V0, FieldAddress(V0, type_name::length_offset()), T2); \
- /* Initialize all array elements to 0. */ \
- /* V0: new object start as a tagged pointer. */ \
- /* T1: new object end address. */ \
- /* T2: iterator which initially points to the start of the variable */ \
- /* data area to be initialized. */ \
- __ AddImmediate(T2, V0, sizeof(Raw##type_name) - 1); \
- Label done, init_loop; \
- __ Bind(&init_loop); \
- __ BranchUnsignedGreaterEqual(T2, T1, &done); \
- __ sw(ZR, Address(T2, 0)); \
- __ b(&init_loop); \
- __ delay_slot()->addiu(T2, T2, Immediate(kWordSize)); \
- __ Bind(&done); \
- \
- __ Ret(); \
- __ Bind(&fall_through);
-
-
-static int GetScaleFactor(intptr_t size) {
- switch (size) {
- case 1:
- return 0;
- case 2:
- return 1;
- case 4:
- return 2;
- case 8:
- return 3;
- case 16:
- return 4;
- }
- UNREACHABLE();
- return -1;
-}
-
-
-#define TYPED_DATA_ALLOCATOR(clazz) \
- void Intrinsifier::TypedData_##clazz##_factory(Assembler* assembler) { \
- intptr_t size = TypedData::ElementSizeInBytes(kTypedData##clazz##Cid); \
- intptr_t max_len = TypedData::MaxElements(kTypedData##clazz##Cid); \
- int shift = GetScaleFactor(size); \
- TYPED_ARRAY_ALLOCATION(TypedData, kTypedData##clazz##Cid, max_len, shift); \
- }
-CLASS_LIST_TYPED_DATA(TYPED_DATA_ALLOCATOR)
-#undef TYPED_DATA_ALLOCATOR
-
-
-// Loads args from stack into T0 and T1
-// Tests if they are smis, jumps to label not_smi if not.
-static void TestBothArgumentsSmis(Assembler* assembler, Label* not_smi) {
- __ lw(T0, Address(SP, 0 * kWordSize));
- __ lw(T1, Address(SP, 1 * kWordSize));
- __ or_(CMPRES1, T0, T1);
- __ andi(CMPRES1, CMPRES1, Immediate(kSmiTagMask));
- __ bne(CMPRES1, ZR, not_smi);
- return;
-}
-
-
-void Intrinsifier::Integer_addFromInteger(Assembler* assembler) {
- Label fall_through;
-
- TestBothArgumentsSmis(assembler, &fall_through); // Checks two Smis.
- __ AdduDetectOverflow(V0, T0, T1, CMPRES1); // Add.
- __ bltz(CMPRES1, &fall_through); // Fall through on overflow.
- __ Ret(); // Nothing in branch delay slot.
- __ Bind(&fall_through);
-}
-
-
-void Intrinsifier::Integer_add(Assembler* assembler) {
- Integer_addFromInteger(assembler);
-}
-
-
-void Intrinsifier::Integer_subFromInteger(Assembler* assembler) {
- Label fall_through;
-
- TestBothArgumentsSmis(assembler, &fall_through);
- __ SubuDetectOverflow(V0, T0, T1, CMPRES1); // Subtract.
- __ bltz(CMPRES1, &fall_through); // Fall through on overflow.
- __ Ret();
- __ Bind(&fall_through);
-}
-
-
-void Intrinsifier::Integer_sub(Assembler* assembler) {
- Label fall_through;
-
- TestBothArgumentsSmis(assembler, &fall_through);
- __ SubuDetectOverflow(V0, T1, T0, CMPRES1); // Subtract.
- __ bltz(CMPRES1, &fall_through); // Fall through on overflow.
- __ Ret(); // Nothing in branch delay slot.
- __ Bind(&fall_through);
-}
-
-
-void Intrinsifier::Integer_mulFromInteger(Assembler* assembler) {
- Label fall_through;
-
- TestBothArgumentsSmis(assembler, &fall_through); // checks two smis
- __ SmiUntag(T0); // untags T0. only want result shifted by one
-
- __ mult(T0, T1); // HI:LO <- T0 * T1.
- __ mflo(V0); // V0 <- LO.
- __ mfhi(T2); // T2 <- HI.
- __ sra(T3, V0, 31); // T3 <- V0 >> 31.
- __ bne(T2, T3, &fall_through); // Fall through on overflow.
- __ Ret();
- __ Bind(&fall_through);
-}
-
-
-void Intrinsifier::Integer_mul(Assembler* assembler) {
- Integer_mulFromInteger(assembler);
-}
-
-
-// Optimizations:
-// - result is 0 if:
-// - left is 0
-// - left equals right
-// - result is left if
-// - left > 0 && left < right
-// T1: Tagged left (dividend).
-// T0: Tagged right (divisor).
-// Returns:
-// V0: Untagged fallthrough result (remainder to be adjusted), or
-// V0: Tagged return result (remainder).
-static void EmitRemainderOperation(Assembler* assembler) {
- Label return_zero, modulo;
- const Register left = T1;
- const Register right = T0;
- const Register result = V0;
-
- __ beq(left, ZR, &return_zero);
- __ beq(left, right, &return_zero);
-
- __ bltz(left, &modulo);
- // left is positive.
- __ BranchSignedGreaterEqual(left, right, &modulo);
- // left is less than right. return left.
- __ Ret();
- __ delay_slot()->mov(result, left);
-
- __ Bind(&return_zero);
- __ Ret();
- __ delay_slot()->mov(result, ZR);
-
- __ Bind(&modulo);
- __ SmiUntag(right);
- __ SmiUntag(left);
- __ div(left, right); // Divide, remainder goes in HI.
- __ mfhi(result); // result <- HI.
- return;
-}
-
-
-// Implementation:
-// res = left % right;
-// if (res < 0) {
-// if (right < 0) {
-// res = res - right;
-// } else {
-// res = res + right;
-// }
-// }
-void Intrinsifier::Integer_moduloFromInteger(Assembler* assembler) {
- Label fall_through, subtract;
- // Test arguments for smi.
- __ lw(T1, Address(SP, 0 * kWordSize));
- __ lw(T0, Address(SP, 1 * kWordSize));
- __ or_(CMPRES1, T0, T1);
- __ andi(CMPRES1, CMPRES1, Immediate(kSmiTagMask));
- __ bne(CMPRES1, ZR, &fall_through);
- // T1: Tagged left (dividend).
- // T0: Tagged right (divisor).
- // Check if modulo by zero -> exception thrown in main function.
- __ beq(T0, ZR, &fall_through);
- EmitRemainderOperation(assembler);
- // Untagged right in T0. Untagged remainder result in V0.
-
- Label done;
- __ bgez(V0, &done);
- __ bltz(T0, &subtract);
- __ addu(V0, V0, T0);
- __ Ret();
- __ delay_slot()->SmiTag(V0);
-
- __ Bind(&subtract);
- __ subu(V0, V0, T0);
- __ Ret();
- __ delay_slot()->SmiTag(V0);
-
- __ Bind(&done);
- __ Ret();
- __ delay_slot()->SmiTag(V0);
-
- __ Bind(&fall_through);
-}
-
-
-void Intrinsifier::Integer_truncDivide(Assembler* assembler) {
- Label fall_through;
-
- TestBothArgumentsSmis(assembler, &fall_through);
- __ beq(T0, ZR, &fall_through); // If b is 0, fall through.
-
- __ SmiUntag(T0);
- __ SmiUntag(T1);
- __ div(T1, T0); // LO <- T1 / T0
- __ mflo(V0); // V0 <- LO
- // Check the corner case of dividing the 'MIN_SMI' with -1, in which case we
- // cannot tag the result.
- __ BranchEqual(V0, Immediate(0x40000000), &fall_through);
- __ Ret();
- __ delay_slot()->SmiTag(V0);
- __ Bind(&fall_through);
-}
-
-
-void Intrinsifier::Integer_negate(Assembler* assembler) {
- Label fall_through;
-
- __ lw(T0, Address(SP, +0 * kWordSize)); // Grabs first argument.
- __ andi(CMPRES1, T0, Immediate(kSmiTagMask)); // Test for Smi.
- __ bne(CMPRES1, ZR, &fall_through); // Fall through if not a Smi.
- __ SubuDetectOverflow(V0, ZR, T0, CMPRES1);
- __ bltz(CMPRES1, &fall_through); // There was overflow.
- __ Ret();
- __ Bind(&fall_through);
-}
-
-
-void Intrinsifier::Integer_bitAndFromInteger(Assembler* assembler) {
- Label fall_through;
-
- TestBothArgumentsSmis(assembler, &fall_through); // Checks two smis.
- __ Ret();
- __ delay_slot()->and_(V0, T0, T1);
- __ Bind(&fall_through);
-}
-
-
-void Intrinsifier::Integer_bitAnd(Assembler* assembler) {
- Integer_bitAndFromInteger(assembler);
-}
-
-
-void Intrinsifier::Integer_bitOrFromInteger(Assembler* assembler) {
- Label fall_through;
-
- TestBothArgumentsSmis(assembler, &fall_through); // Checks two smis.
- __ Ret();
- __ delay_slot()->or_(V0, T0, T1);
- __ Bind(&fall_through);
-}
-
-
-void Intrinsifier::Integer_bitOr(Assembler* assembler) {
- Integer_bitOrFromInteger(assembler);
-}
-
-
-void Intrinsifier::Integer_bitXorFromInteger(Assembler* assembler) {
- Label fall_through;
-
- TestBothArgumentsSmis(assembler, &fall_through); // Checks two smis.
- __ Ret();
- __ delay_slot()->xor_(V0, T0, T1);
- __ Bind(&fall_through);
-}
-
-
-void Intrinsifier::Integer_bitXor(Assembler* assembler) {
- Integer_bitXorFromInteger(assembler);
-}
-
-
-void Intrinsifier::Integer_shl(Assembler* assembler) {
- ASSERT(kSmiTagShift == 1);
- ASSERT(kSmiTag == 0);
- Label fall_through, overflow;
-
- TestBothArgumentsSmis(assembler, &fall_through);
- __ BranchUnsignedGreater(T0, Immediate(Smi::RawValue(Smi::kBits)),
- &fall_through);
- __ SmiUntag(T0);
-
- // Check for overflow by shifting left and shifting back arithmetically.
- // If the result is different from the original, there was overflow.
- __ sllv(TMP, T1, T0);
- __ srav(CMPRES1, TMP, T0);
- __ bne(CMPRES1, T1, &overflow);
-
- // No overflow, result in V0.
- __ Ret();
- __ delay_slot()->sllv(V0, T1, T0);
-
- __ Bind(&overflow);
- // Arguments are Smi but the shift produced an overflow to Mint.
- __ bltz(T1, &fall_through);
- __ SmiUntag(T1);
-
- // Pull off high bits that will be shifted off of T1 by making a mask
- // ((1 << T0) - 1), shifting it to the right, masking T1, then shifting back.
- // high bits = (((1 << T0) - 1) << (32 - T0)) & T1) >> (32 - T0)
- // lo bits = T1 << T0
- __ LoadImmediate(T3, 1);
- __ sllv(T3, T3, T0); // T3 <- T3 << T0
- __ addiu(T3, T3, Immediate(-1)); // T3 <- T3 - 1
- __ subu(T4, ZR, T0); // T4 <- -T0
- __ addiu(T4, T4, Immediate(32)); // T4 <- 32 - T0
- __ sllv(T3, T3, T4); // T3 <- T3 << T4
- __ and_(T3, T3, T1); // T3 <- T3 & T1
- __ srlv(T3, T3, T4); // T3 <- T3 >> T4
- // Now T3 has the bits that fall off of T1 on a left shift.
- __ sllv(T0, T1, T0); // T0 gets low bits.
-
- const Class& mint_class =
- Class::Handle(Isolate::Current()->object_store()->mint_class());
- __ TryAllocate(mint_class, &fall_through, V0, T1);
-
- __ sw(T0, FieldAddress(V0, Mint::value_offset()));
- __ Ret();
- __ delay_slot()->sw(T3, FieldAddress(V0, Mint::value_offset() + kWordSize));
- __ Bind(&fall_through);
-}
-
-
-static void Get64SmiOrMint(Assembler* assembler,
- Register res_hi,
- Register res_lo,
- Register reg,
- Label* not_smi_or_mint) {
- Label not_smi, done;
- __ andi(CMPRES1, reg, Immediate(kSmiTagMask));
- __ bne(CMPRES1, ZR, &not_smi);
- __ SmiUntag(reg);
-
- // Sign extend to 64 bit
- __ mov(res_lo, reg);
- __ b(&done);
- __ delay_slot()->sra(res_hi, reg, 31);
-
- __ Bind(&not_smi);
- __ LoadClassId(CMPRES1, reg);
- __ BranchNotEqual(CMPRES1, Immediate(kMintCid), not_smi_or_mint);
-
- // Mint.
- __ lw(res_lo, FieldAddress(reg, Mint::value_offset()));
- __ lw(res_hi, FieldAddress(reg, Mint::value_offset() + kWordSize));
- __ Bind(&done);
- return;
-}
-
-
-static void CompareIntegers(Assembler* assembler, RelationOperator rel_op) {
- Label try_mint_smi, is_true, is_false, drop_two_fall_through, fall_through;
- TestBothArgumentsSmis(assembler, &try_mint_smi);
- // T0 contains the right argument. T1 contains left argument
-
- switch (rel_op) {
- case LT:
- __ BranchSignedLess(T1, T0, &is_true);
- break;
- case LE:
- __ BranchSignedLessEqual(T1, T0, &is_true);
- break;
- case GT:
- __ BranchSignedGreater(T1, T0, &is_true);
- break;
- case GE:
- __ BranchSignedGreaterEqual(T1, T0, &is_true);
- break;
- default:
- UNREACHABLE();
- break;
- }
-
- __ Bind(&is_false);
- __ LoadObject(V0, Bool::False());
- __ Ret();
- __ Bind(&is_true);
- __ LoadObject(V0, Bool::True());
- __ Ret();
-
- __ Bind(&try_mint_smi);
- // Get left as 64 bit integer.
- Get64SmiOrMint(assembler, T3, T2, T1, &fall_through);
- // Get right as 64 bit integer.
- Get64SmiOrMint(assembler, T5, T4, T0, &fall_through);
- // T3: left high.
- // T2: left low.
- // T5: right high.
- // T4: right low.
-
- // 64-bit comparison
- switch (rel_op) {
- case LT:
- case LE: {
- // Compare left hi, right high.
- __ BranchSignedGreater(T3, T5, &is_false);
- __ BranchSignedLess(T3, T5, &is_true);
- // Compare left lo, right lo.
- if (rel_op == LT) {
- __ BranchUnsignedGreaterEqual(T2, T4, &is_false);
- } else {
- __ BranchUnsignedGreater(T2, T4, &is_false);
- }
- break;
- }
- case GT:
- case GE: {
- // Compare left hi, right high.
- __ BranchSignedLess(T3, T5, &is_false);
- __ BranchSignedGreater(T3, T5, &is_true);
- // Compare left lo, right lo.
- if (rel_op == GT) {
- __ BranchUnsignedLessEqual(T2, T4, &is_false);
- } else {
- __ BranchUnsignedLess(T2, T4, &is_false);
- }
- break;
- }
- default:
- UNREACHABLE();
- break;
- }
- // Else is true.
- __ b(&is_true);
-
- __ Bind(&fall_through);
-}
-
-
-void Intrinsifier::Integer_greaterThanFromInt(Assembler* assembler) {
- CompareIntegers(assembler, LT);
-}
-
-
-void Intrinsifier::Integer_lessThan(Assembler* assembler) {
- CompareIntegers(assembler, LT);
-}
-
-
-void Intrinsifier::Integer_greaterThan(Assembler* assembler) {
- CompareIntegers(assembler, GT);
-}
-
-
-void Intrinsifier::Integer_lessEqualThan(Assembler* assembler) {
- CompareIntegers(assembler, LE);
-}
-
-
-void Intrinsifier::Integer_greaterEqualThan(Assembler* assembler) {
- CompareIntegers(assembler, GE);
-}
-
-
-// This is called for Smi, Mint and Bigint receivers. The right argument
-// can be Smi, Mint, Bigint or double.
-void Intrinsifier::Integer_equalToInteger(Assembler* assembler) {
- Label fall_through, true_label, check_for_mint;
- // For integer receiver '===' check first.
- __ lw(T0, Address(SP, 0 * kWordSize));
- __ lw(T1, Address(SP, 1 * kWordSize));
- __ beq(T0, T1, &true_label);
-
- __ or_(T2, T0, T1);
- __ andi(CMPRES1, T2, Immediate(kSmiTagMask));
- // If T0 or T1 is not a smi do Mint checks.
- __ bne(CMPRES1, ZR, &check_for_mint);
-
- // Both arguments are smi, '===' is good enough.
- __ LoadObject(V0, Bool::False());
- __ Ret();
- __ Bind(&true_label);
- __ LoadObject(V0, Bool::True());
- __ Ret();
-
- // At least one of the arguments was not Smi.
- Label receiver_not_smi;
- __ Bind(&check_for_mint);
-
- __ andi(CMPRES1, T1, Immediate(kSmiTagMask));
- __ bne(CMPRES1, ZR, &receiver_not_smi); // Check receiver.
-
- // Left (receiver) is Smi, return false if right is not Double.
- // Note that an instance of Mint or Bigint never contains a value that can be
- // represented by Smi.
-
- __ LoadClassId(CMPRES1, T0);
- __ BranchEqual(CMPRES1, Immediate(kDoubleCid), &fall_through);
- __ LoadObject(V0, Bool::False()); // Smi == Mint -> false.
- __ Ret();
-
- __ Bind(&receiver_not_smi);
- // T1:: receiver.
-
- __ LoadClassId(CMPRES1, T1);
- __ BranchNotEqual(CMPRES1, Immediate(kMintCid), &fall_through);
- // Receiver is Mint, return false if right is Smi.
- __ andi(CMPRES1, T0, Immediate(kSmiTagMask));
- __ bne(CMPRES1, ZR, &fall_through);
- __ LoadObject(V0, Bool::False());
- __ Ret();
- // TODO(srdjan): Implement Mint == Mint comparison.
-
- __ Bind(&fall_through);
-}
-
-
-void Intrinsifier::Integer_equal(Assembler* assembler) {
- Integer_equalToInteger(assembler);
-}
-
-
-void Intrinsifier::Integer_sar(Assembler* assembler) {
- Label fall_through;
-
- TestBothArgumentsSmis(assembler, &fall_through);
- // Shift amount in T0. Value to shift in T1.
-
- __ SmiUntag(T0);
- __ bltz(T0, &fall_through);
-
- __ LoadImmediate(T2, 0x1F);
- __ slt(CMPRES1, T2, T0); // CMPRES1 <- 0x1F < T0 ? 1 : 0
- __ movn(T0, T2, CMPRES1); // T0 <- 0x1F < T0 ? 0x1F : T0
-
- __ SmiUntag(T1);
- __ srav(V0, T1, T0);
- __ Ret();
- __ delay_slot()->SmiTag(V0);
- __ Bind(&fall_through);
-}
-
-
-void Intrinsifier::Smi_bitNegate(Assembler* assembler) {
- __ lw(T0, Address(SP, 0 * kWordSize));
- __ nor(V0, T0, ZR);
- __ Ret();
- __ delay_slot()->addiu(V0, V0, Immediate(-1)); // Remove inverted smi-tag.
-}
-
-
-void Intrinsifier::Smi_bitLength(Assembler* assembler) {
- __ lw(V0, Address(SP, 0 * kWordSize));
- __ SmiUntag(V0);
- // XOR with sign bit to complement bits if value is negative.
- __ sra(T0, V0, 31);
- __ xor_(V0, V0, T0);
- __ clz(V0, V0);
- __ LoadImmediate(T0, 32);
- __ subu(V0, T0, V0);
- __ Ret();
- __ delay_slot()->SmiTag(V0);
-}
-
-
-void Intrinsifier::Smi_bitAndFromSmi(Assembler* assembler) {
- Integer_bitAndFromInteger(assembler);
-}
-
-
-void Intrinsifier::Bigint_lsh(Assembler* assembler) {
- // static void _lsh(Uint32List x_digits, int x_used, int n,
- // Uint32List r_digits)
-
- // T2 = x_used, T3 = x_digits, x_used > 0, x_used is Smi.
- __ lw(T2, Address(SP, 2 * kWordSize));
- __ lw(T3, Address(SP, 3 * kWordSize));
- // T4 = r_digits, T5 = n, n is Smi, n % _DIGIT_BITS != 0.
- __ lw(T4, Address(SP, 0 * kWordSize));
- __ lw(T5, Address(SP, 1 * kWordSize));
- __ SmiUntag(T5);
- // T0 = n ~/ _DIGIT_BITS
- __ sra(T0, T5, 5);
- // T6 = &x_digits[0]
- __ addiu(T6, T3, Immediate(TypedData::data_offset() - kHeapObjectTag));
- // V0 = &x_digits[x_used]
- __ sll(T2, T2, 1);
- __ addu(V0, T6, T2);
- // V1 = &r_digits[1]
- __ addiu(V1, T4, Immediate(TypedData::data_offset() - kHeapObjectTag +
- Bigint::kBytesPerDigit));
- // V1 = &r_digits[x_used + n ~/ _DIGIT_BITS + 1]
- __ addu(V1, V1, T2);
- __ sll(T1, T0, 2);
- __ addu(V1, V1, T1);
- // T3 = n % _DIGIT_BITS
- __ andi(T3, T5, Immediate(31));
- // T2 = 32 - T3
- __ subu(T2, ZR, T3);
- __ addiu(T2, T2, Immediate(32));
- __ mov(T1, ZR);
- Label loop;
- __ Bind(&loop);
- __ addiu(V0, V0, Immediate(-Bigint::kBytesPerDigit));
- __ lw(T0, Address(V0, 0));
- __ srlv(AT, T0, T2);
- __ or_(T1, T1, AT);
- __ addiu(V1, V1, Immediate(-Bigint::kBytesPerDigit));
- __ sw(T1, Address(V1, 0));
- __ bne(V0, T6, &loop);
- __ delay_slot()->sllv(T1, T0, T3);
- __ sw(T1, Address(V1, -Bigint::kBytesPerDigit));
- // Returning Object::null() is not required, since this method is private.
- __ Ret();
-}
-
-
-void Intrinsifier::Bigint_rsh(Assembler* assembler) {
- // static void _lsh(Uint32List x_digits, int x_used, int n,
- // Uint32List r_digits)
-
- // T2 = x_used, T3 = x_digits, x_used > 0, x_used is Smi.
- __ lw(T2, Address(SP, 2 * kWordSize));
- __ lw(T3, Address(SP, 3 * kWordSize));
- // T4 = r_digits, T5 = n, n is Smi, n % _DIGIT_BITS != 0.
- __ lw(T4, Address(SP, 0 * kWordSize));
- __ lw(T5, Address(SP, 1 * kWordSize));
- __ SmiUntag(T5);
- // T0 = n ~/ _DIGIT_BITS
- __ sra(T0, T5, 5);
- // V1 = &r_digits[0]
- __ addiu(V1, T4, Immediate(TypedData::data_offset() - kHeapObjectTag));
- // V0 = &x_digits[n ~/ _DIGIT_BITS]
- __ addiu(V0, T3, Immediate(TypedData::data_offset() - kHeapObjectTag));
- __ sll(T1, T0, 2);
- __ addu(V0, V0, T1);
- // T6 = &r_digits[x_used - n ~/ _DIGIT_BITS - 1]
- __ sll(T2, T2, 1);
- __ addu(T6, V1, T2);
- __ subu(T6, T6, T1);
- __ addiu(T6, T6, Immediate(-4));
- // T3 = n % _DIGIT_BITS
- __ andi(T3, T5, Immediate(31));
- // T2 = 32 - T3
- __ subu(T2, ZR, T3);
- __ addiu(T2, T2, Immediate(32));
- // T1 = x_digits[n ~/ _DIGIT_BITS] >> (n % _DIGIT_BITS)
- __ lw(T1, Address(V0, 0));
- __ addiu(V0, V0, Immediate(Bigint::kBytesPerDigit));
- Label loop_exit;
- __ beq(V1, T6, &loop_exit);
- __ delay_slot()->srlv(T1, T1, T3);
- Label loop;
- __ Bind(&loop);
- __ lw(T0, Address(V0, 0));
- __ addiu(V0, V0, Immediate(Bigint::kBytesPerDigit));
- __ sllv(AT, T0, T2);
- __ or_(T1, T1, AT);
- __ sw(T1, Address(V1, 0));
- __ addiu(V1, V1, Immediate(Bigint::kBytesPerDigit));
- __ bne(V1, T6, &loop);
- __ delay_slot()->srlv(T1, T0, T3);
- __ Bind(&loop_exit);
- __ sw(T1, Address(V1, 0));
- // Returning Object::null() is not required, since this method is private.
- __ Ret();
-}
-
-
-void Intrinsifier::Bigint_absAdd(Assembler* assembler) {
- // static void _absAdd(Uint32List digits, int used,
- // Uint32List a_digits, int a_used,
- // Uint32List r_digits)
-
- // T2 = used, T3 = digits
- __ lw(T2, Address(SP, 3 * kWordSize));
- __ lw(T3, Address(SP, 4 * kWordSize));
- // T3 = &digits[0]
- __ addiu(T3, T3, Immediate(TypedData::data_offset() - kHeapObjectTag));
-
- // T4 = a_used, T5 = a_digits
- __ lw(T4, Address(SP, 1 * kWordSize));
- __ lw(T5, Address(SP, 2 * kWordSize));
- // T5 = &a_digits[0]
- __ addiu(T5, T5, Immediate(TypedData::data_offset() - kHeapObjectTag));
-
- // T6 = r_digits
- __ lw(T6, Address(SP, 0 * kWordSize));
- // T6 = &r_digits[0]
- __ addiu(T6, T6, Immediate(TypedData::data_offset() - kHeapObjectTag));
-
- // V0 = &digits[a_used >> 1], a_used is Smi.
- __ sll(V0, T4, 1);
- __ addu(V0, V0, T3);
-
- // V1 = &digits[used >> 1], used is Smi.
- __ sll(V1, T2, 1);
- __ addu(V1, V1, T3);
-
- // T2 = carry in = 0.
- __ mov(T2, ZR);
- Label add_loop;
- __ Bind(&add_loop);
- // Loop a_used times, a_used > 0.
- __ lw(T0, Address(T3, 0)); // T0 = x.
- __ addiu(T3, T3, Immediate(Bigint::kBytesPerDigit));
- __ lw(T1, Address(T5, 0)); // T1 = y.
- __ addiu(T5, T5, Immediate(Bigint::kBytesPerDigit));
- __ addu(T1, T0, T1); // T1 = x + y.
- __ sltu(T4, T1, T0); // T4 = carry out of x + y.
- __ addu(T0, T1, T2); // T0 = x + y + carry in.
- __ sltu(T2, T0, T1); // T2 = carry out of (x + y) + carry in.
- __ or_(T2, T2, T4); // T2 = carry out of x + y + carry in.
- __ sw(T0, Address(T6, 0));
- __ bne(T3, V0, &add_loop);
- __ delay_slot()->addiu(T6, T6, Immediate(Bigint::kBytesPerDigit));
-
- Label last_carry;
- __ beq(T3, V1, &last_carry);
-
- Label carry_loop;
- __ Bind(&carry_loop);
- // Loop used - a_used times, used - a_used > 0.
- __ lw(T0, Address(T3, 0)); // T0 = x.
- __ addiu(T3, T3, Immediate(Bigint::kBytesPerDigit));
- __ addu(T1, T0, T2); // T1 = x + carry in.
- __ sltu(T2, T1, T0); // T2 = carry out of x + carry in.
- __ sw(T1, Address(T6, 0));
- __ bne(T3, V1, &carry_loop);
- __ delay_slot()->addiu(T6, T6, Immediate(Bigint::kBytesPerDigit));
-
- __ Bind(&last_carry);
- __ sw(T2, Address(T6, 0));
-
- // Returning Object::null() is not required, since this method is private.
- __ Ret();
-}
-
-
-void Intrinsifier::Bigint_absSub(Assembler* assembler) {
- // static void _absSub(Uint32List digits, int used,
- // Uint32List a_digits, int a_used,
- // Uint32List r_digits)
-
- // T2 = used, T3 = digits
- __ lw(T2, Address(SP, 3 * kWordSize));
- __ lw(T3, Address(SP, 4 * kWordSize));
- // T3 = &digits[0]
- __ addiu(T3, T3, Immediate(TypedData::data_offset() - kHeapObjectTag));
-
- // T4 = a_used, T5 = a_digits
- __ lw(T4, Address(SP, 1 * kWordSize));
- __ lw(T5, Address(SP, 2 * kWordSize));
- // T5 = &a_digits[0]
- __ addiu(T5, T5, Immediate(TypedData::data_offset() - kHeapObjectTag));
-
- // T6 = r_digits
- __ lw(T6, Address(SP, 0 * kWordSize));
- // T6 = &r_digits[0]
- __ addiu(T6, T6, Immediate(TypedData::data_offset() - kHeapObjectTag));
-
- // V0 = &digits[a_used >> 1], a_used is Smi.
- __ sll(V0, T4, 1);
- __ addu(V0, V0, T3);
-
- // V1 = &digits[used >> 1], used is Smi.
- __ sll(V1, T2, 1);
- __ addu(V1, V1, T3);
-
- // T2 = borrow in = 0.
- __ mov(T2, ZR);
- Label sub_loop;
- __ Bind(&sub_loop);
- // Loop a_used times, a_used > 0.
- __ lw(T0, Address(T3, 0)); // T0 = x.
- __ addiu(T3, T3, Immediate(Bigint::kBytesPerDigit));
- __ lw(T1, Address(T5, 0)); // T1 = y.
- __ addiu(T5, T5, Immediate(Bigint::kBytesPerDigit));
- __ subu(T1, T0, T1); // T1 = x - y.
- __ sltu(T4, T0, T1); // T4 = borrow out of x - y.
- __ subu(T0, T1, T2); // T0 = x - y - borrow in.
- __ sltu(T2, T1, T0); // T2 = borrow out of (x - y) - borrow in.
- __ or_(T2, T2, T4); // T2 = borrow out of x - y - borrow in.
- __ sw(T0, Address(T6, 0));
- __ bne(T3, V0, &sub_loop);
- __ delay_slot()->addiu(T6, T6, Immediate(Bigint::kBytesPerDigit));
-
- Label done;
- __ beq(T3, V1, &done);
-
- Label borrow_loop;
- __ Bind(&borrow_loop);
- // Loop used - a_used times, used - a_used > 0.
- __ lw(T0, Address(T3, 0)); // T0 = x.
- __ addiu(T3, T3, Immediate(Bigint::kBytesPerDigit));
- __ subu(T1, T0, T2); // T1 = x - borrow in.
- __ sltu(T2, T0, T1); // T2 = borrow out of x - borrow in.
- __ sw(T1, Address(T6, 0));
- __ bne(T3, V1, &borrow_loop);
- __ delay_slot()->addiu(T6, T6, Immediate(Bigint::kBytesPerDigit));
-
- __ Bind(&done);
- // Returning Object::null() is not required, since this method is private.
- __ Ret();
-}
-
-
-void Intrinsifier::Bigint_mulAdd(Assembler* assembler) {
- // Pseudo code:
- // static int _mulAdd(Uint32List x_digits, int xi,
- // Uint32List m_digits, int i,
- // Uint32List a_digits, int j, int n) {
- // uint32_t x = x_digits[xi >> 1]; // xi is Smi.
- // if (x == 0 || n == 0) {
- // return 1;
- // }
- // uint32_t* mip = &m_digits[i >> 1]; // i is Smi.
- // uint32_t* ajp = &a_digits[j >> 1]; // j is Smi.
- // uint32_t c = 0;
- // SmiUntag(n);
- // do {
- // uint32_t mi = *mip++;
- // uint32_t aj = *ajp;
- // uint64_t t = x*mi + aj + c; // 32-bit * 32-bit -> 64-bit.
- // *ajp++ = low32(t);
- // c = high32(t);
- // } while (--n > 0);
- // while (c != 0) {
- // uint64_t t = *ajp + c;
- // *ajp++ = low32(t);
- // c = high32(t); // c == 0 or 1.
- // }
- // return 1;
- // }
-
- Label done;
- // T3 = x, no_op if x == 0
- __ lw(T0, Address(SP, 5 * kWordSize)); // T0 = xi as Smi.
- __ lw(T1, Address(SP, 6 * kWordSize)); // T1 = x_digits.
- __ sll(T0, T0, 1);
- __ addu(T1, T0, T1);
- __ lw(T3, FieldAddress(T1, TypedData::data_offset()));
- __ beq(T3, ZR, &done);
-
- // T6 = SmiUntag(n), no_op if n == 0
- __ lw(T6, Address(SP, 0 * kWordSize));
- __ SmiUntag(T6);
- __ beq(T6, ZR, &done);
- __ delay_slot()->addiu(T6, T6, Immediate(-1)); // ... while (n-- > 0).
-
- // T4 = mip = &m_digits[i >> 1]
- __ lw(T0, Address(SP, 3 * kWordSize)); // T0 = i as Smi.
- __ lw(T1, Address(SP, 4 * kWordSize)); // T1 = m_digits.
- __ sll(T0, T0, 1);
- __ addu(T1, T0, T1);
- __ addiu(T4, T1, Immediate(TypedData::data_offset() - kHeapObjectTag));
-
- // T5 = ajp = &a_digits[j >> 1]
- __ lw(T0, Address(SP, 1 * kWordSize)); // T0 = j as Smi.
- __ lw(T1, Address(SP, 2 * kWordSize)); // T1 = a_digits.
- __ sll(T0, T0, 1);
- __ addu(T1, T0, T1);
- __ addiu(T5, T1, Immediate(TypedData::data_offset() - kHeapObjectTag));
-
- // T1 = c = 0
- __ mov(T1, ZR);
-
- Label muladd_loop;
- __ Bind(&muladd_loop);
- // x: T3
- // mip: T4
- // ajp: T5
- // c: T1
- // n-1: T6
-
- // uint32_t mi = *mip++
- __ lw(T2, Address(T4, 0));
-
- // uint32_t aj = *ajp
- __ lw(T0, Address(T5, 0));
-
- // uint64_t t = x*mi + aj + c
- __ multu(T2, T3); // HI:LO = x*mi.
- __ addiu(T4, T4, Immediate(Bigint::kBytesPerDigit));
- __ mflo(V0);
- __ mfhi(V1);
- __ addu(V0, V0, T0); // V0 = low32(x*mi) + aj.
- __ sltu(T7, V0, T0); // T7 = carry out of low32(x*mi) + aj.
- __ addu(V1, V1, T7); // V1:V0 = x*mi + aj.
- __ addu(T0, V0, T1); // T0 = low32(x*mi + aj) + c.
- __ sltu(T7, T0, T1); // T7 = carry out of low32(x*mi + aj) + c.
- __ addu(T1, V1, T7); // T1 = c = high32(x*mi + aj + c).
-
- // *ajp++ = low32(t) = T0
- __ sw(T0, Address(T5, 0));
- __ addiu(T5, T5, Immediate(Bigint::kBytesPerDigit));
-
- // while (n-- > 0)
- __ bgtz(T6, &muladd_loop);
- __ delay_slot()->addiu(T6, T6, Immediate(-1)); // --n
-
- __ beq(T1, ZR, &done);
-
- // *ajp++ += c
- __ lw(T0, Address(T5, 0));
- __ addu(T0, T0, T1);
- __ sltu(T1, T0, T1);
- __ sw(T0, Address(T5, 0));
- __ beq(T1, ZR, &done);
- __ delay_slot()->addiu(T5, T5, Immediate(Bigint::kBytesPerDigit));
-
- Label propagate_carry_loop;
- __ Bind(&propagate_carry_loop);
- __ lw(T0, Address(T5, 0));
- __ addiu(T0, T0, Immediate(1));
- __ sw(T0, Address(T5, 0));
- __ beq(T0, ZR, &propagate_carry_loop);
- __ delay_slot()->addiu(T5, T5, Immediate(Bigint::kBytesPerDigit));
-
- __ Bind(&done);
- __ addiu(V0, ZR, Immediate(Smi::RawValue(1))); // One digit processed.
- __ Ret();
-}
-
-
-void Intrinsifier::Bigint_sqrAdd(Assembler* assembler) {
- // Pseudo code:
- // static int _sqrAdd(Uint32List x_digits, int i,
- // Uint32List a_digits, int used) {
- // uint32_t* xip = &x_digits[i >> 1]; // i is Smi.
- // uint32_t x = *xip++;
- // if (x == 0) return 1;
- // uint32_t* ajp = &a_digits[i]; // j == 2*i, i is Smi.
- // uint32_t aj = *ajp;
- // uint64_t t = x*x + aj;
- // *ajp++ = low32(t);
- // uint64_t c = high32(t);
- // int n = ((used - i) >> 1) - 1; // used and i are Smi.
- // while (--n >= 0) {
- // uint32_t xi = *xip++;
- // uint32_t aj = *ajp;
- // uint96_t t = 2*x*xi + aj + c; // 2-bit * 32-bit * 32-bit -> 65-bit.
- // *ajp++ = low32(t);
- // c = high64(t); // 33-bit.
- // }
- // uint32_t aj = *ajp;
- // uint64_t t = aj + c; // 32-bit + 33-bit -> 34-bit.
- // *ajp++ = low32(t);
- // *ajp = high32(t);
- // return 1;
- // }
-
- // T4 = xip = &x_digits[i >> 1]
- __ lw(T2, Address(SP, 2 * kWordSize)); // T2 = i as Smi.
- __ lw(T3, Address(SP, 3 * kWordSize)); // T3 = x_digits.
- __ sll(T0, T2, 1);
- __ addu(T3, T0, T3);
- __ addiu(T4, T3, Immediate(TypedData::data_offset() - kHeapObjectTag));
-
- // T3 = x = *xip++, return if x == 0
- Label x_zero;
- __ lw(T3, Address(T4, 0));
- __ beq(T3, ZR, &x_zero);
- __ delay_slot()->addiu(T4, T4, Immediate(Bigint::kBytesPerDigit));
-
- // T5 = ajp = &a_digits[i]
- __ lw(T1, Address(SP, 1 * kWordSize)); // a_digits
- __ sll(T0, T2, 2); // j == 2*i, i is Smi.
- __ addu(T1, T0, T1);
- __ addiu(T5, T1, Immediate(TypedData::data_offset() - kHeapObjectTag));
-
- // T6:T0 = t = x*x + *ajp
- __ lw(T0, Address(T5, 0)); // *ajp.
- __ mthi(ZR);
- __ mtlo(T0);
- __ maddu(T3, T3); // HI:LO = T3*T3 + *ajp.
- __ mfhi(T6);
- __ mflo(T0);
-
- // *ajp++ = low32(t) = R0
- __ sw(T0, Address(T5, 0));
- __ addiu(T5, T5, Immediate(Bigint::kBytesPerDigit));
-
- // T6 = low32(c) = high32(t)
- // T7 = high32(c) = 0
- __ mov(T7, ZR);
-
- // int n = used - i - 1; while (--n >= 0) ...
- __ lw(T0, Address(SP, 0 * kWordSize)); // used is Smi
- __ subu(V0, T0, T2);
- __ SmiUntag(V0); // V0 = used - i
- // int n = used - i - 2; if (n >= 0) ... while (n-- > 0)
- __ addiu(V0, V0, Immediate(-2));
-
- Label loop, done;
- __ bltz(V0, &done);
-
- __ Bind(&loop);
- // x: T3
- // xip: T4
- // ajp: T5
- // c: T7:T6
- // t: A2:A1:A0 (not live at loop entry)
- // n: V0
-
- // uint32_t xi = *xip++
- __ lw(T2, Address(T4, 0));
- __ addiu(T4, T4, Immediate(Bigint::kBytesPerDigit));
-
- // uint32_t aj = *ajp
- __ lw(T0, Address(T5, 0));
-
- // uint96_t t = T7:T6:T0 = 2*x*xi + aj + c
- __ multu(T2, T3);
- __ mfhi(A1);
- __ mflo(A0); // A1:A0 = x*xi.
- __ srl(A2, A1, 31);
- __ sll(A1, A1, 1);
- __ srl(T1, A0, 31);
- __ or_(A1, A1, T1);
- __ sll(A0, A0, 1); // A2:A1:A0 = 2*x*xi.
- __ addu(A0, A0, T0);
- __ sltu(T1, A0, T0);
- __ addu(A1, A1, T1); // No carry out possible; A2:A1:A0 = 2*x*xi + aj.
- __ addu(T0, A0, T6);
- __ sltu(T1, T0, T6);
- __ addu(T6, A1, T1); // No carry out; A2:T6:T0 = 2*x*xi + aj + low32(c).
- __ addu(T6, T6, T7); // No carry out; A2:T6:T0 = 2*x*xi + aj + c.
- __ mov(T7, A2); // T7:T6:T0 = 2*x*xi + aj + c.
-
- // *ajp++ = low32(t) = T0
- __ sw(T0, Address(T5, 0));
- __ addiu(T5, T5, Immediate(Bigint::kBytesPerDigit));
-
- // while (n-- > 0)
- __ bgtz(V0, &loop);
- __ delay_slot()->addiu(V0, V0, Immediate(-1)); // --n
-
- __ Bind(&done);
- // uint32_t aj = *ajp
- __ lw(T0, Address(T5, 0));
-
- // uint64_t t = aj + c
- __ addu(T6, T6, T0);
- __ sltu(T1, T6, T0);
- __ addu(T7, T7, T1);
-
- // *ajp = low32(t) = T6
- // *(ajp + 1) = high32(t) = T7
- __ sw(T6, Address(T5, 0));
- __ sw(T7, Address(T5, Bigint::kBytesPerDigit));
-
- __ Bind(&x_zero);
- __ addiu(V0, ZR, Immediate(Smi::RawValue(1))); // One digit processed.
- __ Ret();
-}
-
-
-void Intrinsifier::Bigint_estQuotientDigit(Assembler* assembler) {
- // No unsigned 64-bit / 32-bit divide instruction.
-}
-
-
-void Intrinsifier::Montgomery_mulMod(Assembler* assembler) {
- // Pseudo code:
- // static int _mulMod(Uint32List args, Uint32List digits, int i) {
- // uint32_t rho = args[_RHO]; // _RHO == 2.
- // uint32_t d = digits[i >> 1]; // i is Smi.
- // uint64_t t = rho*d;
- // args[_MU] = t mod DIGIT_BASE; // _MU == 4.
- // return 1;
- // }
-
- // T4 = args
- __ lw(T4, Address(SP, 2 * kWordSize)); // args
-
- // T3 = rho = args[2]
- __ lw(T3, FieldAddress(
- T4, TypedData::data_offset() + 2 * Bigint::kBytesPerDigit));
-
- // T2 = d = digits[i >> 1]
- __ lw(T0, Address(SP, 0 * kWordSize)); // T0 = i as Smi.
- __ lw(T1, Address(SP, 1 * kWordSize)); // T1 = digits.
- __ sll(T0, T0, 1);
- __ addu(T1, T0, T1);
- __ lw(T2, FieldAddress(T1, TypedData::data_offset()));
-
- // HI:LO = t = rho*d
- __ multu(T2, T3);
-
- // args[4] = t mod DIGIT_BASE = low32(t)
- __ mflo(T0);
- __ sw(T0, FieldAddress(
- T4, TypedData::data_offset() + 4 * Bigint::kBytesPerDigit));
-
- __ addiu(V0, ZR, Immediate(Smi::RawValue(1))); // One digit processed.
- __ Ret();
-}
-
-
-// Check if the last argument is a double, jump to label 'is_smi' if smi
-// (easy to convert to double), otherwise jump to label 'not_double_smi',
-// Returns the last argument in T0.
-static void TestLastArgumentIsDouble(Assembler* assembler,
- Label* is_smi,
- Label* not_double_smi) {
- __ lw(T0, Address(SP, 0 * kWordSize));
- __ andi(CMPRES1, T0, Immediate(kSmiTagMask));
- __ beq(CMPRES1, ZR, is_smi);
- __ LoadClassId(CMPRES1, T0);
- __ BranchNotEqual(CMPRES1, Immediate(kDoubleCid), not_double_smi);
- // Fall through with Double in T0.
-}
-
-
-// Both arguments on stack, arg0 (left) is a double, arg1 (right) is of unknown
-// type. Return true or false object in the register V0. Any NaN argument
-// returns false. Any non-double arg1 causes control flow to fall through to the
-// slow case (compiled method body).
-static void CompareDoubles(Assembler* assembler, RelationOperator rel_op) {
- Label is_smi, double_op, no_NaN, fall_through;
- __ Comment("CompareDoubles Intrinsic");
-
- TestLastArgumentIsDouble(assembler, &is_smi, &fall_through);
- // Both arguments are double, right operand is in T0.
- __ LoadDFromOffset(D1, T0, Double::value_offset() - kHeapObjectTag);
- __ Bind(&double_op);
- __ lw(T0, Address(SP, 1 * kWordSize)); // Left argument.
- __ LoadDFromOffset(D0, T0, Double::value_offset() - kHeapObjectTag);
- // Now, left is in D0, right is in D1.
-
- __ cund(D0, D1); // Check for NaN.
- __ bc1f(&no_NaN);
- __ LoadObject(V0, Bool::False()); // Return false if either is NaN.
- __ Ret();
- __ Bind(&no_NaN);
-
- switch (rel_op) {
- case EQ:
- __ ceqd(D0, D1);
- break;
- case LT:
- __ coltd(D0, D1);
- break;
- case LE:
- __ coled(D0, D1);
- break;
- case GT:
- __ coltd(D1, D0);
- break;
- case GE:
- __ coled(D1, D0);
- break;
- default: {
- // Only passing the above conditions to this function.
- UNREACHABLE();
- break;
- }
- }
-
- Label is_true;
- __ bc1t(&is_true);
- __ LoadObject(V0, Bool::False());
- __ Ret();
- __ Bind(&is_true);
- __ LoadObject(V0, Bool::True());
- __ Ret();
-
-
- __ Bind(&is_smi);
- __ SmiUntag(T0);
- __ mtc1(T0, STMP1);
- __ b(&double_op);
- __ delay_slot()->cvtdw(D1, STMP1);
-
-
- __ Bind(&fall_through);
-}
-
-
-void Intrinsifier::Double_greaterThan(Assembler* assembler) {
- CompareDoubles(assembler, GT);
-}
-
-
-void Intrinsifier::Double_greaterEqualThan(Assembler* assembler) {
- CompareDoubles(assembler, GE);
-}
-
-
-void Intrinsifier::Double_lessThan(Assembler* assembler) {
- CompareDoubles(assembler, LT);
-}
-
-
-void Intrinsifier::Double_equal(Assembler* assembler) {
- CompareDoubles(assembler, EQ);
-}
-
-
-void Intrinsifier::Double_lessEqualThan(Assembler* assembler) {
- CompareDoubles(assembler, LE);
-}
-
-
-// Expects left argument to be double (receiver). Right argument is unknown.
-// Both arguments are on stack.
-static void DoubleArithmeticOperations(Assembler* assembler, Token::Kind kind) {
- Label fall_through, is_smi, double_op;
-
- TestLastArgumentIsDouble(assembler, &is_smi, &fall_through);
- // Both arguments are double, right operand is in T0.
- __ lwc1(F2, FieldAddress(T0, Double::value_offset()));
- __ lwc1(F3, FieldAddress(T0, Double::value_offset() + kWordSize));
- __ Bind(&double_op);
- __ lw(T0, Address(SP, 1 * kWordSize)); // Left argument.
- __ lwc1(F0, FieldAddress(T0, Double::value_offset()));
- __ lwc1(F1, FieldAddress(T0, Double::value_offset() + kWordSize));
- switch (kind) {
- case Token::kADD:
- __ addd(D0, D0, D1);
- break;
- case Token::kSUB:
- __ subd(D0, D0, D1);
- break;
- case Token::kMUL:
- __ muld(D0, D0, D1);
- break;
- case Token::kDIV:
- __ divd(D0, D0, D1);
- break;
- default:
- UNREACHABLE();
- }
- const Class& double_class =
- Class::Handle(Isolate::Current()->object_store()->double_class());
- __ TryAllocate(double_class, &fall_through, V0, T1); // Result register.
- __ swc1(F0, FieldAddress(V0, Double::value_offset()));
- __ Ret();
- __ delay_slot()->swc1(F1,
- FieldAddress(V0, Double::value_offset() + kWordSize));
-
- __ Bind(&is_smi);
- __ SmiUntag(T0);
- __ mtc1(T0, STMP1);
- __ b(&double_op);
- __ delay_slot()->cvtdw(D1, STMP1);
-
- __ Bind(&fall_through);
-}
-
-
-void Intrinsifier::Double_add(Assembler* assembler) {
- DoubleArithmeticOperations(assembler, Token::kADD);
-}
-
-
-void Intrinsifier::Double_mul(Assembler* assembler) {
- DoubleArithmeticOperations(assembler, Token::kMUL);
-}
-
-
-void Intrinsifier::Double_sub(Assembler* assembler) {
- DoubleArithmeticOperations(assembler, Token::kSUB);
-}
-
-
-void Intrinsifier::Double_div(Assembler* assembler) {
- DoubleArithmeticOperations(assembler, Token::kDIV);
-}
-
-
-// Left is double right is integer (Bigint, Mint or Smi)
-void Intrinsifier::Double_mulFromInteger(Assembler* assembler) {
- Label fall_through;
- // Only smis allowed.
- __ lw(T0, Address(SP, 0 * kWordSize));
- __ andi(CMPRES1, T0, Immediate(kSmiTagMask));
- __ bne(CMPRES1, ZR, &fall_through);
-
- // Is Smi.
- __ SmiUntag(T0);
- __ mtc1(T0, F4);
- __ cvtdw(D1, F4);
-
- __ lw(T0, Address(SP, 1 * kWordSize));
- __ lwc1(F0, FieldAddress(T0, Double::value_offset()));
- __ lwc1(F1, FieldAddress(T0, Double::value_offset() + kWordSize));
- __ muld(D0, D0, D1);
- const Class& double_class =
- Class::Handle(Isolate::Current()->object_store()->double_class());
- __ TryAllocate(double_class, &fall_through, V0, T1); // Result register.
- __ swc1(F0, FieldAddress(V0, Double::value_offset()));
- __ Ret();
- __ delay_slot()->swc1(F1,
- FieldAddress(V0, Double::value_offset() + kWordSize));
- __ Bind(&fall_through);
-}
-
-
-void Intrinsifier::DoubleFromInteger(Assembler* assembler) {
- Label fall_through;
-
- __ lw(T0, Address(SP, 0 * kWordSize));
- __ andi(CMPRES1, T0, Immediate(kSmiTagMask));
- __ bne(CMPRES1, ZR, &fall_through);
-
- // Is Smi.
- __ SmiUntag(T0);
- __ mtc1(T0, F4);
- __ cvtdw(D0, F4);
- const Class& double_class =
- Class::Handle(Isolate::Current()->object_store()->double_class());
- __ TryAllocate(double_class, &fall_through, V0, T1); // Result register.
- __ swc1(F0, FieldAddress(V0, Double::value_offset()));
- __ Ret();
- __ delay_slot()->swc1(F1,
- FieldAddress(V0, Double::value_offset() + kWordSize));
- __ Bind(&fall_through);
-}
-
-
-void Intrinsifier::Double_getIsNaN(Assembler* assembler) {
- Label is_true;
-
- __ lw(T0, Address(SP, 0 * kWordSize));
- __ lwc1(F0, FieldAddress(T0, Double::value_offset()));
- __ lwc1(F1, FieldAddress(T0, Double::value_offset() + kWordSize));
- __ cund(D0, D0); // Check for NaN.
- __ bc1t(&is_true);
- __ LoadObject(V0, Bool::False()); // Return false if either is NaN.
- __ Ret();
- __ Bind(&is_true);
- __ LoadObject(V0, Bool::True());
- __ Ret();
-}
-
-
-void Intrinsifier::Double_getIsInfinite(Assembler* assembler) {
- Label not_inf;
- __ lw(T0, Address(SP, 0 * kWordSize));
- __ lw(T1, FieldAddress(T0, Double::value_offset()));
- __ lw(T2, FieldAddress(T0, Double::value_offset() + kWordSize));
- // If the low word isn't zero, then it isn't infinity.
- __ bne(T1, ZR, &not_inf);
- // Mask off the sign bit.
- __ AndImmediate(T2, T2, 0x7FFFFFFF);
- // Compare with +infinity.
- __ BranchNotEqual(T2, Immediate(0x7FF00000), &not_inf);
-
- __ LoadObject(V0, Bool::True());
- __ Ret();
-
- __ Bind(&not_inf);
- __ LoadObject(V0, Bool::False());
- __ Ret();
-}
-
-
-void Intrinsifier::Double_getIsNegative(Assembler* assembler) {
- Label is_false, is_true, is_zero;
- __ lw(T0, Address(SP, 0 * kWordSize));
- __ LoadDFromOffset(D0, T0, Double::value_offset() - kHeapObjectTag);
-
- __ cund(D0, D0);
- __ bc1t(&is_false); // NaN -> false.
-
- __ LoadImmediate(D1, 0.0);
- __ ceqd(D0, D1);
- __ bc1t(&is_zero); // Check for negative zero.
-
- __ coled(D1, D0);
- __ bc1t(&is_false); // >= 0 -> false.
-
- __ Bind(&is_true);
- __ LoadObject(V0, Bool::True());
- __ Ret();
-
- __ Bind(&is_false);
- __ LoadObject(V0, Bool::False());
- __ Ret();
-
- __ Bind(&is_zero);
- // Check for negative zero by looking at the sign bit.
- __ mfc1(T0, F1); // Moves bits 32...63 of D0 to T0.
- __ srl(T0, T0, 31); // Get the sign bit down to bit 0 of T0.
- __ andi(CMPRES1, T0, Immediate(1)); // Check if the bit is set.
- __ bne(T0, ZR, &is_true); // Sign bit set. True.
- __ b(&is_false);
-}
-
-
-void Intrinsifier::DoubleToInteger(Assembler* assembler) {
- __ lw(T0, Address(SP, 0 * kWordSize));
- __ LoadDFromOffset(D0, T0, Double::value_offset() - kHeapObjectTag);
-
- __ truncwd(F2, D0);
- __ mfc1(V0, F2);
-
- // Overflow is signaled with minint.
- Label fall_through;
- // Check for overflow and that it fits into Smi.
- __ LoadImmediate(TMP, 0xC0000000);
- __ subu(CMPRES1, V0, TMP);
- __ bltz(CMPRES1, &fall_through);
- __ Ret();
- __ delay_slot()->SmiTag(V0);
- __ Bind(&fall_through);
-}
-
-
-void Intrinsifier::MathSqrt(Assembler* assembler) {
- Label fall_through, is_smi, double_op;
- TestLastArgumentIsDouble(assembler, &is_smi, &fall_through);
- // Argument is double and is in T0.
- __ LoadDFromOffset(D1, T0, Double::value_offset() - kHeapObjectTag);
- __ Bind(&double_op);
- __ sqrtd(D0, D1);
- const Class& double_class =
- Class::Handle(Isolate::Current()->object_store()->double_class());
- __ TryAllocate(double_class, &fall_through, V0, T1); // Result register.
- __ swc1(F0, FieldAddress(V0, Double::value_offset()));
- __ Ret();
- __ delay_slot()->swc1(F1,
- FieldAddress(V0, Double::value_offset() + kWordSize));
-
- __ Bind(&is_smi);
- __ SmiUntag(T0);
- __ mtc1(T0, F2);
- __ b(&double_op);
- __ delay_slot()->cvtdw(D1, F2);
- __ Bind(&fall_through);
-}
-
-
-// var state = ((_A * (_state[kSTATE_LO])) + _state[kSTATE_HI]) & _MASK_64;
-// _state[kSTATE_LO] = state & _MASK_32;
-// _state[kSTATE_HI] = state >> 32;
-void Intrinsifier::Random_nextState(Assembler* assembler) {
- const Library& math_lib = Library::Handle(Library::MathLibrary());
- ASSERT(!math_lib.IsNull());
- const Class& random_class =
- Class::Handle(math_lib.LookupClassAllowPrivate(Symbols::_Random()));
- ASSERT(!random_class.IsNull());
- const Field& state_field = Field::ZoneHandle(
- random_class.LookupInstanceFieldAllowPrivate(Symbols::_state()));
- ASSERT(!state_field.IsNull());
- const Field& random_A_field = Field::ZoneHandle(
- random_class.LookupStaticFieldAllowPrivate(Symbols::_A()));
- ASSERT(!random_A_field.IsNull());
- ASSERT(random_A_field.is_const());
- Instance& a_value = Instance::Handle(random_A_field.StaticValue());
- if (a_value.raw() == Object::sentinel().raw() ||
- a_value.raw() == Object::transition_sentinel().raw()) {
- random_A_field.EvaluateInitializer();
- a_value = random_A_field.StaticValue();
- }
- const int64_t a_int_value = Integer::Cast(a_value).AsInt64Value();
- // 'a_int_value' is a mask.
- ASSERT(Utils::IsUint(32, a_int_value));
- int32_t a_int32_value = static_cast<int32_t>(a_int_value);
-
- // Receiver.
- __ lw(T0, Address(SP, 0 * kWordSize));
- // Field '_state'.
- __ lw(T1, FieldAddress(T0, state_field.Offset()));
-
- // Addresses of _state[0] and _state[1].
- const intptr_t scale = Instance::ElementSizeFor(kTypedDataUint32ArrayCid);
- const intptr_t offset = Instance::DataOffsetFor(kTypedDataUint32ArrayCid);
- const Address& addr_0 = FieldAddress(T1, 0 * scale + offset);
- const Address& addr_1 = FieldAddress(T1, 1 * scale + offset);
-
- __ LoadImmediate(T0, a_int32_value);
- __ lw(T2, addr_0);
- __ lw(T3, addr_1);
- __ mtlo(T3);
- __ mthi(ZR); // HI:LO <- ZR:T3 Zero extend T3 into HI.
- // 64-bit multiply and accumulate into T6:T3.
- __ maddu(T0, T2); // HI:LO <- HI:LO + T0 * T2.
- __ mflo(T3);
- __ mfhi(T6);
- __ sw(T3, addr_0);
- __ sw(T6, addr_1);
- __ Ret();
-}
-
-
-void Intrinsifier::ObjectEquals(Assembler* assembler) {
- Label is_true;
-
- __ lw(T0, Address(SP, 0 * kWordSize));
- __ lw(T1, Address(SP, 1 * kWordSize));
- __ beq(T0, T1, &is_true);
- __ LoadObject(V0, Bool::False());
- __ Ret();
- __ Bind(&is_true);
- __ LoadObject(V0, Bool::True());
- __ Ret();
-}
-
-
-enum RangeCheckCondition { kIfNotInRange, kIfInRange };
-
-
-static void RangeCheck(Assembler* assembler,
- Register val,
- Register tmp,
- intptr_t low,
- intptr_t high,
- RangeCheckCondition cc,
- Label* target) {
- __ AddImmediate(tmp, val, -low);
- if (cc == kIfInRange) {
- __ BranchUnsignedLessEqual(tmp, Immediate(high - low), target);
- } else {
- ASSERT(cc == kIfNotInRange);
- __ BranchUnsignedGreater(tmp, Immediate(high - low), target);
- }
-}
-
-
-static void JumpIfInteger(Assembler* assembler,
- Register cid,
- Register tmp,
- Label* target) {
- RangeCheck(assembler, cid, tmp, kSmiCid, kBigintCid, kIfInRange, target);
-}
-
-
-static void JumpIfNotInteger(Assembler* assembler,
- Register cid,
- Register tmp,
- Label* target) {
- RangeCheck(assembler, cid, tmp, kSmiCid, kBigintCid, kIfNotInRange, target);
-}
-
-
-static void JumpIfString(Assembler* assembler,
- Register cid,
- Register tmp,
- Label* target) {
- RangeCheck(assembler, cid, tmp, kOneByteStringCid, kExternalTwoByteStringCid,
- kIfInRange, target);
-}
-
-
-static void JumpIfNotString(Assembler* assembler,
- Register cid,
- Register tmp,
- Label* target) {
- RangeCheck(assembler, cid, tmp, kOneByteStringCid, kExternalTwoByteStringCid,
- kIfNotInRange, target);
-}
-
-
-// Return type quickly for simple types (not parameterized and not signature).
-void Intrinsifier::ObjectRuntimeType(Assembler* assembler) {
- Label fall_through, use_canonical_type, not_integer, not_double;
- __ lw(T0, Address(SP, 0 * kWordSize));
- __ LoadClassIdMayBeSmi(T1, T0);
-
- // Closures are handled in the runtime.
- __ BranchEqual(T1, Immediate(kClosureCid), &fall_through);
-
- __ BranchUnsignedGreaterEqual(T1, Immediate(kNumPredefinedCids),
- &use_canonical_type);
-
- __ BranchNotEqual(T1, Immediate(kDoubleCid), &not_double);
- // Object is a double.
- __ LoadIsolate(T1);
- __ LoadFromOffset(T1, T1, Isolate::object_store_offset());
- __ LoadFromOffset(V0, T1, ObjectStore::double_type_offset());
- __ Ret();
-
- __ Bind(&not_double);
- JumpIfNotInteger(assembler, T1, T2, &not_integer);
- // Object is an integer.
- __ LoadIsolate(T1);
- __ LoadFromOffset(T1, T1, Isolate::object_store_offset());
- __ LoadFromOffset(V0, T1, ObjectStore::int_type_offset());
- __ Ret();
-
- __ Bind(&not_integer);
- JumpIfNotString(assembler, T1, T2, &use_canonical_type);
- // Object is a string.
- __ LoadIsolate(T1);
- __ LoadFromOffset(T1, T1, Isolate::object_store_offset());
- __ LoadFromOffset(V0, T1, ObjectStore::string_type_offset());
- __ Ret();
-
- __ Bind(&use_canonical_type);
- __ LoadClassById(T2, T1);
- __ lhu(T1, FieldAddress(T2, Class::num_type_arguments_offset()));
- __ BranchNotEqual(T1, Immediate(0), &fall_through);
-
- __ lw(V0, FieldAddress(T2, Class::canonical_type_offset()));
- __ BranchEqual(V0, Object::null_object(), &fall_through);
- __ Ret();
-
- __ Bind(&fall_through);
-}
-
-
-void Intrinsifier::ObjectHaveSameRuntimeType(Assembler* assembler) {
- Label fall_through, different_cids, equal, not_equal, not_integer;
-
- __ lw(T0, Address(SP, 0 * kWordSize));
- __ LoadClassIdMayBeSmi(T1, T0);
-
- // Closures are handled in the runtime.
- __ BranchEqual(T1, Immediate(kClosureCid), &fall_through);
-
- __ lw(T0, Address(SP, 1 * kWordSize));
- __ LoadClassIdMayBeSmi(T2, T0);
-
- // Check whether class ids match. If class ids don't match objects can still
- // have the same runtime type (e.g. multiple string implementation classes
- // map to a single String type).
- __ BranchNotEqual(T1, T2, &different_cids);
-
- // Objects have the same class and neither is a closure.
- // Check if there are no type arguments. In this case we can return true.
- // Otherwise fall through into the runtime to handle comparison.
- __ LoadClassById(T2, T1);
- __ lhu(T1, FieldAddress(T2, Class::num_type_arguments_offset()));
- __ BranchNotEqual(T1, Immediate(0), &fall_through);
-
- __ Bind(&equal);
- __ LoadObject(V0, Bool::True());
- __ Ret();
-
- // Class ids are different. Check if we are comparing runtime types of
- // two strings (with different representations) or two integers.
- __ Bind(&different_cids);
- __ BranchUnsignedGreaterEqual(T1, Immediate(kNumPredefinedCids), &not_equal);
-
- // Check if both are integers.
- JumpIfNotInteger(assembler, T1, T0, &not_integer);
- JumpIfInteger(assembler, T2, T0, &equal);
- __ b(&not_equal);
-
- __ Bind(&not_integer);
- // Check if both are strings.
- JumpIfNotString(assembler, T1, T0, &not_equal);
- JumpIfString(assembler, T2, T0, &equal);
-
- // Neither strings nor integers and have different class ids.
- __ Bind(&not_equal);
- __ LoadObject(V0, Bool::False());
- __ Ret();
-
- __ Bind(&fall_through);
-}
-
-
-void Intrinsifier::String_getHashCode(Assembler* assembler) {
- Label fall_through;
- __ lw(T0, Address(SP, 0 * kWordSize));
- __ lw(V0, FieldAddress(T0, String::hash_offset()));
- __ beq(V0, ZR, &fall_through);
- __ Ret();
- __ Bind(&fall_through); // Hash not yet computed.
-}
-
-
-void GenerateSubstringMatchesSpecialization(Assembler* assembler,
- intptr_t receiver_cid,
- intptr_t other_cid,
- Label* return_true,
- Label* return_false) {
- __ SmiUntag(A1);
- __ lw(T1, FieldAddress(A0, String::length_offset())); // this.length
- __ SmiUntag(T1);
- __ lw(T2, FieldAddress(A2, String::length_offset())); // other.length
- __ SmiUntag(T2);
-
- // if (other.length == 0) return true;
- __ beq(T2, ZR, return_true);
-
- // if (start < 0) return false;
- __ bltz(A1, return_false);
-
- // if (start + other.length > this.length) return false;
- __ addu(T0, A1, T2);
- __ BranchSignedGreater(T0, T1, return_false);
-
- if (receiver_cid == kOneByteStringCid) {
- __ AddImmediate(A0, A0, OneByteString::data_offset() - kHeapObjectTag);
- __ addu(A0, A0, A1);
- } else {
- ASSERT(receiver_cid == kTwoByteStringCid);
- __ AddImmediate(A0, A0, TwoByteString::data_offset() - kHeapObjectTag);
- __ addu(A0, A0, A1);
- __ addu(A0, A0, A1);
- }
- if (other_cid == kOneByteStringCid) {
- __ AddImmediate(A2, A2, OneByteString::data_offset() - kHeapObjectTag);
- } else {
- ASSERT(other_cid == kTwoByteStringCid);
- __ AddImmediate(A2, A2, TwoByteString::data_offset() - kHeapObjectTag);
- }
-
- // i = 0
- __ LoadImmediate(T0, 0);
-
- // do
- Label loop;
- __ Bind(&loop);
-
- if (receiver_cid == kOneByteStringCid) {
- __ lbu(T3, Address(A0, 0)); // this.codeUnitAt(i + start)
- } else {
- __ lhu(T3, Address(A0, 0)); // this.codeUnitAt(i + start)
- }
- if (other_cid == kOneByteStringCid) {
- __ lbu(T4, Address(A2, 0)); // other.codeUnitAt(i)
- } else {
- __ lhu(T4, Address(A2, 0)); // other.codeUnitAt(i)
- }
- __ bne(T3, T4, return_false);
-
- // i++, while (i < len)
- __ AddImmediate(T0, T0, 1);
- __ AddImmediate(A0, A0, receiver_cid == kOneByteStringCid ? 1 : 2);
- __ AddImmediate(A2, A2, other_cid == kOneByteStringCid ? 1 : 2);
- __ BranchSignedLess(T0, T2, &loop);
-
- __ b(return_true);
-}
-
-
-// bool _substringMatches(int start, String other)
-// This intrinsic handles a OneByteString or TwoByteString receiver with a
-// OneByteString other.
-void Intrinsifier::StringBaseSubstringMatches(Assembler* assembler) {
- Label fall_through, return_true, return_false, try_two_byte;
- __ lw(A0, Address(SP, 2 * kWordSize)); // this
- __ lw(A1, Address(SP, 1 * kWordSize)); // start
- __ lw(A2, Address(SP, 0 * kWordSize)); // other
-
- __ andi(CMPRES1, A1, Immediate(kSmiTagMask));
- __ bne(CMPRES1, ZR, &fall_through); // 'start' is not a Smi.
-
- __ LoadClassId(CMPRES1, A2);
- __ BranchNotEqual(CMPRES1, Immediate(kOneByteStringCid), &fall_through);
-
- __ LoadClassId(CMPRES1, A0);
- __ BranchNotEqual(CMPRES1, Immediate(kOneByteStringCid), &try_two_byte);
-
- GenerateSubstringMatchesSpecialization(assembler, kOneByteStringCid,
- kOneByteStringCid, &return_true,
- &return_false);
-
- __ Bind(&try_two_byte);
- __ LoadClassId(CMPRES1, A0);
- __ BranchNotEqual(CMPRES1, Immediate(kTwoByteStringCid), &fall_through);
-
- GenerateSubstringMatchesSpecialization(assembler, kTwoByteStringCid,
- kOneByteStringCid, &return_true,
- &return_false);
-
- __ Bind(&return_true);
- __ LoadObject(V0, Bool::True());
- __ Ret();
-
- __ Bind(&return_false);
- __ LoadObject(V0, Bool::False());
- __ Ret();
-
- __ Bind(&fall_through);
-}
-
-
-void Intrinsifier::StringBaseCharAt(Assembler* assembler) {
- Label fall_through, try_two_byte_string;
-
- __ lw(T1, Address(SP, 0 * kWordSize)); // Index.
- __ lw(T0, Address(SP, 1 * kWordSize)); // String.
-
- // Checks.
- __ andi(CMPRES1, T1, Immediate(kSmiTagMask));
- __ bne(CMPRES1, ZR, &fall_through); // Index is not a Smi.
- __ lw(T2, FieldAddress(T0, String::length_offset())); // Range check.
- // Runtime throws exception.
- __ BranchUnsignedGreaterEqual(T1, T2, &fall_through);
- __ LoadClassId(CMPRES1, T0); // Class ID check.
- __ BranchNotEqual(CMPRES1, Immediate(kOneByteStringCid),
- &try_two_byte_string);
-
- // Grab byte and return.
- __ SmiUntag(T1);
- __ addu(T2, T0, T1);
- __ lbu(T2, FieldAddress(T2, OneByteString::data_offset()));
- __ BranchUnsignedGreaterEqual(
- T2, Immediate(Symbols::kNumberOfOneCharCodeSymbols), &fall_through);
- __ lw(V0, Address(THR, Thread::predefined_symbols_address_offset()));
- __ AddImmediate(V0, Symbols::kNullCharCodeSymbolOffset * kWordSize);
- __ sll(T2, T2, 2);
- __ addu(T2, T2, V0);
- __ Ret();
- __ delay_slot()->lw(V0, Address(T2));
-
- __ Bind(&try_two_byte_string);
- __ BranchNotEqual(CMPRES1, Immediate(kTwoByteStringCid), &fall_through);
- ASSERT(kSmiTagShift == 1);
- __ addu(T2, T0, T1);
- __ lhu(T2, FieldAddress(T2, TwoByteString::data_offset()));
- __ BranchUnsignedGreaterEqual(
- T2, Immediate(Symbols::kNumberOfOneCharCodeSymbols), &fall_through);
- __ lw(V0, Address(THR, Thread::predefined_symbols_address_offset()));
- __ AddImmediate(V0, Symbols::kNullCharCodeSymbolOffset * kWordSize);
- __ sll(T2, T2, 2);
- __ addu(T2, T2, V0);
- __ Ret();
- __ delay_slot()->lw(V0, Address(T2));
-
- __ Bind(&fall_through);
-}
-
-
-void Intrinsifier::StringBaseIsEmpty(Assembler* assembler) {
- Label is_true;
-
- __ lw(T0, Address(SP, 0 * kWordSize));
- __ lw(T0, FieldAddress(T0, String::length_offset()));
-
- __ beq(T0, ZR, &is_true);
- __ LoadObject(V0, Bool::False());
- __ Ret();
- __ Bind(&is_true);
- __ LoadObject(V0, Bool::True());
- __ Ret();
-}
-
-
-void Intrinsifier::OneByteString_getHashCode(Assembler* assembler) {
- Label no_hash;
-
- __ lw(T1, Address(SP, 0 * kWordSize));
- __ lw(V0, FieldAddress(T1, String::hash_offset()));
- __ beq(V0, ZR, &no_hash);
- __ Ret(); // Return if already computed.
- __ Bind(&no_hash);
-
- __ lw(T2, FieldAddress(T1, String::length_offset()));
-
- Label done;
- // If the string is empty, set the hash to 1, and return.
- __ BranchEqual(T2, Immediate(Smi::RawValue(0)), &done);
- __ delay_slot()->mov(V0, ZR);
-
- __ SmiUntag(T2);
- __ AddImmediate(T3, T1, OneByteString::data_offset() - kHeapObjectTag);
- __ addu(T4, T3, T2);
- // V0: Hash code, untagged integer.
- // T1: Instance of OneByteString.
- // T2: String length, untagged integer.
- // T3: String data start.
- // T4: String data end.
-
- Label loop;
- // Add to hash code: (hash_ is uint32)
- // hash_ += ch;
- // hash_ += hash_ << 10;
- // hash_ ^= hash_ >> 6;
- // Get one characters (ch).
- __ Bind(&loop);
- __ lbu(T5, Address(T3));
- // T5: ch.
- __ addiu(T3, T3, Immediate(1));
- __ addu(V0, V0, T5);
- __ sll(T6, V0, 10);
- __ addu(V0, V0, T6);
- __ srl(T6, V0, 6);
- __ bne(T3, T4, &loop);
- __ delay_slot()->xor_(V0, V0, T6);
-
- // Finalize.
- // hash_ += hash_ << 3;
- // hash_ ^= hash_ >> 11;
- // hash_ += hash_ << 15;
- __ sll(T6, V0, 3);
- __ addu(V0, V0, T6);
- __ srl(T6, V0, 11);
- __ xor_(V0, V0, T6);
- __ sll(T6, V0, 15);
- __ addu(V0, V0, T6);
- // hash_ = hash_ & ((static_cast<intptr_t>(1) << bits) - 1);
- __ LoadImmediate(T6, (static_cast<intptr_t>(1) << String::kHashBits) - 1);
- __ and_(V0, V0, T6);
- __ Bind(&done);
-
- __ LoadImmediate(T2, 1);
- __ movz(V0, T2, V0); // If V0 is 0, set to 1.
- __ SmiTag(V0);
-
- __ Ret();
- __ delay_slot()->sw(V0, FieldAddress(T1, String::hash_offset()));
-}
-
-
-// Allocates one-byte string of length 'end - start'. The content is not
-// initialized.
-// 'length-reg' (T2) contains tagged length.
-// Returns new string as tagged pointer in V0.
-static void TryAllocateOnebyteString(Assembler* assembler,
- Label* ok,
- Label* failure) {
- const Register length_reg = T2;
- NOT_IN_PRODUCT(__ MaybeTraceAllocation(kOneByteStringCid, V0, failure));
- __ mov(T6, length_reg); // Save the length register.
- // TODO(koda): Protect against negative length and overflow here.
- __ SmiUntag(length_reg);
- const intptr_t fixed_size_plus_alignment_padding =
- sizeof(RawString) + kObjectAlignment - 1;
- __ AddImmediate(length_reg, fixed_size_plus_alignment_padding);
- __ LoadImmediate(TMP, ~(kObjectAlignment - 1));
- __ and_(length_reg, length_reg, TMP);
-
- const intptr_t cid = kOneByteStringCid;
- Heap::Space space = Heap::kNew;
- __ lw(T3, Address(THR, Thread::heap_offset()));
- __ lw(V0, Address(T3, Heap::TopOffset(space)));
-
- // length_reg: allocation size.
- __ addu(T1, V0, length_reg);
- __ BranchUnsignedLess(T1, V0, failure); // Fail on unsigned overflow.
-
- // Check if the allocation fits into the remaining space.
- // V0: potential new object start.
- // T1: potential next object start.
- // T2: allocation size.
- // T3: heap.
- __ lw(T4, Address(T3, Heap::EndOffset(space)));
- __ BranchUnsignedGreaterEqual(T1, T4, failure);
-
- // Successfully allocated the object(s), now update top to point to
- // next object start and initialize the object.
- __ sw(T1, Address(T3, Heap::TopOffset(space)));
- __ AddImmediate(V0, kHeapObjectTag);
-
- NOT_IN_PRODUCT(__ UpdateAllocationStatsWithSize(cid, T2, T3, space));
-
- // Initialize the tags.
- // V0: new object start as a tagged pointer.
- // T1: new object end address.
- // T2: allocation size.
- {
- Label overflow, done;
- const intptr_t shift = RawObject::kSizeTagPos - kObjectAlignmentLog2;
-
- __ BranchUnsignedGreater(T2, Immediate(RawObject::SizeTag::kMaxSizeTag),
- &overflow);
- __ b(&done);
- __ delay_slot()->sll(T2, T2, shift);
- __ Bind(&overflow);
- __ mov(T2, ZR);
- __ Bind(&done);
-
- // Get the class index and insert it into the tags.
- // T2: size and bit tags.
- __ LoadImmediate(TMP, RawObject::ClassIdTag::encode(cid));
- __ or_(T2, T2, TMP);
- __ sw(T2, FieldAddress(V0, String::tags_offset())); // Store tags.
- }
-
- // Set the length field using the saved length (T6).
- __ StoreIntoObjectNoBarrier(V0, FieldAddress(V0, String::length_offset()),
- T6);
- // Clear hash.
- __ b(ok);
- __ delay_slot()->sw(ZR, FieldAddress(V0, String::hash_offset()));
-}
-
-
-// Arg0: OneByteString (receiver).
-// Arg1: Start index as Smi.
-// Arg2: End index as Smi.
-// The indexes must be valid.
-void Intrinsifier::OneByteString_substringUnchecked(Assembler* assembler) {
- const intptr_t kStringOffset = 2 * kWordSize;
- const intptr_t kStartIndexOffset = 1 * kWordSize;
- const intptr_t kEndIndexOffset = 0 * kWordSize;
- Label fall_through, ok;
-
- __ lw(T2, Address(SP, kEndIndexOffset));
- __ lw(TMP, Address(SP, kStartIndexOffset));
- __ or_(CMPRES1, T2, TMP);
- __ andi(CMPRES1, CMPRES1, Immediate(kSmiTagMask));
- __ bne(CMPRES1, ZR, &fall_through); // 'start', 'end' not Smi.
-
- __ subu(T2, T2, TMP);
- TryAllocateOnebyteString(assembler, &ok, &fall_through);
- __ Bind(&ok);
- // V0: new string as tagged pointer.
- // Copy string.
- __ lw(T3, Address(SP, kStringOffset));
- __ lw(T1, Address(SP, kStartIndexOffset));
- __ SmiUntag(T1);
- __ addu(T3, T3, T1);
- __ AddImmediate(T3, OneByteString::data_offset() - 1);
-
- // T3: Start address to copy from (untagged).
- // T1: Untagged start index.
- __ lw(T2, Address(SP, kEndIndexOffset));
- __ SmiUntag(T2);
- __ subu(T2, T2, T1);
-
- // T3: Start address to copy from (untagged).
- // T2: Untagged number of bytes to copy.
- // V0: Tagged result string.
- // T6: Pointer into T3.
- // T7: Pointer into T0.
- // T1: Scratch register.
- Label loop, done;
- __ beq(T2, ZR, &done);
- __ mov(T6, T3);
- __ mov(T7, V0);
-
- __ Bind(&loop);
- __ lbu(T1, Address(T6, 0));
- __ AddImmediate(T6, 1);
- __ addiu(T2, T2, Immediate(-1));
- __ sb(T1, FieldAddress(T7, OneByteString::data_offset()));
- __ bgtz(T2, &loop);
- __ delay_slot()->addiu(T7, T7, Immediate(1));
-
- __ Bind(&done);
- __ Ret();
- __ Bind(&fall_through);
-}
-
-
-void Intrinsifier::OneByteStringSetAt(Assembler* assembler) {
- __ lw(T2, Address(SP, 0 * kWordSize)); // Value.
- __ lw(T1, Address(SP, 1 * kWordSize)); // Index.
- __ lw(T0, Address(SP, 2 * kWordSize)); // OneByteString.
- __ SmiUntag(T1);
- __ SmiUntag(T2);
- __ addu(T3, T0, T1);
- __ Ret();
- __ delay_slot()->sb(T2, FieldAddress(T3, OneByteString::data_offset()));
-}
-
-
-void Intrinsifier::OneByteString_allocate(Assembler* assembler) {
- Label fall_through, ok;
-
- __ lw(T2, Address(SP, 0 * kWordSize)); // Length.
- TryAllocateOnebyteString(assembler, &ok, &fall_through);
-
- __ Bind(&ok);
- __ Ret();
-
- __ Bind(&fall_through);
-}
-
-
-// TODO(srdjan): Add combinations (one-byte/two-byte/external strings).
-static void StringEquality(Assembler* assembler, intptr_t string_cid) {
- Label fall_through, is_true, is_false, loop;
- __ lw(T0, Address(SP, 1 * kWordSize)); // This.
- __ lw(T1, Address(SP, 0 * kWordSize)); // Other.
-
- // Are identical?
- __ beq(T0, T1, &is_true);
-
- // Is other OneByteString?
- __ andi(CMPRES1, T1, Immediate(kSmiTagMask));
- __ beq(CMPRES1, ZR, &fall_through); // Other is Smi.
- __ LoadClassId(CMPRES1, T1); // Class ID check.
- __ BranchNotEqual(CMPRES1, Immediate(string_cid), &fall_through);
-
- // Have same length?
- __ lw(T2, FieldAddress(T0, String::length_offset()));
- __ lw(T3, FieldAddress(T1, String::length_offset()));
- __ bne(T2, T3, &is_false);
-
- // Check contents, no fall-through possible.
- ASSERT((string_cid == kOneByteStringCid) ||
- (string_cid == kTwoByteStringCid));
- __ SmiUntag(T2);
- __ Bind(&loop);
- __ AddImmediate(T2, -1);
- __ BranchSignedLess(T2, Immediate(0), &is_true);
- if (string_cid == kOneByteStringCid) {
- __ lbu(V0, FieldAddress(T0, OneByteString::data_offset()));
- __ lbu(V1, FieldAddress(T1, OneByteString::data_offset()));
- __ AddImmediate(T0, 1);
- __ AddImmediate(T1, 1);
- } else if (string_cid == kTwoByteStringCid) {
- __ lhu(V0, FieldAddress(T0, OneByteString::data_offset()));
- __ lhu(V1, FieldAddress(T1, OneByteString::data_offset()));
- __ AddImmediate(T0, 2);
- __ AddImmediate(T1, 2);
- } else {
- UNIMPLEMENTED();
- }
- __ bne(V0, V1, &is_false);
- __ b(&loop);
-
- __ Bind(&is_false);
- __ LoadObject(V0, Bool::False());
- __ Ret();
- __ Bind(&is_true);
- __ LoadObject(V0, Bool::True());
- __ Ret();
-
- __ Bind(&fall_through);
-}
-
-
-void Intrinsifier::OneByteString_equality(Assembler* assembler) {
- StringEquality(assembler, kOneByteStringCid);
-}
-
-
-void Intrinsifier::TwoByteString_equality(Assembler* assembler) {
- StringEquality(assembler, kTwoByteStringCid);
-}
-
-
-void Intrinsifier::IntrinsifyRegExpExecuteMatch(Assembler* assembler,
- bool sticky) {
- if (FLAG_interpret_irregexp) return;
-
- static const intptr_t kRegExpParamOffset = 2 * kWordSize;
- static const intptr_t kStringParamOffset = 1 * kWordSize;
- // start_index smi is located at 0.
-
- // Incoming registers:
- // T0: Function. (Will be reloaded with the specialized matcher function.)
- // S4: Arguments descriptor. (Will be preserved.)
- // S5: Unknown. (Must be GC safe on tail call.)
-
- // Load the specialized function pointer into T0. Leverage the fact the
- // string CIDs as well as stored function pointers are in sequence.
- __ lw(T1, Address(SP, kRegExpParamOffset));
- __ lw(T3, Address(SP, kStringParamOffset));
- __ LoadClassId(T2, T3);
- __ AddImmediate(T2, -kOneByteStringCid);
- __ sll(T2, T2, kWordSizeLog2);
- __ addu(T2, T2, T1);
- __ lw(T0,
- FieldAddress(T2, RegExp::function_offset(kOneByteStringCid, sticky)));
-
- // Registers are now set up for the lazy compile stub. It expects the function
- // in T0, the argument descriptor in S4, and IC-Data in S5.
- __ mov(S5, ZR);
-
- // Tail-call the function.
- __ lw(CODE_REG, FieldAddress(T0, Function::code_offset()));
- __ lw(T3, FieldAddress(T0, Function::entry_point_offset()));
- __ jr(T3);
-}
-
-
-// On stack: user tag (+0).
-void Intrinsifier::UserTag_makeCurrent(Assembler* assembler) {
- // T1: Isolate.
- __ LoadIsolate(T1);
- // V0: Current user tag.
- __ lw(V0, Address(T1, Isolate::current_tag_offset()));
- // T2: UserTag.
- __ lw(T2, Address(SP, +0 * kWordSize));
- // Set Isolate::current_tag_.
- __ sw(T2, Address(T1, Isolate::current_tag_offset()));
- // T2: UserTag's tag.
- __ lw(T2, FieldAddress(T2, UserTag::tag_offset()));
- // Set Isolate::user_tag_.
- __ sw(T2, Address(T1, Isolate::user_tag_offset()));
- __ Ret();
- __ delay_slot()->sw(T2, Address(T1, Isolate::user_tag_offset()));
-}
-
-
-void Intrinsifier::UserTag_defaultTag(Assembler* assembler) {
- __ LoadIsolate(V0);
- __ Ret();
- __ delay_slot()->lw(V0, Address(V0, Isolate::default_tag_offset()));
-}
-
-
-void Intrinsifier::Profiler_getCurrentTag(Assembler* assembler) {
- __ LoadIsolate(V0);
- __ Ret();
- __ delay_slot()->lw(V0, Address(V0, Isolate::current_tag_offset()));
-}
-
-
-void Intrinsifier::Timeline_isDartStreamEnabled(Assembler* assembler) {
- if (!FLAG_support_timeline) {
- __ LoadObject(V0, Bool::False());
- __ Ret();
- return;
- }
- // Load TimelineStream*.
- __ lw(V0, Address(THR, Thread::dart_stream_offset()));
- // Load uintptr_t from TimelineStream*.
- __ lw(T0, Address(V0, TimelineStream::enabled_offset()));
- __ LoadObject(V0, Bool::True());
- __ LoadObject(V1, Bool::False());
- __ Ret();
- __ delay_slot()->movz(V0, V1, T0); // V0 = (T0 == 0) ? V1 : V0.
-}
-
-
-void Intrinsifier::ClearAsyncThreadStackTrace(Assembler* assembler) {
- __ LoadObject(V0, Object::null_object());
- __ sw(V0, Address(THR, Thread::async_stack_trace_offset()));
- __ Ret();
-}
-
-
-void Intrinsifier::SetAsyncThreadStackTrace(Assembler* assembler) {
- __ lw(V0, Address(THR, Thread::async_stack_trace_offset()));
- __ LoadObject(V0, Object::null_object());
- __ Ret();
-}
-
-} // namespace dart
-
-#endif // defined TARGET_ARCH_MIPS
« no previous file with comments | « runtime/vm/intermediate_language_mips.cc ('k') | runtime/vm/malloc_hooks_mips.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698