| Index: runtime/vm/intrinsifier_mips.cc
|
| diff --git a/runtime/vm/intrinsifier_mips.cc b/runtime/vm/intrinsifier_mips.cc
|
| deleted file mode 100644
|
| index 1dca1af5810a6cbcd0fb7948334d4004b51cc3c8..0000000000000000000000000000000000000000
|
| --- a/runtime/vm/intrinsifier_mips.cc
|
| +++ /dev/null
|
| @@ -1,2444 +0,0 @@
|
| -// Copyright (c) 2013, the Dart project authors. Please see the AUTHORS file
|
| -// for details. All rights reserved. Use of this source code is governed by a
|
| -// BSD-style license that can be found in the LICENSE file.
|
| -
|
| -#include "vm/globals.h" // Needed here to get TARGET_ARCH_MIPS.
|
| -#if defined(TARGET_ARCH_MIPS)
|
| -
|
| -#include "vm/intrinsifier.h"
|
| -
|
| -#include "vm/assembler.h"
|
| -#include "vm/dart_entry.h"
|
| -#include "vm/flow_graph_compiler.h"
|
| -#include "vm/object.h"
|
| -#include "vm/object_store.h"
|
| -#include "vm/regexp_assembler.h"
|
| -#include "vm/symbols.h"
|
| -#include "vm/timeline.h"
|
| -
|
| -namespace dart {
|
| -
|
| -// When entering intrinsics code:
|
| -// S4: Arguments descriptor
|
| -// RA: Return address
|
| -// The S4 register can be destroyed only if there is no slow-path, i.e.
|
| -// if the intrinsified method always executes a return.
|
| -// The FP register should not be modified, because it is used by the profiler.
|
| -// The PP and THR registers (see constants_mips.h) must be preserved.
|
| -
|
| -#define __ assembler->
|
| -
|
| -
|
| -intptr_t Intrinsifier::ParameterSlotFromSp() {
|
| - return -1;
|
| -}
|
| -
|
| -
|
| -static bool IsABIPreservedRegister(Register reg) {
|
| - return ((1 << reg) & kAbiPreservedCpuRegs) != 0;
|
| -}
|
| -
|
| -void Intrinsifier::IntrinsicCallPrologue(Assembler* assembler) {
|
| - ASSERT(IsABIPreservedRegister(CODE_REG));
|
| - ASSERT(IsABIPreservedRegister(ARGS_DESC_REG));
|
| - ASSERT(IsABIPreservedRegister(CALLEE_SAVED_TEMP));
|
| - ASSERT(CALLEE_SAVED_TEMP != CODE_REG);
|
| - ASSERT(CALLEE_SAVED_TEMP != ARGS_DESC_REG);
|
| -
|
| - assembler->Comment("IntrinsicCallPrologue");
|
| - assembler->mov(CALLEE_SAVED_TEMP, LRREG);
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::IntrinsicCallEpilogue(Assembler* assembler) {
|
| - assembler->Comment("IntrinsicCallEpilogue");
|
| - assembler->mov(LRREG, CALLEE_SAVED_TEMP);
|
| -}
|
| -
|
| -
|
| -// Intrinsify only for Smi value and index. Non-smi values need a store buffer
|
| -// update. Array length is always a Smi.
|
| -void Intrinsifier::ObjectArraySetIndexed(Assembler* assembler) {
|
| - if (Isolate::Current()->type_checks()) {
|
| - return;
|
| - }
|
| -
|
| - Label fall_through;
|
| - __ lw(T1, Address(SP, 1 * kWordSize)); // Index.
|
| - __ andi(CMPRES1, T1, Immediate(kSmiTagMask));
|
| - // Index not Smi.
|
| - __ bne(CMPRES1, ZR, &fall_through);
|
| -
|
| - __ lw(T0, Address(SP, 2 * kWordSize)); // Array.
|
| - // Range check.
|
| - __ lw(T3, FieldAddress(T0, Array::length_offset())); // Array length.
|
| - // Runtime throws exception.
|
| - __ BranchUnsignedGreaterEqual(T1, T3, &fall_through);
|
| -
|
| - // Note that T1 is Smi, i.e, times 2.
|
| - ASSERT(kSmiTagShift == 1);
|
| - __ lw(T2, Address(SP, 0 * kWordSize)); // Value.
|
| - __ sll(T1, T1, 1); // T1 is Smi.
|
| - __ addu(T1, T0, T1);
|
| - __ StoreIntoObject(T0, FieldAddress(T1, Array::data_offset()), T2);
|
| - // Caller is responsible for preserving the value if necessary.
|
| - __ Ret();
|
| - __ Bind(&fall_through);
|
| -}
|
| -
|
| -
|
| -// Allocate a GrowableObjectArray using the backing array specified.
|
| -// On stack: type argument (+1), data (+0).
|
| -void Intrinsifier::GrowableArray_Allocate(Assembler* assembler) {
|
| - // The newly allocated object is returned in V0.
|
| - const intptr_t kTypeArgumentsOffset = 1 * kWordSize;
|
| - const intptr_t kArrayOffset = 0 * kWordSize;
|
| - Label fall_through;
|
| -
|
| - // Try allocating in new space.
|
| - const Class& cls = Class::Handle(
|
| - Isolate::Current()->object_store()->growable_object_array_class());
|
| - __ TryAllocate(cls, &fall_through, V0, T1);
|
| -
|
| - // Store backing array object in growable array object.
|
| - __ lw(T1, Address(SP, kArrayOffset)); // Data argument.
|
| - // V0 is new, no barrier needed.
|
| - __ StoreIntoObjectNoBarrier(
|
| - V0, FieldAddress(V0, GrowableObjectArray::data_offset()), T1);
|
| -
|
| - // V0: new growable array object start as a tagged pointer.
|
| - // Store the type argument field in the growable array object.
|
| - __ lw(T1, Address(SP, kTypeArgumentsOffset)); // Type argument.
|
| - __ StoreIntoObjectNoBarrier(
|
| - V0, FieldAddress(V0, GrowableObjectArray::type_arguments_offset()), T1);
|
| - // Set the length field in the growable array object to 0.
|
| - __ Ret(); // Returns the newly allocated object in V0.
|
| - __ delay_slot()->sw(ZR,
|
| - FieldAddress(V0, GrowableObjectArray::length_offset()));
|
| -
|
| - __ Bind(&fall_through);
|
| -}
|
| -
|
| -
|
| -// Add an element to growable array if it doesn't need to grow, otherwise
|
| -// call into regular code.
|
| -// On stack: growable array (+1), value (+0).
|
| -void Intrinsifier::GrowableArray_add(Assembler* assembler) {
|
| - // In checked mode we need to type-check the incoming argument.
|
| - if (Isolate::Current()->type_checks()) return;
|
| - Label fall_through;
|
| - __ lw(T0, Address(SP, 1 * kWordSize)); // Array.
|
| - __ lw(T1, FieldAddress(T0, GrowableObjectArray::length_offset()));
|
| - // T1: length.
|
| - __ lw(T2, FieldAddress(T0, GrowableObjectArray::data_offset()));
|
| - // T2: data.
|
| - __ lw(T3, FieldAddress(T2, Array::length_offset()));
|
| - // Compare length with capacity.
|
| - // T3: capacity.
|
| - __ beq(T1, T3, &fall_through); // Must grow data.
|
| - const int32_t value_one = reinterpret_cast<int32_t>(Smi::New(1));
|
| - // len = len + 1;
|
| - __ addiu(T3, T1, Immediate(value_one));
|
| - __ sw(T3, FieldAddress(T0, GrowableObjectArray::length_offset()));
|
| - __ lw(T0, Address(SP, 0 * kWordSize)); // Value.
|
| - ASSERT(kSmiTagShift == 1);
|
| - __ sll(T1, T1, 1);
|
| - __ addu(T1, T2, T1);
|
| - __ StoreIntoObject(T2, FieldAddress(T1, Array::data_offset()), T0);
|
| - __ LoadObject(T7, Object::null_object());
|
| - __ Ret();
|
| - __ delay_slot()->mov(V0, T7);
|
| - __ Bind(&fall_through);
|
| -}
|
| -
|
| -
|
| -#define TYPED_ARRAY_ALLOCATION(type_name, cid, max_len, scale_shift) \
|
| - Label fall_through; \
|
| - const intptr_t kArrayLengthStackOffset = 0 * kWordSize; \
|
| - NOT_IN_PRODUCT(__ MaybeTraceAllocation(cid, T2, &fall_through)); \
|
| - __ lw(T2, Address(SP, kArrayLengthStackOffset)); /* Array length. */ \
|
| - /* Check that length is a positive Smi. */ \
|
| - /* T2: requested array length argument. */ \
|
| - __ andi(CMPRES1, T2, Immediate(kSmiTagMask)); \
|
| - __ bne(CMPRES1, ZR, &fall_through); \
|
| - __ BranchSignedLess(T2, Immediate(0), &fall_through); \
|
| - __ SmiUntag(T2); \
|
| - /* Check for maximum allowed length. */ \
|
| - /* T2: untagged array length. */ \
|
| - __ BranchSignedGreater(T2, Immediate(max_len), &fall_through); \
|
| - __ sll(T2, T2, scale_shift); \
|
| - const intptr_t fixed_size_plus_alignment_padding = \
|
| - sizeof(Raw##type_name) + kObjectAlignment - 1; \
|
| - __ AddImmediate(T2, fixed_size_plus_alignment_padding); \
|
| - __ LoadImmediate(TMP, -kObjectAlignment); \
|
| - __ and_(T2, T2, TMP); \
|
| - Heap::Space space = Heap::kNew; \
|
| - __ lw(T3, Address(THR, Thread::heap_offset())); \
|
| - __ lw(V0, Address(T3, Heap::TopOffset(space))); \
|
| - \
|
| - /* T2: allocation size. */ \
|
| - __ addu(T1, V0, T2); \
|
| - /* Branch on unsigned overflow. */ \
|
| - __ BranchUnsignedLess(T1, V0, &fall_through); \
|
| - \
|
| - /* Check if the allocation fits into the remaining space. */ \
|
| - /* V0: potential new object start. */ \
|
| - /* T1: potential next object start. */ \
|
| - /* T2: allocation size. */ \
|
| - /* T3: heap. */ \
|
| - __ lw(T4, Address(T3, Heap::EndOffset(space))); \
|
| - __ BranchUnsignedGreaterEqual(T1, T4, &fall_through); \
|
| - \
|
| - /* Successfully allocated the object(s), now update top to point to */ \
|
| - /* next object start and initialize the object. */ \
|
| - __ sw(T1, Address(T3, Heap::TopOffset(space))); \
|
| - __ AddImmediate(V0, kHeapObjectTag); \
|
| - NOT_IN_PRODUCT(__ UpdateAllocationStatsWithSize(cid, T2, T4, space)); \
|
| - /* Initialize the tags. */ \
|
| - /* V0: new object start as a tagged pointer. */ \
|
| - /* T1: new object end address. */ \
|
| - /* T2: allocation size. */ \
|
| - { \
|
| - Label size_tag_overflow, done; \
|
| - __ BranchUnsignedGreater(T2, Immediate(RawObject::SizeTag::kMaxSizeTag), \
|
| - &size_tag_overflow); \
|
| - __ b(&done); \
|
| - __ delay_slot()->sll(T2, T2, \
|
| - RawObject::kSizeTagPos - kObjectAlignmentLog2); \
|
| - \
|
| - __ Bind(&size_tag_overflow); \
|
| - __ mov(T2, ZR); \
|
| - __ Bind(&done); \
|
| - \
|
| - /* Get the class index and insert it into the tags. */ \
|
| - __ LoadImmediate(TMP, RawObject::ClassIdTag::encode(cid)); \
|
| - __ or_(T2, T2, TMP); \
|
| - __ sw(T2, FieldAddress(V0, type_name::tags_offset())); /* Tags. */ \
|
| - } \
|
| - /* Set the length field. */ \
|
| - /* V0: new object start as a tagged pointer. */ \
|
| - /* T1: new object end address. */ \
|
| - __ lw(T2, Address(SP, kArrayLengthStackOffset)); /* Array length. */ \
|
| - __ StoreIntoObjectNoBarrier( \
|
| - V0, FieldAddress(V0, type_name::length_offset()), T2); \
|
| - /* Initialize all array elements to 0. */ \
|
| - /* V0: new object start as a tagged pointer. */ \
|
| - /* T1: new object end address. */ \
|
| - /* T2: iterator which initially points to the start of the variable */ \
|
| - /* data area to be initialized. */ \
|
| - __ AddImmediate(T2, V0, sizeof(Raw##type_name) - 1); \
|
| - Label done, init_loop; \
|
| - __ Bind(&init_loop); \
|
| - __ BranchUnsignedGreaterEqual(T2, T1, &done); \
|
| - __ sw(ZR, Address(T2, 0)); \
|
| - __ b(&init_loop); \
|
| - __ delay_slot()->addiu(T2, T2, Immediate(kWordSize)); \
|
| - __ Bind(&done); \
|
| - \
|
| - __ Ret(); \
|
| - __ Bind(&fall_through);
|
| -
|
| -
|
| -static int GetScaleFactor(intptr_t size) {
|
| - switch (size) {
|
| - case 1:
|
| - return 0;
|
| - case 2:
|
| - return 1;
|
| - case 4:
|
| - return 2;
|
| - case 8:
|
| - return 3;
|
| - case 16:
|
| - return 4;
|
| - }
|
| - UNREACHABLE();
|
| - return -1;
|
| -}
|
| -
|
| -
|
| -#define TYPED_DATA_ALLOCATOR(clazz) \
|
| - void Intrinsifier::TypedData_##clazz##_factory(Assembler* assembler) { \
|
| - intptr_t size = TypedData::ElementSizeInBytes(kTypedData##clazz##Cid); \
|
| - intptr_t max_len = TypedData::MaxElements(kTypedData##clazz##Cid); \
|
| - int shift = GetScaleFactor(size); \
|
| - TYPED_ARRAY_ALLOCATION(TypedData, kTypedData##clazz##Cid, max_len, shift); \
|
| - }
|
| -CLASS_LIST_TYPED_DATA(TYPED_DATA_ALLOCATOR)
|
| -#undef TYPED_DATA_ALLOCATOR
|
| -
|
| -
|
| -// Loads args from stack into T0 and T1
|
| -// Tests if they are smis, jumps to label not_smi if not.
|
| -static void TestBothArgumentsSmis(Assembler* assembler, Label* not_smi) {
|
| - __ lw(T0, Address(SP, 0 * kWordSize));
|
| - __ lw(T1, Address(SP, 1 * kWordSize));
|
| - __ or_(CMPRES1, T0, T1);
|
| - __ andi(CMPRES1, CMPRES1, Immediate(kSmiTagMask));
|
| - __ bne(CMPRES1, ZR, not_smi);
|
| - return;
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::Integer_addFromInteger(Assembler* assembler) {
|
| - Label fall_through;
|
| -
|
| - TestBothArgumentsSmis(assembler, &fall_through); // Checks two Smis.
|
| - __ AdduDetectOverflow(V0, T0, T1, CMPRES1); // Add.
|
| - __ bltz(CMPRES1, &fall_through); // Fall through on overflow.
|
| - __ Ret(); // Nothing in branch delay slot.
|
| - __ Bind(&fall_through);
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::Integer_add(Assembler* assembler) {
|
| - Integer_addFromInteger(assembler);
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::Integer_subFromInteger(Assembler* assembler) {
|
| - Label fall_through;
|
| -
|
| - TestBothArgumentsSmis(assembler, &fall_through);
|
| - __ SubuDetectOverflow(V0, T0, T1, CMPRES1); // Subtract.
|
| - __ bltz(CMPRES1, &fall_through); // Fall through on overflow.
|
| - __ Ret();
|
| - __ Bind(&fall_through);
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::Integer_sub(Assembler* assembler) {
|
| - Label fall_through;
|
| -
|
| - TestBothArgumentsSmis(assembler, &fall_through);
|
| - __ SubuDetectOverflow(V0, T1, T0, CMPRES1); // Subtract.
|
| - __ bltz(CMPRES1, &fall_through); // Fall through on overflow.
|
| - __ Ret(); // Nothing in branch delay slot.
|
| - __ Bind(&fall_through);
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::Integer_mulFromInteger(Assembler* assembler) {
|
| - Label fall_through;
|
| -
|
| - TestBothArgumentsSmis(assembler, &fall_through); // checks two smis
|
| - __ SmiUntag(T0); // untags T0. only want result shifted by one
|
| -
|
| - __ mult(T0, T1); // HI:LO <- T0 * T1.
|
| - __ mflo(V0); // V0 <- LO.
|
| - __ mfhi(T2); // T2 <- HI.
|
| - __ sra(T3, V0, 31); // T3 <- V0 >> 31.
|
| - __ bne(T2, T3, &fall_through); // Fall through on overflow.
|
| - __ Ret();
|
| - __ Bind(&fall_through);
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::Integer_mul(Assembler* assembler) {
|
| - Integer_mulFromInteger(assembler);
|
| -}
|
| -
|
| -
|
| -// Optimizations:
|
| -// - result is 0 if:
|
| -// - left is 0
|
| -// - left equals right
|
| -// - result is left if
|
| -// - left > 0 && left < right
|
| -// T1: Tagged left (dividend).
|
| -// T0: Tagged right (divisor).
|
| -// Returns:
|
| -// V0: Untagged fallthrough result (remainder to be adjusted), or
|
| -// V0: Tagged return result (remainder).
|
| -static void EmitRemainderOperation(Assembler* assembler) {
|
| - Label return_zero, modulo;
|
| - const Register left = T1;
|
| - const Register right = T0;
|
| - const Register result = V0;
|
| -
|
| - __ beq(left, ZR, &return_zero);
|
| - __ beq(left, right, &return_zero);
|
| -
|
| - __ bltz(left, &modulo);
|
| - // left is positive.
|
| - __ BranchSignedGreaterEqual(left, right, &modulo);
|
| - // left is less than right. return left.
|
| - __ Ret();
|
| - __ delay_slot()->mov(result, left);
|
| -
|
| - __ Bind(&return_zero);
|
| - __ Ret();
|
| - __ delay_slot()->mov(result, ZR);
|
| -
|
| - __ Bind(&modulo);
|
| - __ SmiUntag(right);
|
| - __ SmiUntag(left);
|
| - __ div(left, right); // Divide, remainder goes in HI.
|
| - __ mfhi(result); // result <- HI.
|
| - return;
|
| -}
|
| -
|
| -
|
| -// Implementation:
|
| -// res = left % right;
|
| -// if (res < 0) {
|
| -// if (right < 0) {
|
| -// res = res - right;
|
| -// } else {
|
| -// res = res + right;
|
| -// }
|
| -// }
|
| -void Intrinsifier::Integer_moduloFromInteger(Assembler* assembler) {
|
| - Label fall_through, subtract;
|
| - // Test arguments for smi.
|
| - __ lw(T1, Address(SP, 0 * kWordSize));
|
| - __ lw(T0, Address(SP, 1 * kWordSize));
|
| - __ or_(CMPRES1, T0, T1);
|
| - __ andi(CMPRES1, CMPRES1, Immediate(kSmiTagMask));
|
| - __ bne(CMPRES1, ZR, &fall_through);
|
| - // T1: Tagged left (dividend).
|
| - // T0: Tagged right (divisor).
|
| - // Check if modulo by zero -> exception thrown in main function.
|
| - __ beq(T0, ZR, &fall_through);
|
| - EmitRemainderOperation(assembler);
|
| - // Untagged right in T0. Untagged remainder result in V0.
|
| -
|
| - Label done;
|
| - __ bgez(V0, &done);
|
| - __ bltz(T0, &subtract);
|
| - __ addu(V0, V0, T0);
|
| - __ Ret();
|
| - __ delay_slot()->SmiTag(V0);
|
| -
|
| - __ Bind(&subtract);
|
| - __ subu(V0, V0, T0);
|
| - __ Ret();
|
| - __ delay_slot()->SmiTag(V0);
|
| -
|
| - __ Bind(&done);
|
| - __ Ret();
|
| - __ delay_slot()->SmiTag(V0);
|
| -
|
| - __ Bind(&fall_through);
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::Integer_truncDivide(Assembler* assembler) {
|
| - Label fall_through;
|
| -
|
| - TestBothArgumentsSmis(assembler, &fall_through);
|
| - __ beq(T0, ZR, &fall_through); // If b is 0, fall through.
|
| -
|
| - __ SmiUntag(T0);
|
| - __ SmiUntag(T1);
|
| - __ div(T1, T0); // LO <- T1 / T0
|
| - __ mflo(V0); // V0 <- LO
|
| - // Check the corner case of dividing the 'MIN_SMI' with -1, in which case we
|
| - // cannot tag the result.
|
| - __ BranchEqual(V0, Immediate(0x40000000), &fall_through);
|
| - __ Ret();
|
| - __ delay_slot()->SmiTag(V0);
|
| - __ Bind(&fall_through);
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::Integer_negate(Assembler* assembler) {
|
| - Label fall_through;
|
| -
|
| - __ lw(T0, Address(SP, +0 * kWordSize)); // Grabs first argument.
|
| - __ andi(CMPRES1, T0, Immediate(kSmiTagMask)); // Test for Smi.
|
| - __ bne(CMPRES1, ZR, &fall_through); // Fall through if not a Smi.
|
| - __ SubuDetectOverflow(V0, ZR, T0, CMPRES1);
|
| - __ bltz(CMPRES1, &fall_through); // There was overflow.
|
| - __ Ret();
|
| - __ Bind(&fall_through);
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::Integer_bitAndFromInteger(Assembler* assembler) {
|
| - Label fall_through;
|
| -
|
| - TestBothArgumentsSmis(assembler, &fall_through); // Checks two smis.
|
| - __ Ret();
|
| - __ delay_slot()->and_(V0, T0, T1);
|
| - __ Bind(&fall_through);
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::Integer_bitAnd(Assembler* assembler) {
|
| - Integer_bitAndFromInteger(assembler);
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::Integer_bitOrFromInteger(Assembler* assembler) {
|
| - Label fall_through;
|
| -
|
| - TestBothArgumentsSmis(assembler, &fall_through); // Checks two smis.
|
| - __ Ret();
|
| - __ delay_slot()->or_(V0, T0, T1);
|
| - __ Bind(&fall_through);
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::Integer_bitOr(Assembler* assembler) {
|
| - Integer_bitOrFromInteger(assembler);
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::Integer_bitXorFromInteger(Assembler* assembler) {
|
| - Label fall_through;
|
| -
|
| - TestBothArgumentsSmis(assembler, &fall_through); // Checks two smis.
|
| - __ Ret();
|
| - __ delay_slot()->xor_(V0, T0, T1);
|
| - __ Bind(&fall_through);
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::Integer_bitXor(Assembler* assembler) {
|
| - Integer_bitXorFromInteger(assembler);
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::Integer_shl(Assembler* assembler) {
|
| - ASSERT(kSmiTagShift == 1);
|
| - ASSERT(kSmiTag == 0);
|
| - Label fall_through, overflow;
|
| -
|
| - TestBothArgumentsSmis(assembler, &fall_through);
|
| - __ BranchUnsignedGreater(T0, Immediate(Smi::RawValue(Smi::kBits)),
|
| - &fall_through);
|
| - __ SmiUntag(T0);
|
| -
|
| - // Check for overflow by shifting left and shifting back arithmetically.
|
| - // If the result is different from the original, there was overflow.
|
| - __ sllv(TMP, T1, T0);
|
| - __ srav(CMPRES1, TMP, T0);
|
| - __ bne(CMPRES1, T1, &overflow);
|
| -
|
| - // No overflow, result in V0.
|
| - __ Ret();
|
| - __ delay_slot()->sllv(V0, T1, T0);
|
| -
|
| - __ Bind(&overflow);
|
| - // Arguments are Smi but the shift produced an overflow to Mint.
|
| - __ bltz(T1, &fall_through);
|
| - __ SmiUntag(T1);
|
| -
|
| - // Pull off high bits that will be shifted off of T1 by making a mask
|
| - // ((1 << T0) - 1), shifting it to the right, masking T1, then shifting back.
|
| - // high bits = (((1 << T0) - 1) << (32 - T0)) & T1) >> (32 - T0)
|
| - // lo bits = T1 << T0
|
| - __ LoadImmediate(T3, 1);
|
| - __ sllv(T3, T3, T0); // T3 <- T3 << T0
|
| - __ addiu(T3, T3, Immediate(-1)); // T3 <- T3 - 1
|
| - __ subu(T4, ZR, T0); // T4 <- -T0
|
| - __ addiu(T4, T4, Immediate(32)); // T4 <- 32 - T0
|
| - __ sllv(T3, T3, T4); // T3 <- T3 << T4
|
| - __ and_(T3, T3, T1); // T3 <- T3 & T1
|
| - __ srlv(T3, T3, T4); // T3 <- T3 >> T4
|
| - // Now T3 has the bits that fall off of T1 on a left shift.
|
| - __ sllv(T0, T1, T0); // T0 gets low bits.
|
| -
|
| - const Class& mint_class =
|
| - Class::Handle(Isolate::Current()->object_store()->mint_class());
|
| - __ TryAllocate(mint_class, &fall_through, V0, T1);
|
| -
|
| - __ sw(T0, FieldAddress(V0, Mint::value_offset()));
|
| - __ Ret();
|
| - __ delay_slot()->sw(T3, FieldAddress(V0, Mint::value_offset() + kWordSize));
|
| - __ Bind(&fall_through);
|
| -}
|
| -
|
| -
|
| -static void Get64SmiOrMint(Assembler* assembler,
|
| - Register res_hi,
|
| - Register res_lo,
|
| - Register reg,
|
| - Label* not_smi_or_mint) {
|
| - Label not_smi, done;
|
| - __ andi(CMPRES1, reg, Immediate(kSmiTagMask));
|
| - __ bne(CMPRES1, ZR, ¬_smi);
|
| - __ SmiUntag(reg);
|
| -
|
| - // Sign extend to 64 bit
|
| - __ mov(res_lo, reg);
|
| - __ b(&done);
|
| - __ delay_slot()->sra(res_hi, reg, 31);
|
| -
|
| - __ Bind(¬_smi);
|
| - __ LoadClassId(CMPRES1, reg);
|
| - __ BranchNotEqual(CMPRES1, Immediate(kMintCid), not_smi_or_mint);
|
| -
|
| - // Mint.
|
| - __ lw(res_lo, FieldAddress(reg, Mint::value_offset()));
|
| - __ lw(res_hi, FieldAddress(reg, Mint::value_offset() + kWordSize));
|
| - __ Bind(&done);
|
| - return;
|
| -}
|
| -
|
| -
|
| -static void CompareIntegers(Assembler* assembler, RelationOperator rel_op) {
|
| - Label try_mint_smi, is_true, is_false, drop_two_fall_through, fall_through;
|
| - TestBothArgumentsSmis(assembler, &try_mint_smi);
|
| - // T0 contains the right argument. T1 contains left argument
|
| -
|
| - switch (rel_op) {
|
| - case LT:
|
| - __ BranchSignedLess(T1, T0, &is_true);
|
| - break;
|
| - case LE:
|
| - __ BranchSignedLessEqual(T1, T0, &is_true);
|
| - break;
|
| - case GT:
|
| - __ BranchSignedGreater(T1, T0, &is_true);
|
| - break;
|
| - case GE:
|
| - __ BranchSignedGreaterEqual(T1, T0, &is_true);
|
| - break;
|
| - default:
|
| - UNREACHABLE();
|
| - break;
|
| - }
|
| -
|
| - __ Bind(&is_false);
|
| - __ LoadObject(V0, Bool::False());
|
| - __ Ret();
|
| - __ Bind(&is_true);
|
| - __ LoadObject(V0, Bool::True());
|
| - __ Ret();
|
| -
|
| - __ Bind(&try_mint_smi);
|
| - // Get left as 64 bit integer.
|
| - Get64SmiOrMint(assembler, T3, T2, T1, &fall_through);
|
| - // Get right as 64 bit integer.
|
| - Get64SmiOrMint(assembler, T5, T4, T0, &fall_through);
|
| - // T3: left high.
|
| - // T2: left low.
|
| - // T5: right high.
|
| - // T4: right low.
|
| -
|
| - // 64-bit comparison
|
| - switch (rel_op) {
|
| - case LT:
|
| - case LE: {
|
| - // Compare left hi, right high.
|
| - __ BranchSignedGreater(T3, T5, &is_false);
|
| - __ BranchSignedLess(T3, T5, &is_true);
|
| - // Compare left lo, right lo.
|
| - if (rel_op == LT) {
|
| - __ BranchUnsignedGreaterEqual(T2, T4, &is_false);
|
| - } else {
|
| - __ BranchUnsignedGreater(T2, T4, &is_false);
|
| - }
|
| - break;
|
| - }
|
| - case GT:
|
| - case GE: {
|
| - // Compare left hi, right high.
|
| - __ BranchSignedLess(T3, T5, &is_false);
|
| - __ BranchSignedGreater(T3, T5, &is_true);
|
| - // Compare left lo, right lo.
|
| - if (rel_op == GT) {
|
| - __ BranchUnsignedLessEqual(T2, T4, &is_false);
|
| - } else {
|
| - __ BranchUnsignedLess(T2, T4, &is_false);
|
| - }
|
| - break;
|
| - }
|
| - default:
|
| - UNREACHABLE();
|
| - break;
|
| - }
|
| - // Else is true.
|
| - __ b(&is_true);
|
| -
|
| - __ Bind(&fall_through);
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::Integer_greaterThanFromInt(Assembler* assembler) {
|
| - CompareIntegers(assembler, LT);
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::Integer_lessThan(Assembler* assembler) {
|
| - CompareIntegers(assembler, LT);
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::Integer_greaterThan(Assembler* assembler) {
|
| - CompareIntegers(assembler, GT);
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::Integer_lessEqualThan(Assembler* assembler) {
|
| - CompareIntegers(assembler, LE);
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::Integer_greaterEqualThan(Assembler* assembler) {
|
| - CompareIntegers(assembler, GE);
|
| -}
|
| -
|
| -
|
| -// This is called for Smi, Mint and Bigint receivers. The right argument
|
| -// can be Smi, Mint, Bigint or double.
|
| -void Intrinsifier::Integer_equalToInteger(Assembler* assembler) {
|
| - Label fall_through, true_label, check_for_mint;
|
| - // For integer receiver '===' check first.
|
| - __ lw(T0, Address(SP, 0 * kWordSize));
|
| - __ lw(T1, Address(SP, 1 * kWordSize));
|
| - __ beq(T0, T1, &true_label);
|
| -
|
| - __ or_(T2, T0, T1);
|
| - __ andi(CMPRES1, T2, Immediate(kSmiTagMask));
|
| - // If T0 or T1 is not a smi do Mint checks.
|
| - __ bne(CMPRES1, ZR, &check_for_mint);
|
| -
|
| - // Both arguments are smi, '===' is good enough.
|
| - __ LoadObject(V0, Bool::False());
|
| - __ Ret();
|
| - __ Bind(&true_label);
|
| - __ LoadObject(V0, Bool::True());
|
| - __ Ret();
|
| -
|
| - // At least one of the arguments was not Smi.
|
| - Label receiver_not_smi;
|
| - __ Bind(&check_for_mint);
|
| -
|
| - __ andi(CMPRES1, T1, Immediate(kSmiTagMask));
|
| - __ bne(CMPRES1, ZR, &receiver_not_smi); // Check receiver.
|
| -
|
| - // Left (receiver) is Smi, return false if right is not Double.
|
| - // Note that an instance of Mint or Bigint never contains a value that can be
|
| - // represented by Smi.
|
| -
|
| - __ LoadClassId(CMPRES1, T0);
|
| - __ BranchEqual(CMPRES1, Immediate(kDoubleCid), &fall_through);
|
| - __ LoadObject(V0, Bool::False()); // Smi == Mint -> false.
|
| - __ Ret();
|
| -
|
| - __ Bind(&receiver_not_smi);
|
| - // T1:: receiver.
|
| -
|
| - __ LoadClassId(CMPRES1, T1);
|
| - __ BranchNotEqual(CMPRES1, Immediate(kMintCid), &fall_through);
|
| - // Receiver is Mint, return false if right is Smi.
|
| - __ andi(CMPRES1, T0, Immediate(kSmiTagMask));
|
| - __ bne(CMPRES1, ZR, &fall_through);
|
| - __ LoadObject(V0, Bool::False());
|
| - __ Ret();
|
| - // TODO(srdjan): Implement Mint == Mint comparison.
|
| -
|
| - __ Bind(&fall_through);
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::Integer_equal(Assembler* assembler) {
|
| - Integer_equalToInteger(assembler);
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::Integer_sar(Assembler* assembler) {
|
| - Label fall_through;
|
| -
|
| - TestBothArgumentsSmis(assembler, &fall_through);
|
| - // Shift amount in T0. Value to shift in T1.
|
| -
|
| - __ SmiUntag(T0);
|
| - __ bltz(T0, &fall_through);
|
| -
|
| - __ LoadImmediate(T2, 0x1F);
|
| - __ slt(CMPRES1, T2, T0); // CMPRES1 <- 0x1F < T0 ? 1 : 0
|
| - __ movn(T0, T2, CMPRES1); // T0 <- 0x1F < T0 ? 0x1F : T0
|
| -
|
| - __ SmiUntag(T1);
|
| - __ srav(V0, T1, T0);
|
| - __ Ret();
|
| - __ delay_slot()->SmiTag(V0);
|
| - __ Bind(&fall_through);
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::Smi_bitNegate(Assembler* assembler) {
|
| - __ lw(T0, Address(SP, 0 * kWordSize));
|
| - __ nor(V0, T0, ZR);
|
| - __ Ret();
|
| - __ delay_slot()->addiu(V0, V0, Immediate(-1)); // Remove inverted smi-tag.
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::Smi_bitLength(Assembler* assembler) {
|
| - __ lw(V0, Address(SP, 0 * kWordSize));
|
| - __ SmiUntag(V0);
|
| - // XOR with sign bit to complement bits if value is negative.
|
| - __ sra(T0, V0, 31);
|
| - __ xor_(V0, V0, T0);
|
| - __ clz(V0, V0);
|
| - __ LoadImmediate(T0, 32);
|
| - __ subu(V0, T0, V0);
|
| - __ Ret();
|
| - __ delay_slot()->SmiTag(V0);
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::Smi_bitAndFromSmi(Assembler* assembler) {
|
| - Integer_bitAndFromInteger(assembler);
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::Bigint_lsh(Assembler* assembler) {
|
| - // static void _lsh(Uint32List x_digits, int x_used, int n,
|
| - // Uint32List r_digits)
|
| -
|
| - // T2 = x_used, T3 = x_digits, x_used > 0, x_used is Smi.
|
| - __ lw(T2, Address(SP, 2 * kWordSize));
|
| - __ lw(T3, Address(SP, 3 * kWordSize));
|
| - // T4 = r_digits, T5 = n, n is Smi, n % _DIGIT_BITS != 0.
|
| - __ lw(T4, Address(SP, 0 * kWordSize));
|
| - __ lw(T5, Address(SP, 1 * kWordSize));
|
| - __ SmiUntag(T5);
|
| - // T0 = n ~/ _DIGIT_BITS
|
| - __ sra(T0, T5, 5);
|
| - // T6 = &x_digits[0]
|
| - __ addiu(T6, T3, Immediate(TypedData::data_offset() - kHeapObjectTag));
|
| - // V0 = &x_digits[x_used]
|
| - __ sll(T2, T2, 1);
|
| - __ addu(V0, T6, T2);
|
| - // V1 = &r_digits[1]
|
| - __ addiu(V1, T4, Immediate(TypedData::data_offset() - kHeapObjectTag +
|
| - Bigint::kBytesPerDigit));
|
| - // V1 = &r_digits[x_used + n ~/ _DIGIT_BITS + 1]
|
| - __ addu(V1, V1, T2);
|
| - __ sll(T1, T0, 2);
|
| - __ addu(V1, V1, T1);
|
| - // T3 = n % _DIGIT_BITS
|
| - __ andi(T3, T5, Immediate(31));
|
| - // T2 = 32 - T3
|
| - __ subu(T2, ZR, T3);
|
| - __ addiu(T2, T2, Immediate(32));
|
| - __ mov(T1, ZR);
|
| - Label loop;
|
| - __ Bind(&loop);
|
| - __ addiu(V0, V0, Immediate(-Bigint::kBytesPerDigit));
|
| - __ lw(T0, Address(V0, 0));
|
| - __ srlv(AT, T0, T2);
|
| - __ or_(T1, T1, AT);
|
| - __ addiu(V1, V1, Immediate(-Bigint::kBytesPerDigit));
|
| - __ sw(T1, Address(V1, 0));
|
| - __ bne(V0, T6, &loop);
|
| - __ delay_slot()->sllv(T1, T0, T3);
|
| - __ sw(T1, Address(V1, -Bigint::kBytesPerDigit));
|
| - // Returning Object::null() is not required, since this method is private.
|
| - __ Ret();
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::Bigint_rsh(Assembler* assembler) {
|
| - // static void _lsh(Uint32List x_digits, int x_used, int n,
|
| - // Uint32List r_digits)
|
| -
|
| - // T2 = x_used, T3 = x_digits, x_used > 0, x_used is Smi.
|
| - __ lw(T2, Address(SP, 2 * kWordSize));
|
| - __ lw(T3, Address(SP, 3 * kWordSize));
|
| - // T4 = r_digits, T5 = n, n is Smi, n % _DIGIT_BITS != 0.
|
| - __ lw(T4, Address(SP, 0 * kWordSize));
|
| - __ lw(T5, Address(SP, 1 * kWordSize));
|
| - __ SmiUntag(T5);
|
| - // T0 = n ~/ _DIGIT_BITS
|
| - __ sra(T0, T5, 5);
|
| - // V1 = &r_digits[0]
|
| - __ addiu(V1, T4, Immediate(TypedData::data_offset() - kHeapObjectTag));
|
| - // V0 = &x_digits[n ~/ _DIGIT_BITS]
|
| - __ addiu(V0, T3, Immediate(TypedData::data_offset() - kHeapObjectTag));
|
| - __ sll(T1, T0, 2);
|
| - __ addu(V0, V0, T1);
|
| - // T6 = &r_digits[x_used - n ~/ _DIGIT_BITS - 1]
|
| - __ sll(T2, T2, 1);
|
| - __ addu(T6, V1, T2);
|
| - __ subu(T6, T6, T1);
|
| - __ addiu(T6, T6, Immediate(-4));
|
| - // T3 = n % _DIGIT_BITS
|
| - __ andi(T3, T5, Immediate(31));
|
| - // T2 = 32 - T3
|
| - __ subu(T2, ZR, T3);
|
| - __ addiu(T2, T2, Immediate(32));
|
| - // T1 = x_digits[n ~/ _DIGIT_BITS] >> (n % _DIGIT_BITS)
|
| - __ lw(T1, Address(V0, 0));
|
| - __ addiu(V0, V0, Immediate(Bigint::kBytesPerDigit));
|
| - Label loop_exit;
|
| - __ beq(V1, T6, &loop_exit);
|
| - __ delay_slot()->srlv(T1, T1, T3);
|
| - Label loop;
|
| - __ Bind(&loop);
|
| - __ lw(T0, Address(V0, 0));
|
| - __ addiu(V0, V0, Immediate(Bigint::kBytesPerDigit));
|
| - __ sllv(AT, T0, T2);
|
| - __ or_(T1, T1, AT);
|
| - __ sw(T1, Address(V1, 0));
|
| - __ addiu(V1, V1, Immediate(Bigint::kBytesPerDigit));
|
| - __ bne(V1, T6, &loop);
|
| - __ delay_slot()->srlv(T1, T0, T3);
|
| - __ Bind(&loop_exit);
|
| - __ sw(T1, Address(V1, 0));
|
| - // Returning Object::null() is not required, since this method is private.
|
| - __ Ret();
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::Bigint_absAdd(Assembler* assembler) {
|
| - // static void _absAdd(Uint32List digits, int used,
|
| - // Uint32List a_digits, int a_used,
|
| - // Uint32List r_digits)
|
| -
|
| - // T2 = used, T3 = digits
|
| - __ lw(T2, Address(SP, 3 * kWordSize));
|
| - __ lw(T3, Address(SP, 4 * kWordSize));
|
| - // T3 = &digits[0]
|
| - __ addiu(T3, T3, Immediate(TypedData::data_offset() - kHeapObjectTag));
|
| -
|
| - // T4 = a_used, T5 = a_digits
|
| - __ lw(T4, Address(SP, 1 * kWordSize));
|
| - __ lw(T5, Address(SP, 2 * kWordSize));
|
| - // T5 = &a_digits[0]
|
| - __ addiu(T5, T5, Immediate(TypedData::data_offset() - kHeapObjectTag));
|
| -
|
| - // T6 = r_digits
|
| - __ lw(T6, Address(SP, 0 * kWordSize));
|
| - // T6 = &r_digits[0]
|
| - __ addiu(T6, T6, Immediate(TypedData::data_offset() - kHeapObjectTag));
|
| -
|
| - // V0 = &digits[a_used >> 1], a_used is Smi.
|
| - __ sll(V0, T4, 1);
|
| - __ addu(V0, V0, T3);
|
| -
|
| - // V1 = &digits[used >> 1], used is Smi.
|
| - __ sll(V1, T2, 1);
|
| - __ addu(V1, V1, T3);
|
| -
|
| - // T2 = carry in = 0.
|
| - __ mov(T2, ZR);
|
| - Label add_loop;
|
| - __ Bind(&add_loop);
|
| - // Loop a_used times, a_used > 0.
|
| - __ lw(T0, Address(T3, 0)); // T0 = x.
|
| - __ addiu(T3, T3, Immediate(Bigint::kBytesPerDigit));
|
| - __ lw(T1, Address(T5, 0)); // T1 = y.
|
| - __ addiu(T5, T5, Immediate(Bigint::kBytesPerDigit));
|
| - __ addu(T1, T0, T1); // T1 = x + y.
|
| - __ sltu(T4, T1, T0); // T4 = carry out of x + y.
|
| - __ addu(T0, T1, T2); // T0 = x + y + carry in.
|
| - __ sltu(T2, T0, T1); // T2 = carry out of (x + y) + carry in.
|
| - __ or_(T2, T2, T4); // T2 = carry out of x + y + carry in.
|
| - __ sw(T0, Address(T6, 0));
|
| - __ bne(T3, V0, &add_loop);
|
| - __ delay_slot()->addiu(T6, T6, Immediate(Bigint::kBytesPerDigit));
|
| -
|
| - Label last_carry;
|
| - __ beq(T3, V1, &last_carry);
|
| -
|
| - Label carry_loop;
|
| - __ Bind(&carry_loop);
|
| - // Loop used - a_used times, used - a_used > 0.
|
| - __ lw(T0, Address(T3, 0)); // T0 = x.
|
| - __ addiu(T3, T3, Immediate(Bigint::kBytesPerDigit));
|
| - __ addu(T1, T0, T2); // T1 = x + carry in.
|
| - __ sltu(T2, T1, T0); // T2 = carry out of x + carry in.
|
| - __ sw(T1, Address(T6, 0));
|
| - __ bne(T3, V1, &carry_loop);
|
| - __ delay_slot()->addiu(T6, T6, Immediate(Bigint::kBytesPerDigit));
|
| -
|
| - __ Bind(&last_carry);
|
| - __ sw(T2, Address(T6, 0));
|
| -
|
| - // Returning Object::null() is not required, since this method is private.
|
| - __ Ret();
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::Bigint_absSub(Assembler* assembler) {
|
| - // static void _absSub(Uint32List digits, int used,
|
| - // Uint32List a_digits, int a_used,
|
| - // Uint32List r_digits)
|
| -
|
| - // T2 = used, T3 = digits
|
| - __ lw(T2, Address(SP, 3 * kWordSize));
|
| - __ lw(T3, Address(SP, 4 * kWordSize));
|
| - // T3 = &digits[0]
|
| - __ addiu(T3, T3, Immediate(TypedData::data_offset() - kHeapObjectTag));
|
| -
|
| - // T4 = a_used, T5 = a_digits
|
| - __ lw(T4, Address(SP, 1 * kWordSize));
|
| - __ lw(T5, Address(SP, 2 * kWordSize));
|
| - // T5 = &a_digits[0]
|
| - __ addiu(T5, T5, Immediate(TypedData::data_offset() - kHeapObjectTag));
|
| -
|
| - // T6 = r_digits
|
| - __ lw(T6, Address(SP, 0 * kWordSize));
|
| - // T6 = &r_digits[0]
|
| - __ addiu(T6, T6, Immediate(TypedData::data_offset() - kHeapObjectTag));
|
| -
|
| - // V0 = &digits[a_used >> 1], a_used is Smi.
|
| - __ sll(V0, T4, 1);
|
| - __ addu(V0, V0, T3);
|
| -
|
| - // V1 = &digits[used >> 1], used is Smi.
|
| - __ sll(V1, T2, 1);
|
| - __ addu(V1, V1, T3);
|
| -
|
| - // T2 = borrow in = 0.
|
| - __ mov(T2, ZR);
|
| - Label sub_loop;
|
| - __ Bind(&sub_loop);
|
| - // Loop a_used times, a_used > 0.
|
| - __ lw(T0, Address(T3, 0)); // T0 = x.
|
| - __ addiu(T3, T3, Immediate(Bigint::kBytesPerDigit));
|
| - __ lw(T1, Address(T5, 0)); // T1 = y.
|
| - __ addiu(T5, T5, Immediate(Bigint::kBytesPerDigit));
|
| - __ subu(T1, T0, T1); // T1 = x - y.
|
| - __ sltu(T4, T0, T1); // T4 = borrow out of x - y.
|
| - __ subu(T0, T1, T2); // T0 = x - y - borrow in.
|
| - __ sltu(T2, T1, T0); // T2 = borrow out of (x - y) - borrow in.
|
| - __ or_(T2, T2, T4); // T2 = borrow out of x - y - borrow in.
|
| - __ sw(T0, Address(T6, 0));
|
| - __ bne(T3, V0, &sub_loop);
|
| - __ delay_slot()->addiu(T6, T6, Immediate(Bigint::kBytesPerDigit));
|
| -
|
| - Label done;
|
| - __ beq(T3, V1, &done);
|
| -
|
| - Label borrow_loop;
|
| - __ Bind(&borrow_loop);
|
| - // Loop used - a_used times, used - a_used > 0.
|
| - __ lw(T0, Address(T3, 0)); // T0 = x.
|
| - __ addiu(T3, T3, Immediate(Bigint::kBytesPerDigit));
|
| - __ subu(T1, T0, T2); // T1 = x - borrow in.
|
| - __ sltu(T2, T0, T1); // T2 = borrow out of x - borrow in.
|
| - __ sw(T1, Address(T6, 0));
|
| - __ bne(T3, V1, &borrow_loop);
|
| - __ delay_slot()->addiu(T6, T6, Immediate(Bigint::kBytesPerDigit));
|
| -
|
| - __ Bind(&done);
|
| - // Returning Object::null() is not required, since this method is private.
|
| - __ Ret();
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::Bigint_mulAdd(Assembler* assembler) {
|
| - // Pseudo code:
|
| - // static int _mulAdd(Uint32List x_digits, int xi,
|
| - // Uint32List m_digits, int i,
|
| - // Uint32List a_digits, int j, int n) {
|
| - // uint32_t x = x_digits[xi >> 1]; // xi is Smi.
|
| - // if (x == 0 || n == 0) {
|
| - // return 1;
|
| - // }
|
| - // uint32_t* mip = &m_digits[i >> 1]; // i is Smi.
|
| - // uint32_t* ajp = &a_digits[j >> 1]; // j is Smi.
|
| - // uint32_t c = 0;
|
| - // SmiUntag(n);
|
| - // do {
|
| - // uint32_t mi = *mip++;
|
| - // uint32_t aj = *ajp;
|
| - // uint64_t t = x*mi + aj + c; // 32-bit * 32-bit -> 64-bit.
|
| - // *ajp++ = low32(t);
|
| - // c = high32(t);
|
| - // } while (--n > 0);
|
| - // while (c != 0) {
|
| - // uint64_t t = *ajp + c;
|
| - // *ajp++ = low32(t);
|
| - // c = high32(t); // c == 0 or 1.
|
| - // }
|
| - // return 1;
|
| - // }
|
| -
|
| - Label done;
|
| - // T3 = x, no_op if x == 0
|
| - __ lw(T0, Address(SP, 5 * kWordSize)); // T0 = xi as Smi.
|
| - __ lw(T1, Address(SP, 6 * kWordSize)); // T1 = x_digits.
|
| - __ sll(T0, T0, 1);
|
| - __ addu(T1, T0, T1);
|
| - __ lw(T3, FieldAddress(T1, TypedData::data_offset()));
|
| - __ beq(T3, ZR, &done);
|
| -
|
| - // T6 = SmiUntag(n), no_op if n == 0
|
| - __ lw(T6, Address(SP, 0 * kWordSize));
|
| - __ SmiUntag(T6);
|
| - __ beq(T6, ZR, &done);
|
| - __ delay_slot()->addiu(T6, T6, Immediate(-1)); // ... while (n-- > 0).
|
| -
|
| - // T4 = mip = &m_digits[i >> 1]
|
| - __ lw(T0, Address(SP, 3 * kWordSize)); // T0 = i as Smi.
|
| - __ lw(T1, Address(SP, 4 * kWordSize)); // T1 = m_digits.
|
| - __ sll(T0, T0, 1);
|
| - __ addu(T1, T0, T1);
|
| - __ addiu(T4, T1, Immediate(TypedData::data_offset() - kHeapObjectTag));
|
| -
|
| - // T5 = ajp = &a_digits[j >> 1]
|
| - __ lw(T0, Address(SP, 1 * kWordSize)); // T0 = j as Smi.
|
| - __ lw(T1, Address(SP, 2 * kWordSize)); // T1 = a_digits.
|
| - __ sll(T0, T0, 1);
|
| - __ addu(T1, T0, T1);
|
| - __ addiu(T5, T1, Immediate(TypedData::data_offset() - kHeapObjectTag));
|
| -
|
| - // T1 = c = 0
|
| - __ mov(T1, ZR);
|
| -
|
| - Label muladd_loop;
|
| - __ Bind(&muladd_loop);
|
| - // x: T3
|
| - // mip: T4
|
| - // ajp: T5
|
| - // c: T1
|
| - // n-1: T6
|
| -
|
| - // uint32_t mi = *mip++
|
| - __ lw(T2, Address(T4, 0));
|
| -
|
| - // uint32_t aj = *ajp
|
| - __ lw(T0, Address(T5, 0));
|
| -
|
| - // uint64_t t = x*mi + aj + c
|
| - __ multu(T2, T3); // HI:LO = x*mi.
|
| - __ addiu(T4, T4, Immediate(Bigint::kBytesPerDigit));
|
| - __ mflo(V0);
|
| - __ mfhi(V1);
|
| - __ addu(V0, V0, T0); // V0 = low32(x*mi) + aj.
|
| - __ sltu(T7, V0, T0); // T7 = carry out of low32(x*mi) + aj.
|
| - __ addu(V1, V1, T7); // V1:V0 = x*mi + aj.
|
| - __ addu(T0, V0, T1); // T0 = low32(x*mi + aj) + c.
|
| - __ sltu(T7, T0, T1); // T7 = carry out of low32(x*mi + aj) + c.
|
| - __ addu(T1, V1, T7); // T1 = c = high32(x*mi + aj + c).
|
| -
|
| - // *ajp++ = low32(t) = T0
|
| - __ sw(T0, Address(T5, 0));
|
| - __ addiu(T5, T5, Immediate(Bigint::kBytesPerDigit));
|
| -
|
| - // while (n-- > 0)
|
| - __ bgtz(T6, &muladd_loop);
|
| - __ delay_slot()->addiu(T6, T6, Immediate(-1)); // --n
|
| -
|
| - __ beq(T1, ZR, &done);
|
| -
|
| - // *ajp++ += c
|
| - __ lw(T0, Address(T5, 0));
|
| - __ addu(T0, T0, T1);
|
| - __ sltu(T1, T0, T1);
|
| - __ sw(T0, Address(T5, 0));
|
| - __ beq(T1, ZR, &done);
|
| - __ delay_slot()->addiu(T5, T5, Immediate(Bigint::kBytesPerDigit));
|
| -
|
| - Label propagate_carry_loop;
|
| - __ Bind(&propagate_carry_loop);
|
| - __ lw(T0, Address(T5, 0));
|
| - __ addiu(T0, T0, Immediate(1));
|
| - __ sw(T0, Address(T5, 0));
|
| - __ beq(T0, ZR, &propagate_carry_loop);
|
| - __ delay_slot()->addiu(T5, T5, Immediate(Bigint::kBytesPerDigit));
|
| -
|
| - __ Bind(&done);
|
| - __ addiu(V0, ZR, Immediate(Smi::RawValue(1))); // One digit processed.
|
| - __ Ret();
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::Bigint_sqrAdd(Assembler* assembler) {
|
| - // Pseudo code:
|
| - // static int _sqrAdd(Uint32List x_digits, int i,
|
| - // Uint32List a_digits, int used) {
|
| - // uint32_t* xip = &x_digits[i >> 1]; // i is Smi.
|
| - // uint32_t x = *xip++;
|
| - // if (x == 0) return 1;
|
| - // uint32_t* ajp = &a_digits[i]; // j == 2*i, i is Smi.
|
| - // uint32_t aj = *ajp;
|
| - // uint64_t t = x*x + aj;
|
| - // *ajp++ = low32(t);
|
| - // uint64_t c = high32(t);
|
| - // int n = ((used - i) >> 1) - 1; // used and i are Smi.
|
| - // while (--n >= 0) {
|
| - // uint32_t xi = *xip++;
|
| - // uint32_t aj = *ajp;
|
| - // uint96_t t = 2*x*xi + aj + c; // 2-bit * 32-bit * 32-bit -> 65-bit.
|
| - // *ajp++ = low32(t);
|
| - // c = high64(t); // 33-bit.
|
| - // }
|
| - // uint32_t aj = *ajp;
|
| - // uint64_t t = aj + c; // 32-bit + 33-bit -> 34-bit.
|
| - // *ajp++ = low32(t);
|
| - // *ajp = high32(t);
|
| - // return 1;
|
| - // }
|
| -
|
| - // T4 = xip = &x_digits[i >> 1]
|
| - __ lw(T2, Address(SP, 2 * kWordSize)); // T2 = i as Smi.
|
| - __ lw(T3, Address(SP, 3 * kWordSize)); // T3 = x_digits.
|
| - __ sll(T0, T2, 1);
|
| - __ addu(T3, T0, T3);
|
| - __ addiu(T4, T3, Immediate(TypedData::data_offset() - kHeapObjectTag));
|
| -
|
| - // T3 = x = *xip++, return if x == 0
|
| - Label x_zero;
|
| - __ lw(T3, Address(T4, 0));
|
| - __ beq(T3, ZR, &x_zero);
|
| - __ delay_slot()->addiu(T4, T4, Immediate(Bigint::kBytesPerDigit));
|
| -
|
| - // T5 = ajp = &a_digits[i]
|
| - __ lw(T1, Address(SP, 1 * kWordSize)); // a_digits
|
| - __ sll(T0, T2, 2); // j == 2*i, i is Smi.
|
| - __ addu(T1, T0, T1);
|
| - __ addiu(T5, T1, Immediate(TypedData::data_offset() - kHeapObjectTag));
|
| -
|
| - // T6:T0 = t = x*x + *ajp
|
| - __ lw(T0, Address(T5, 0)); // *ajp.
|
| - __ mthi(ZR);
|
| - __ mtlo(T0);
|
| - __ maddu(T3, T3); // HI:LO = T3*T3 + *ajp.
|
| - __ mfhi(T6);
|
| - __ mflo(T0);
|
| -
|
| - // *ajp++ = low32(t) = R0
|
| - __ sw(T0, Address(T5, 0));
|
| - __ addiu(T5, T5, Immediate(Bigint::kBytesPerDigit));
|
| -
|
| - // T6 = low32(c) = high32(t)
|
| - // T7 = high32(c) = 0
|
| - __ mov(T7, ZR);
|
| -
|
| - // int n = used - i - 1; while (--n >= 0) ...
|
| - __ lw(T0, Address(SP, 0 * kWordSize)); // used is Smi
|
| - __ subu(V0, T0, T2);
|
| - __ SmiUntag(V0); // V0 = used - i
|
| - // int n = used - i - 2; if (n >= 0) ... while (n-- > 0)
|
| - __ addiu(V0, V0, Immediate(-2));
|
| -
|
| - Label loop, done;
|
| - __ bltz(V0, &done);
|
| -
|
| - __ Bind(&loop);
|
| - // x: T3
|
| - // xip: T4
|
| - // ajp: T5
|
| - // c: T7:T6
|
| - // t: A2:A1:A0 (not live at loop entry)
|
| - // n: V0
|
| -
|
| - // uint32_t xi = *xip++
|
| - __ lw(T2, Address(T4, 0));
|
| - __ addiu(T4, T4, Immediate(Bigint::kBytesPerDigit));
|
| -
|
| - // uint32_t aj = *ajp
|
| - __ lw(T0, Address(T5, 0));
|
| -
|
| - // uint96_t t = T7:T6:T0 = 2*x*xi + aj + c
|
| - __ multu(T2, T3);
|
| - __ mfhi(A1);
|
| - __ mflo(A0); // A1:A0 = x*xi.
|
| - __ srl(A2, A1, 31);
|
| - __ sll(A1, A1, 1);
|
| - __ srl(T1, A0, 31);
|
| - __ or_(A1, A1, T1);
|
| - __ sll(A0, A0, 1); // A2:A1:A0 = 2*x*xi.
|
| - __ addu(A0, A0, T0);
|
| - __ sltu(T1, A0, T0);
|
| - __ addu(A1, A1, T1); // No carry out possible; A2:A1:A0 = 2*x*xi + aj.
|
| - __ addu(T0, A0, T6);
|
| - __ sltu(T1, T0, T6);
|
| - __ addu(T6, A1, T1); // No carry out; A2:T6:T0 = 2*x*xi + aj + low32(c).
|
| - __ addu(T6, T6, T7); // No carry out; A2:T6:T0 = 2*x*xi + aj + c.
|
| - __ mov(T7, A2); // T7:T6:T0 = 2*x*xi + aj + c.
|
| -
|
| - // *ajp++ = low32(t) = T0
|
| - __ sw(T0, Address(T5, 0));
|
| - __ addiu(T5, T5, Immediate(Bigint::kBytesPerDigit));
|
| -
|
| - // while (n-- > 0)
|
| - __ bgtz(V0, &loop);
|
| - __ delay_slot()->addiu(V0, V0, Immediate(-1)); // --n
|
| -
|
| - __ Bind(&done);
|
| - // uint32_t aj = *ajp
|
| - __ lw(T0, Address(T5, 0));
|
| -
|
| - // uint64_t t = aj + c
|
| - __ addu(T6, T6, T0);
|
| - __ sltu(T1, T6, T0);
|
| - __ addu(T7, T7, T1);
|
| -
|
| - // *ajp = low32(t) = T6
|
| - // *(ajp + 1) = high32(t) = T7
|
| - __ sw(T6, Address(T5, 0));
|
| - __ sw(T7, Address(T5, Bigint::kBytesPerDigit));
|
| -
|
| - __ Bind(&x_zero);
|
| - __ addiu(V0, ZR, Immediate(Smi::RawValue(1))); // One digit processed.
|
| - __ Ret();
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::Bigint_estQuotientDigit(Assembler* assembler) {
|
| - // No unsigned 64-bit / 32-bit divide instruction.
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::Montgomery_mulMod(Assembler* assembler) {
|
| - // Pseudo code:
|
| - // static int _mulMod(Uint32List args, Uint32List digits, int i) {
|
| - // uint32_t rho = args[_RHO]; // _RHO == 2.
|
| - // uint32_t d = digits[i >> 1]; // i is Smi.
|
| - // uint64_t t = rho*d;
|
| - // args[_MU] = t mod DIGIT_BASE; // _MU == 4.
|
| - // return 1;
|
| - // }
|
| -
|
| - // T4 = args
|
| - __ lw(T4, Address(SP, 2 * kWordSize)); // args
|
| -
|
| - // T3 = rho = args[2]
|
| - __ lw(T3, FieldAddress(
|
| - T4, TypedData::data_offset() + 2 * Bigint::kBytesPerDigit));
|
| -
|
| - // T2 = d = digits[i >> 1]
|
| - __ lw(T0, Address(SP, 0 * kWordSize)); // T0 = i as Smi.
|
| - __ lw(T1, Address(SP, 1 * kWordSize)); // T1 = digits.
|
| - __ sll(T0, T0, 1);
|
| - __ addu(T1, T0, T1);
|
| - __ lw(T2, FieldAddress(T1, TypedData::data_offset()));
|
| -
|
| - // HI:LO = t = rho*d
|
| - __ multu(T2, T3);
|
| -
|
| - // args[4] = t mod DIGIT_BASE = low32(t)
|
| - __ mflo(T0);
|
| - __ sw(T0, FieldAddress(
|
| - T4, TypedData::data_offset() + 4 * Bigint::kBytesPerDigit));
|
| -
|
| - __ addiu(V0, ZR, Immediate(Smi::RawValue(1))); // One digit processed.
|
| - __ Ret();
|
| -}
|
| -
|
| -
|
| -// Check if the last argument is a double, jump to label 'is_smi' if smi
|
| -// (easy to convert to double), otherwise jump to label 'not_double_smi',
|
| -// Returns the last argument in T0.
|
| -static void TestLastArgumentIsDouble(Assembler* assembler,
|
| - Label* is_smi,
|
| - Label* not_double_smi) {
|
| - __ lw(T0, Address(SP, 0 * kWordSize));
|
| - __ andi(CMPRES1, T0, Immediate(kSmiTagMask));
|
| - __ beq(CMPRES1, ZR, is_smi);
|
| - __ LoadClassId(CMPRES1, T0);
|
| - __ BranchNotEqual(CMPRES1, Immediate(kDoubleCid), not_double_smi);
|
| - // Fall through with Double in T0.
|
| -}
|
| -
|
| -
|
| -// Both arguments on stack, arg0 (left) is a double, arg1 (right) is of unknown
|
| -// type. Return true or false object in the register V0. Any NaN argument
|
| -// returns false. Any non-double arg1 causes control flow to fall through to the
|
| -// slow case (compiled method body).
|
| -static void CompareDoubles(Assembler* assembler, RelationOperator rel_op) {
|
| - Label is_smi, double_op, no_NaN, fall_through;
|
| - __ Comment("CompareDoubles Intrinsic");
|
| -
|
| - TestLastArgumentIsDouble(assembler, &is_smi, &fall_through);
|
| - // Both arguments are double, right operand is in T0.
|
| - __ LoadDFromOffset(D1, T0, Double::value_offset() - kHeapObjectTag);
|
| - __ Bind(&double_op);
|
| - __ lw(T0, Address(SP, 1 * kWordSize)); // Left argument.
|
| - __ LoadDFromOffset(D0, T0, Double::value_offset() - kHeapObjectTag);
|
| - // Now, left is in D0, right is in D1.
|
| -
|
| - __ cund(D0, D1); // Check for NaN.
|
| - __ bc1f(&no_NaN);
|
| - __ LoadObject(V0, Bool::False()); // Return false if either is NaN.
|
| - __ Ret();
|
| - __ Bind(&no_NaN);
|
| -
|
| - switch (rel_op) {
|
| - case EQ:
|
| - __ ceqd(D0, D1);
|
| - break;
|
| - case LT:
|
| - __ coltd(D0, D1);
|
| - break;
|
| - case LE:
|
| - __ coled(D0, D1);
|
| - break;
|
| - case GT:
|
| - __ coltd(D1, D0);
|
| - break;
|
| - case GE:
|
| - __ coled(D1, D0);
|
| - break;
|
| - default: {
|
| - // Only passing the above conditions to this function.
|
| - UNREACHABLE();
|
| - break;
|
| - }
|
| - }
|
| -
|
| - Label is_true;
|
| - __ bc1t(&is_true);
|
| - __ LoadObject(V0, Bool::False());
|
| - __ Ret();
|
| - __ Bind(&is_true);
|
| - __ LoadObject(V0, Bool::True());
|
| - __ Ret();
|
| -
|
| -
|
| - __ Bind(&is_smi);
|
| - __ SmiUntag(T0);
|
| - __ mtc1(T0, STMP1);
|
| - __ b(&double_op);
|
| - __ delay_slot()->cvtdw(D1, STMP1);
|
| -
|
| -
|
| - __ Bind(&fall_through);
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::Double_greaterThan(Assembler* assembler) {
|
| - CompareDoubles(assembler, GT);
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::Double_greaterEqualThan(Assembler* assembler) {
|
| - CompareDoubles(assembler, GE);
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::Double_lessThan(Assembler* assembler) {
|
| - CompareDoubles(assembler, LT);
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::Double_equal(Assembler* assembler) {
|
| - CompareDoubles(assembler, EQ);
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::Double_lessEqualThan(Assembler* assembler) {
|
| - CompareDoubles(assembler, LE);
|
| -}
|
| -
|
| -
|
| -// Expects left argument to be double (receiver). Right argument is unknown.
|
| -// Both arguments are on stack.
|
| -static void DoubleArithmeticOperations(Assembler* assembler, Token::Kind kind) {
|
| - Label fall_through, is_smi, double_op;
|
| -
|
| - TestLastArgumentIsDouble(assembler, &is_smi, &fall_through);
|
| - // Both arguments are double, right operand is in T0.
|
| - __ lwc1(F2, FieldAddress(T0, Double::value_offset()));
|
| - __ lwc1(F3, FieldAddress(T0, Double::value_offset() + kWordSize));
|
| - __ Bind(&double_op);
|
| - __ lw(T0, Address(SP, 1 * kWordSize)); // Left argument.
|
| - __ lwc1(F0, FieldAddress(T0, Double::value_offset()));
|
| - __ lwc1(F1, FieldAddress(T0, Double::value_offset() + kWordSize));
|
| - switch (kind) {
|
| - case Token::kADD:
|
| - __ addd(D0, D0, D1);
|
| - break;
|
| - case Token::kSUB:
|
| - __ subd(D0, D0, D1);
|
| - break;
|
| - case Token::kMUL:
|
| - __ muld(D0, D0, D1);
|
| - break;
|
| - case Token::kDIV:
|
| - __ divd(D0, D0, D1);
|
| - break;
|
| - default:
|
| - UNREACHABLE();
|
| - }
|
| - const Class& double_class =
|
| - Class::Handle(Isolate::Current()->object_store()->double_class());
|
| - __ TryAllocate(double_class, &fall_through, V0, T1); // Result register.
|
| - __ swc1(F0, FieldAddress(V0, Double::value_offset()));
|
| - __ Ret();
|
| - __ delay_slot()->swc1(F1,
|
| - FieldAddress(V0, Double::value_offset() + kWordSize));
|
| -
|
| - __ Bind(&is_smi);
|
| - __ SmiUntag(T0);
|
| - __ mtc1(T0, STMP1);
|
| - __ b(&double_op);
|
| - __ delay_slot()->cvtdw(D1, STMP1);
|
| -
|
| - __ Bind(&fall_through);
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::Double_add(Assembler* assembler) {
|
| - DoubleArithmeticOperations(assembler, Token::kADD);
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::Double_mul(Assembler* assembler) {
|
| - DoubleArithmeticOperations(assembler, Token::kMUL);
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::Double_sub(Assembler* assembler) {
|
| - DoubleArithmeticOperations(assembler, Token::kSUB);
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::Double_div(Assembler* assembler) {
|
| - DoubleArithmeticOperations(assembler, Token::kDIV);
|
| -}
|
| -
|
| -
|
| -// Left is double right is integer (Bigint, Mint or Smi)
|
| -void Intrinsifier::Double_mulFromInteger(Assembler* assembler) {
|
| - Label fall_through;
|
| - // Only smis allowed.
|
| - __ lw(T0, Address(SP, 0 * kWordSize));
|
| - __ andi(CMPRES1, T0, Immediate(kSmiTagMask));
|
| - __ bne(CMPRES1, ZR, &fall_through);
|
| -
|
| - // Is Smi.
|
| - __ SmiUntag(T0);
|
| - __ mtc1(T0, F4);
|
| - __ cvtdw(D1, F4);
|
| -
|
| - __ lw(T0, Address(SP, 1 * kWordSize));
|
| - __ lwc1(F0, FieldAddress(T0, Double::value_offset()));
|
| - __ lwc1(F1, FieldAddress(T0, Double::value_offset() + kWordSize));
|
| - __ muld(D0, D0, D1);
|
| - const Class& double_class =
|
| - Class::Handle(Isolate::Current()->object_store()->double_class());
|
| - __ TryAllocate(double_class, &fall_through, V0, T1); // Result register.
|
| - __ swc1(F0, FieldAddress(V0, Double::value_offset()));
|
| - __ Ret();
|
| - __ delay_slot()->swc1(F1,
|
| - FieldAddress(V0, Double::value_offset() + kWordSize));
|
| - __ Bind(&fall_through);
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::DoubleFromInteger(Assembler* assembler) {
|
| - Label fall_through;
|
| -
|
| - __ lw(T0, Address(SP, 0 * kWordSize));
|
| - __ andi(CMPRES1, T0, Immediate(kSmiTagMask));
|
| - __ bne(CMPRES1, ZR, &fall_through);
|
| -
|
| - // Is Smi.
|
| - __ SmiUntag(T0);
|
| - __ mtc1(T0, F4);
|
| - __ cvtdw(D0, F4);
|
| - const Class& double_class =
|
| - Class::Handle(Isolate::Current()->object_store()->double_class());
|
| - __ TryAllocate(double_class, &fall_through, V0, T1); // Result register.
|
| - __ swc1(F0, FieldAddress(V0, Double::value_offset()));
|
| - __ Ret();
|
| - __ delay_slot()->swc1(F1,
|
| - FieldAddress(V0, Double::value_offset() + kWordSize));
|
| - __ Bind(&fall_through);
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::Double_getIsNaN(Assembler* assembler) {
|
| - Label is_true;
|
| -
|
| - __ lw(T0, Address(SP, 0 * kWordSize));
|
| - __ lwc1(F0, FieldAddress(T0, Double::value_offset()));
|
| - __ lwc1(F1, FieldAddress(T0, Double::value_offset() + kWordSize));
|
| - __ cund(D0, D0); // Check for NaN.
|
| - __ bc1t(&is_true);
|
| - __ LoadObject(V0, Bool::False()); // Return false if either is NaN.
|
| - __ Ret();
|
| - __ Bind(&is_true);
|
| - __ LoadObject(V0, Bool::True());
|
| - __ Ret();
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::Double_getIsInfinite(Assembler* assembler) {
|
| - Label not_inf;
|
| - __ lw(T0, Address(SP, 0 * kWordSize));
|
| - __ lw(T1, FieldAddress(T0, Double::value_offset()));
|
| - __ lw(T2, FieldAddress(T0, Double::value_offset() + kWordSize));
|
| - // If the low word isn't zero, then it isn't infinity.
|
| - __ bne(T1, ZR, ¬_inf);
|
| - // Mask off the sign bit.
|
| - __ AndImmediate(T2, T2, 0x7FFFFFFF);
|
| - // Compare with +infinity.
|
| - __ BranchNotEqual(T2, Immediate(0x7FF00000), ¬_inf);
|
| -
|
| - __ LoadObject(V0, Bool::True());
|
| - __ Ret();
|
| -
|
| - __ Bind(¬_inf);
|
| - __ LoadObject(V0, Bool::False());
|
| - __ Ret();
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::Double_getIsNegative(Assembler* assembler) {
|
| - Label is_false, is_true, is_zero;
|
| - __ lw(T0, Address(SP, 0 * kWordSize));
|
| - __ LoadDFromOffset(D0, T0, Double::value_offset() - kHeapObjectTag);
|
| -
|
| - __ cund(D0, D0);
|
| - __ bc1t(&is_false); // NaN -> false.
|
| -
|
| - __ LoadImmediate(D1, 0.0);
|
| - __ ceqd(D0, D1);
|
| - __ bc1t(&is_zero); // Check for negative zero.
|
| -
|
| - __ coled(D1, D0);
|
| - __ bc1t(&is_false); // >= 0 -> false.
|
| -
|
| - __ Bind(&is_true);
|
| - __ LoadObject(V0, Bool::True());
|
| - __ Ret();
|
| -
|
| - __ Bind(&is_false);
|
| - __ LoadObject(V0, Bool::False());
|
| - __ Ret();
|
| -
|
| - __ Bind(&is_zero);
|
| - // Check for negative zero by looking at the sign bit.
|
| - __ mfc1(T0, F1); // Moves bits 32...63 of D0 to T0.
|
| - __ srl(T0, T0, 31); // Get the sign bit down to bit 0 of T0.
|
| - __ andi(CMPRES1, T0, Immediate(1)); // Check if the bit is set.
|
| - __ bne(T0, ZR, &is_true); // Sign bit set. True.
|
| - __ b(&is_false);
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::DoubleToInteger(Assembler* assembler) {
|
| - __ lw(T0, Address(SP, 0 * kWordSize));
|
| - __ LoadDFromOffset(D0, T0, Double::value_offset() - kHeapObjectTag);
|
| -
|
| - __ truncwd(F2, D0);
|
| - __ mfc1(V0, F2);
|
| -
|
| - // Overflow is signaled with minint.
|
| - Label fall_through;
|
| - // Check for overflow and that it fits into Smi.
|
| - __ LoadImmediate(TMP, 0xC0000000);
|
| - __ subu(CMPRES1, V0, TMP);
|
| - __ bltz(CMPRES1, &fall_through);
|
| - __ Ret();
|
| - __ delay_slot()->SmiTag(V0);
|
| - __ Bind(&fall_through);
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::MathSqrt(Assembler* assembler) {
|
| - Label fall_through, is_smi, double_op;
|
| - TestLastArgumentIsDouble(assembler, &is_smi, &fall_through);
|
| - // Argument is double and is in T0.
|
| - __ LoadDFromOffset(D1, T0, Double::value_offset() - kHeapObjectTag);
|
| - __ Bind(&double_op);
|
| - __ sqrtd(D0, D1);
|
| - const Class& double_class =
|
| - Class::Handle(Isolate::Current()->object_store()->double_class());
|
| - __ TryAllocate(double_class, &fall_through, V0, T1); // Result register.
|
| - __ swc1(F0, FieldAddress(V0, Double::value_offset()));
|
| - __ Ret();
|
| - __ delay_slot()->swc1(F1,
|
| - FieldAddress(V0, Double::value_offset() + kWordSize));
|
| -
|
| - __ Bind(&is_smi);
|
| - __ SmiUntag(T0);
|
| - __ mtc1(T0, F2);
|
| - __ b(&double_op);
|
| - __ delay_slot()->cvtdw(D1, F2);
|
| - __ Bind(&fall_through);
|
| -}
|
| -
|
| -
|
| -// var state = ((_A * (_state[kSTATE_LO])) + _state[kSTATE_HI]) & _MASK_64;
|
| -// _state[kSTATE_LO] = state & _MASK_32;
|
| -// _state[kSTATE_HI] = state >> 32;
|
| -void Intrinsifier::Random_nextState(Assembler* assembler) {
|
| - const Library& math_lib = Library::Handle(Library::MathLibrary());
|
| - ASSERT(!math_lib.IsNull());
|
| - const Class& random_class =
|
| - Class::Handle(math_lib.LookupClassAllowPrivate(Symbols::_Random()));
|
| - ASSERT(!random_class.IsNull());
|
| - const Field& state_field = Field::ZoneHandle(
|
| - random_class.LookupInstanceFieldAllowPrivate(Symbols::_state()));
|
| - ASSERT(!state_field.IsNull());
|
| - const Field& random_A_field = Field::ZoneHandle(
|
| - random_class.LookupStaticFieldAllowPrivate(Symbols::_A()));
|
| - ASSERT(!random_A_field.IsNull());
|
| - ASSERT(random_A_field.is_const());
|
| - Instance& a_value = Instance::Handle(random_A_field.StaticValue());
|
| - if (a_value.raw() == Object::sentinel().raw() ||
|
| - a_value.raw() == Object::transition_sentinel().raw()) {
|
| - random_A_field.EvaluateInitializer();
|
| - a_value = random_A_field.StaticValue();
|
| - }
|
| - const int64_t a_int_value = Integer::Cast(a_value).AsInt64Value();
|
| - // 'a_int_value' is a mask.
|
| - ASSERT(Utils::IsUint(32, a_int_value));
|
| - int32_t a_int32_value = static_cast<int32_t>(a_int_value);
|
| -
|
| - // Receiver.
|
| - __ lw(T0, Address(SP, 0 * kWordSize));
|
| - // Field '_state'.
|
| - __ lw(T1, FieldAddress(T0, state_field.Offset()));
|
| -
|
| - // Addresses of _state[0] and _state[1].
|
| - const intptr_t scale = Instance::ElementSizeFor(kTypedDataUint32ArrayCid);
|
| - const intptr_t offset = Instance::DataOffsetFor(kTypedDataUint32ArrayCid);
|
| - const Address& addr_0 = FieldAddress(T1, 0 * scale + offset);
|
| - const Address& addr_1 = FieldAddress(T1, 1 * scale + offset);
|
| -
|
| - __ LoadImmediate(T0, a_int32_value);
|
| - __ lw(T2, addr_0);
|
| - __ lw(T3, addr_1);
|
| - __ mtlo(T3);
|
| - __ mthi(ZR); // HI:LO <- ZR:T3 Zero extend T3 into HI.
|
| - // 64-bit multiply and accumulate into T6:T3.
|
| - __ maddu(T0, T2); // HI:LO <- HI:LO + T0 * T2.
|
| - __ mflo(T3);
|
| - __ mfhi(T6);
|
| - __ sw(T3, addr_0);
|
| - __ sw(T6, addr_1);
|
| - __ Ret();
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::ObjectEquals(Assembler* assembler) {
|
| - Label is_true;
|
| -
|
| - __ lw(T0, Address(SP, 0 * kWordSize));
|
| - __ lw(T1, Address(SP, 1 * kWordSize));
|
| - __ beq(T0, T1, &is_true);
|
| - __ LoadObject(V0, Bool::False());
|
| - __ Ret();
|
| - __ Bind(&is_true);
|
| - __ LoadObject(V0, Bool::True());
|
| - __ Ret();
|
| -}
|
| -
|
| -
|
| -enum RangeCheckCondition { kIfNotInRange, kIfInRange };
|
| -
|
| -
|
| -static void RangeCheck(Assembler* assembler,
|
| - Register val,
|
| - Register tmp,
|
| - intptr_t low,
|
| - intptr_t high,
|
| - RangeCheckCondition cc,
|
| - Label* target) {
|
| - __ AddImmediate(tmp, val, -low);
|
| - if (cc == kIfInRange) {
|
| - __ BranchUnsignedLessEqual(tmp, Immediate(high - low), target);
|
| - } else {
|
| - ASSERT(cc == kIfNotInRange);
|
| - __ BranchUnsignedGreater(tmp, Immediate(high - low), target);
|
| - }
|
| -}
|
| -
|
| -
|
| -static void JumpIfInteger(Assembler* assembler,
|
| - Register cid,
|
| - Register tmp,
|
| - Label* target) {
|
| - RangeCheck(assembler, cid, tmp, kSmiCid, kBigintCid, kIfInRange, target);
|
| -}
|
| -
|
| -
|
| -static void JumpIfNotInteger(Assembler* assembler,
|
| - Register cid,
|
| - Register tmp,
|
| - Label* target) {
|
| - RangeCheck(assembler, cid, tmp, kSmiCid, kBigintCid, kIfNotInRange, target);
|
| -}
|
| -
|
| -
|
| -static void JumpIfString(Assembler* assembler,
|
| - Register cid,
|
| - Register tmp,
|
| - Label* target) {
|
| - RangeCheck(assembler, cid, tmp, kOneByteStringCid, kExternalTwoByteStringCid,
|
| - kIfInRange, target);
|
| -}
|
| -
|
| -
|
| -static void JumpIfNotString(Assembler* assembler,
|
| - Register cid,
|
| - Register tmp,
|
| - Label* target) {
|
| - RangeCheck(assembler, cid, tmp, kOneByteStringCid, kExternalTwoByteStringCid,
|
| - kIfNotInRange, target);
|
| -}
|
| -
|
| -
|
| -// Return type quickly for simple types (not parameterized and not signature).
|
| -void Intrinsifier::ObjectRuntimeType(Assembler* assembler) {
|
| - Label fall_through, use_canonical_type, not_integer, not_double;
|
| - __ lw(T0, Address(SP, 0 * kWordSize));
|
| - __ LoadClassIdMayBeSmi(T1, T0);
|
| -
|
| - // Closures are handled in the runtime.
|
| - __ BranchEqual(T1, Immediate(kClosureCid), &fall_through);
|
| -
|
| - __ BranchUnsignedGreaterEqual(T1, Immediate(kNumPredefinedCids),
|
| - &use_canonical_type);
|
| -
|
| - __ BranchNotEqual(T1, Immediate(kDoubleCid), ¬_double);
|
| - // Object is a double.
|
| - __ LoadIsolate(T1);
|
| - __ LoadFromOffset(T1, T1, Isolate::object_store_offset());
|
| - __ LoadFromOffset(V0, T1, ObjectStore::double_type_offset());
|
| - __ Ret();
|
| -
|
| - __ Bind(¬_double);
|
| - JumpIfNotInteger(assembler, T1, T2, ¬_integer);
|
| - // Object is an integer.
|
| - __ LoadIsolate(T1);
|
| - __ LoadFromOffset(T1, T1, Isolate::object_store_offset());
|
| - __ LoadFromOffset(V0, T1, ObjectStore::int_type_offset());
|
| - __ Ret();
|
| -
|
| - __ Bind(¬_integer);
|
| - JumpIfNotString(assembler, T1, T2, &use_canonical_type);
|
| - // Object is a string.
|
| - __ LoadIsolate(T1);
|
| - __ LoadFromOffset(T1, T1, Isolate::object_store_offset());
|
| - __ LoadFromOffset(V0, T1, ObjectStore::string_type_offset());
|
| - __ Ret();
|
| -
|
| - __ Bind(&use_canonical_type);
|
| - __ LoadClassById(T2, T1);
|
| - __ lhu(T1, FieldAddress(T2, Class::num_type_arguments_offset()));
|
| - __ BranchNotEqual(T1, Immediate(0), &fall_through);
|
| -
|
| - __ lw(V0, FieldAddress(T2, Class::canonical_type_offset()));
|
| - __ BranchEqual(V0, Object::null_object(), &fall_through);
|
| - __ Ret();
|
| -
|
| - __ Bind(&fall_through);
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::ObjectHaveSameRuntimeType(Assembler* assembler) {
|
| - Label fall_through, different_cids, equal, not_equal, not_integer;
|
| -
|
| - __ lw(T0, Address(SP, 0 * kWordSize));
|
| - __ LoadClassIdMayBeSmi(T1, T0);
|
| -
|
| - // Closures are handled in the runtime.
|
| - __ BranchEqual(T1, Immediate(kClosureCid), &fall_through);
|
| -
|
| - __ lw(T0, Address(SP, 1 * kWordSize));
|
| - __ LoadClassIdMayBeSmi(T2, T0);
|
| -
|
| - // Check whether class ids match. If class ids don't match objects can still
|
| - // have the same runtime type (e.g. multiple string implementation classes
|
| - // map to a single String type).
|
| - __ BranchNotEqual(T1, T2, &different_cids);
|
| -
|
| - // Objects have the same class and neither is a closure.
|
| - // Check if there are no type arguments. In this case we can return true.
|
| - // Otherwise fall through into the runtime to handle comparison.
|
| - __ LoadClassById(T2, T1);
|
| - __ lhu(T1, FieldAddress(T2, Class::num_type_arguments_offset()));
|
| - __ BranchNotEqual(T1, Immediate(0), &fall_through);
|
| -
|
| - __ Bind(&equal);
|
| - __ LoadObject(V0, Bool::True());
|
| - __ Ret();
|
| -
|
| - // Class ids are different. Check if we are comparing runtime types of
|
| - // two strings (with different representations) or two integers.
|
| - __ Bind(&different_cids);
|
| - __ BranchUnsignedGreaterEqual(T1, Immediate(kNumPredefinedCids), ¬_equal);
|
| -
|
| - // Check if both are integers.
|
| - JumpIfNotInteger(assembler, T1, T0, ¬_integer);
|
| - JumpIfInteger(assembler, T2, T0, &equal);
|
| - __ b(¬_equal);
|
| -
|
| - __ Bind(¬_integer);
|
| - // Check if both are strings.
|
| - JumpIfNotString(assembler, T1, T0, ¬_equal);
|
| - JumpIfString(assembler, T2, T0, &equal);
|
| -
|
| - // Neither strings nor integers and have different class ids.
|
| - __ Bind(¬_equal);
|
| - __ LoadObject(V0, Bool::False());
|
| - __ Ret();
|
| -
|
| - __ Bind(&fall_through);
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::String_getHashCode(Assembler* assembler) {
|
| - Label fall_through;
|
| - __ lw(T0, Address(SP, 0 * kWordSize));
|
| - __ lw(V0, FieldAddress(T0, String::hash_offset()));
|
| - __ beq(V0, ZR, &fall_through);
|
| - __ Ret();
|
| - __ Bind(&fall_through); // Hash not yet computed.
|
| -}
|
| -
|
| -
|
| -void GenerateSubstringMatchesSpecialization(Assembler* assembler,
|
| - intptr_t receiver_cid,
|
| - intptr_t other_cid,
|
| - Label* return_true,
|
| - Label* return_false) {
|
| - __ SmiUntag(A1);
|
| - __ lw(T1, FieldAddress(A0, String::length_offset())); // this.length
|
| - __ SmiUntag(T1);
|
| - __ lw(T2, FieldAddress(A2, String::length_offset())); // other.length
|
| - __ SmiUntag(T2);
|
| -
|
| - // if (other.length == 0) return true;
|
| - __ beq(T2, ZR, return_true);
|
| -
|
| - // if (start < 0) return false;
|
| - __ bltz(A1, return_false);
|
| -
|
| - // if (start + other.length > this.length) return false;
|
| - __ addu(T0, A1, T2);
|
| - __ BranchSignedGreater(T0, T1, return_false);
|
| -
|
| - if (receiver_cid == kOneByteStringCid) {
|
| - __ AddImmediate(A0, A0, OneByteString::data_offset() - kHeapObjectTag);
|
| - __ addu(A0, A0, A1);
|
| - } else {
|
| - ASSERT(receiver_cid == kTwoByteStringCid);
|
| - __ AddImmediate(A0, A0, TwoByteString::data_offset() - kHeapObjectTag);
|
| - __ addu(A0, A0, A1);
|
| - __ addu(A0, A0, A1);
|
| - }
|
| - if (other_cid == kOneByteStringCid) {
|
| - __ AddImmediate(A2, A2, OneByteString::data_offset() - kHeapObjectTag);
|
| - } else {
|
| - ASSERT(other_cid == kTwoByteStringCid);
|
| - __ AddImmediate(A2, A2, TwoByteString::data_offset() - kHeapObjectTag);
|
| - }
|
| -
|
| - // i = 0
|
| - __ LoadImmediate(T0, 0);
|
| -
|
| - // do
|
| - Label loop;
|
| - __ Bind(&loop);
|
| -
|
| - if (receiver_cid == kOneByteStringCid) {
|
| - __ lbu(T3, Address(A0, 0)); // this.codeUnitAt(i + start)
|
| - } else {
|
| - __ lhu(T3, Address(A0, 0)); // this.codeUnitAt(i + start)
|
| - }
|
| - if (other_cid == kOneByteStringCid) {
|
| - __ lbu(T4, Address(A2, 0)); // other.codeUnitAt(i)
|
| - } else {
|
| - __ lhu(T4, Address(A2, 0)); // other.codeUnitAt(i)
|
| - }
|
| - __ bne(T3, T4, return_false);
|
| -
|
| - // i++, while (i < len)
|
| - __ AddImmediate(T0, T0, 1);
|
| - __ AddImmediate(A0, A0, receiver_cid == kOneByteStringCid ? 1 : 2);
|
| - __ AddImmediate(A2, A2, other_cid == kOneByteStringCid ? 1 : 2);
|
| - __ BranchSignedLess(T0, T2, &loop);
|
| -
|
| - __ b(return_true);
|
| -}
|
| -
|
| -
|
| -// bool _substringMatches(int start, String other)
|
| -// This intrinsic handles a OneByteString or TwoByteString receiver with a
|
| -// OneByteString other.
|
| -void Intrinsifier::StringBaseSubstringMatches(Assembler* assembler) {
|
| - Label fall_through, return_true, return_false, try_two_byte;
|
| - __ lw(A0, Address(SP, 2 * kWordSize)); // this
|
| - __ lw(A1, Address(SP, 1 * kWordSize)); // start
|
| - __ lw(A2, Address(SP, 0 * kWordSize)); // other
|
| -
|
| - __ andi(CMPRES1, A1, Immediate(kSmiTagMask));
|
| - __ bne(CMPRES1, ZR, &fall_through); // 'start' is not a Smi.
|
| -
|
| - __ LoadClassId(CMPRES1, A2);
|
| - __ BranchNotEqual(CMPRES1, Immediate(kOneByteStringCid), &fall_through);
|
| -
|
| - __ LoadClassId(CMPRES1, A0);
|
| - __ BranchNotEqual(CMPRES1, Immediate(kOneByteStringCid), &try_two_byte);
|
| -
|
| - GenerateSubstringMatchesSpecialization(assembler, kOneByteStringCid,
|
| - kOneByteStringCid, &return_true,
|
| - &return_false);
|
| -
|
| - __ Bind(&try_two_byte);
|
| - __ LoadClassId(CMPRES1, A0);
|
| - __ BranchNotEqual(CMPRES1, Immediate(kTwoByteStringCid), &fall_through);
|
| -
|
| - GenerateSubstringMatchesSpecialization(assembler, kTwoByteStringCid,
|
| - kOneByteStringCid, &return_true,
|
| - &return_false);
|
| -
|
| - __ Bind(&return_true);
|
| - __ LoadObject(V0, Bool::True());
|
| - __ Ret();
|
| -
|
| - __ Bind(&return_false);
|
| - __ LoadObject(V0, Bool::False());
|
| - __ Ret();
|
| -
|
| - __ Bind(&fall_through);
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::StringBaseCharAt(Assembler* assembler) {
|
| - Label fall_through, try_two_byte_string;
|
| -
|
| - __ lw(T1, Address(SP, 0 * kWordSize)); // Index.
|
| - __ lw(T0, Address(SP, 1 * kWordSize)); // String.
|
| -
|
| - // Checks.
|
| - __ andi(CMPRES1, T1, Immediate(kSmiTagMask));
|
| - __ bne(CMPRES1, ZR, &fall_through); // Index is not a Smi.
|
| - __ lw(T2, FieldAddress(T0, String::length_offset())); // Range check.
|
| - // Runtime throws exception.
|
| - __ BranchUnsignedGreaterEqual(T1, T2, &fall_through);
|
| - __ LoadClassId(CMPRES1, T0); // Class ID check.
|
| - __ BranchNotEqual(CMPRES1, Immediate(kOneByteStringCid),
|
| - &try_two_byte_string);
|
| -
|
| - // Grab byte and return.
|
| - __ SmiUntag(T1);
|
| - __ addu(T2, T0, T1);
|
| - __ lbu(T2, FieldAddress(T2, OneByteString::data_offset()));
|
| - __ BranchUnsignedGreaterEqual(
|
| - T2, Immediate(Symbols::kNumberOfOneCharCodeSymbols), &fall_through);
|
| - __ lw(V0, Address(THR, Thread::predefined_symbols_address_offset()));
|
| - __ AddImmediate(V0, Symbols::kNullCharCodeSymbolOffset * kWordSize);
|
| - __ sll(T2, T2, 2);
|
| - __ addu(T2, T2, V0);
|
| - __ Ret();
|
| - __ delay_slot()->lw(V0, Address(T2));
|
| -
|
| - __ Bind(&try_two_byte_string);
|
| - __ BranchNotEqual(CMPRES1, Immediate(kTwoByteStringCid), &fall_through);
|
| - ASSERT(kSmiTagShift == 1);
|
| - __ addu(T2, T0, T1);
|
| - __ lhu(T2, FieldAddress(T2, TwoByteString::data_offset()));
|
| - __ BranchUnsignedGreaterEqual(
|
| - T2, Immediate(Symbols::kNumberOfOneCharCodeSymbols), &fall_through);
|
| - __ lw(V0, Address(THR, Thread::predefined_symbols_address_offset()));
|
| - __ AddImmediate(V0, Symbols::kNullCharCodeSymbolOffset * kWordSize);
|
| - __ sll(T2, T2, 2);
|
| - __ addu(T2, T2, V0);
|
| - __ Ret();
|
| - __ delay_slot()->lw(V0, Address(T2));
|
| -
|
| - __ Bind(&fall_through);
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::StringBaseIsEmpty(Assembler* assembler) {
|
| - Label is_true;
|
| -
|
| - __ lw(T0, Address(SP, 0 * kWordSize));
|
| - __ lw(T0, FieldAddress(T0, String::length_offset()));
|
| -
|
| - __ beq(T0, ZR, &is_true);
|
| - __ LoadObject(V0, Bool::False());
|
| - __ Ret();
|
| - __ Bind(&is_true);
|
| - __ LoadObject(V0, Bool::True());
|
| - __ Ret();
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::OneByteString_getHashCode(Assembler* assembler) {
|
| - Label no_hash;
|
| -
|
| - __ lw(T1, Address(SP, 0 * kWordSize));
|
| - __ lw(V0, FieldAddress(T1, String::hash_offset()));
|
| - __ beq(V0, ZR, &no_hash);
|
| - __ Ret(); // Return if already computed.
|
| - __ Bind(&no_hash);
|
| -
|
| - __ lw(T2, FieldAddress(T1, String::length_offset()));
|
| -
|
| - Label done;
|
| - // If the string is empty, set the hash to 1, and return.
|
| - __ BranchEqual(T2, Immediate(Smi::RawValue(0)), &done);
|
| - __ delay_slot()->mov(V0, ZR);
|
| -
|
| - __ SmiUntag(T2);
|
| - __ AddImmediate(T3, T1, OneByteString::data_offset() - kHeapObjectTag);
|
| - __ addu(T4, T3, T2);
|
| - // V0: Hash code, untagged integer.
|
| - // T1: Instance of OneByteString.
|
| - // T2: String length, untagged integer.
|
| - // T3: String data start.
|
| - // T4: String data end.
|
| -
|
| - Label loop;
|
| - // Add to hash code: (hash_ is uint32)
|
| - // hash_ += ch;
|
| - // hash_ += hash_ << 10;
|
| - // hash_ ^= hash_ >> 6;
|
| - // Get one characters (ch).
|
| - __ Bind(&loop);
|
| - __ lbu(T5, Address(T3));
|
| - // T5: ch.
|
| - __ addiu(T3, T3, Immediate(1));
|
| - __ addu(V0, V0, T5);
|
| - __ sll(T6, V0, 10);
|
| - __ addu(V0, V0, T6);
|
| - __ srl(T6, V0, 6);
|
| - __ bne(T3, T4, &loop);
|
| - __ delay_slot()->xor_(V0, V0, T6);
|
| -
|
| - // Finalize.
|
| - // hash_ += hash_ << 3;
|
| - // hash_ ^= hash_ >> 11;
|
| - // hash_ += hash_ << 15;
|
| - __ sll(T6, V0, 3);
|
| - __ addu(V0, V0, T6);
|
| - __ srl(T6, V0, 11);
|
| - __ xor_(V0, V0, T6);
|
| - __ sll(T6, V0, 15);
|
| - __ addu(V0, V0, T6);
|
| - // hash_ = hash_ & ((static_cast<intptr_t>(1) << bits) - 1);
|
| - __ LoadImmediate(T6, (static_cast<intptr_t>(1) << String::kHashBits) - 1);
|
| - __ and_(V0, V0, T6);
|
| - __ Bind(&done);
|
| -
|
| - __ LoadImmediate(T2, 1);
|
| - __ movz(V0, T2, V0); // If V0 is 0, set to 1.
|
| - __ SmiTag(V0);
|
| -
|
| - __ Ret();
|
| - __ delay_slot()->sw(V0, FieldAddress(T1, String::hash_offset()));
|
| -}
|
| -
|
| -
|
| -// Allocates one-byte string of length 'end - start'. The content is not
|
| -// initialized.
|
| -// 'length-reg' (T2) contains tagged length.
|
| -// Returns new string as tagged pointer in V0.
|
| -static void TryAllocateOnebyteString(Assembler* assembler,
|
| - Label* ok,
|
| - Label* failure) {
|
| - const Register length_reg = T2;
|
| - NOT_IN_PRODUCT(__ MaybeTraceAllocation(kOneByteStringCid, V0, failure));
|
| - __ mov(T6, length_reg); // Save the length register.
|
| - // TODO(koda): Protect against negative length and overflow here.
|
| - __ SmiUntag(length_reg);
|
| - const intptr_t fixed_size_plus_alignment_padding =
|
| - sizeof(RawString) + kObjectAlignment - 1;
|
| - __ AddImmediate(length_reg, fixed_size_plus_alignment_padding);
|
| - __ LoadImmediate(TMP, ~(kObjectAlignment - 1));
|
| - __ and_(length_reg, length_reg, TMP);
|
| -
|
| - const intptr_t cid = kOneByteStringCid;
|
| - Heap::Space space = Heap::kNew;
|
| - __ lw(T3, Address(THR, Thread::heap_offset()));
|
| - __ lw(V0, Address(T3, Heap::TopOffset(space)));
|
| -
|
| - // length_reg: allocation size.
|
| - __ addu(T1, V0, length_reg);
|
| - __ BranchUnsignedLess(T1, V0, failure); // Fail on unsigned overflow.
|
| -
|
| - // Check if the allocation fits into the remaining space.
|
| - // V0: potential new object start.
|
| - // T1: potential next object start.
|
| - // T2: allocation size.
|
| - // T3: heap.
|
| - __ lw(T4, Address(T3, Heap::EndOffset(space)));
|
| - __ BranchUnsignedGreaterEqual(T1, T4, failure);
|
| -
|
| - // Successfully allocated the object(s), now update top to point to
|
| - // next object start and initialize the object.
|
| - __ sw(T1, Address(T3, Heap::TopOffset(space)));
|
| - __ AddImmediate(V0, kHeapObjectTag);
|
| -
|
| - NOT_IN_PRODUCT(__ UpdateAllocationStatsWithSize(cid, T2, T3, space));
|
| -
|
| - // Initialize the tags.
|
| - // V0: new object start as a tagged pointer.
|
| - // T1: new object end address.
|
| - // T2: allocation size.
|
| - {
|
| - Label overflow, done;
|
| - const intptr_t shift = RawObject::kSizeTagPos - kObjectAlignmentLog2;
|
| -
|
| - __ BranchUnsignedGreater(T2, Immediate(RawObject::SizeTag::kMaxSizeTag),
|
| - &overflow);
|
| - __ b(&done);
|
| - __ delay_slot()->sll(T2, T2, shift);
|
| - __ Bind(&overflow);
|
| - __ mov(T2, ZR);
|
| - __ Bind(&done);
|
| -
|
| - // Get the class index and insert it into the tags.
|
| - // T2: size and bit tags.
|
| - __ LoadImmediate(TMP, RawObject::ClassIdTag::encode(cid));
|
| - __ or_(T2, T2, TMP);
|
| - __ sw(T2, FieldAddress(V0, String::tags_offset())); // Store tags.
|
| - }
|
| -
|
| - // Set the length field using the saved length (T6).
|
| - __ StoreIntoObjectNoBarrier(V0, FieldAddress(V0, String::length_offset()),
|
| - T6);
|
| - // Clear hash.
|
| - __ b(ok);
|
| - __ delay_slot()->sw(ZR, FieldAddress(V0, String::hash_offset()));
|
| -}
|
| -
|
| -
|
| -// Arg0: OneByteString (receiver).
|
| -// Arg1: Start index as Smi.
|
| -// Arg2: End index as Smi.
|
| -// The indexes must be valid.
|
| -void Intrinsifier::OneByteString_substringUnchecked(Assembler* assembler) {
|
| - const intptr_t kStringOffset = 2 * kWordSize;
|
| - const intptr_t kStartIndexOffset = 1 * kWordSize;
|
| - const intptr_t kEndIndexOffset = 0 * kWordSize;
|
| - Label fall_through, ok;
|
| -
|
| - __ lw(T2, Address(SP, kEndIndexOffset));
|
| - __ lw(TMP, Address(SP, kStartIndexOffset));
|
| - __ or_(CMPRES1, T2, TMP);
|
| - __ andi(CMPRES1, CMPRES1, Immediate(kSmiTagMask));
|
| - __ bne(CMPRES1, ZR, &fall_through); // 'start', 'end' not Smi.
|
| -
|
| - __ subu(T2, T2, TMP);
|
| - TryAllocateOnebyteString(assembler, &ok, &fall_through);
|
| - __ Bind(&ok);
|
| - // V0: new string as tagged pointer.
|
| - // Copy string.
|
| - __ lw(T3, Address(SP, kStringOffset));
|
| - __ lw(T1, Address(SP, kStartIndexOffset));
|
| - __ SmiUntag(T1);
|
| - __ addu(T3, T3, T1);
|
| - __ AddImmediate(T3, OneByteString::data_offset() - 1);
|
| -
|
| - // T3: Start address to copy from (untagged).
|
| - // T1: Untagged start index.
|
| - __ lw(T2, Address(SP, kEndIndexOffset));
|
| - __ SmiUntag(T2);
|
| - __ subu(T2, T2, T1);
|
| -
|
| - // T3: Start address to copy from (untagged).
|
| - // T2: Untagged number of bytes to copy.
|
| - // V0: Tagged result string.
|
| - // T6: Pointer into T3.
|
| - // T7: Pointer into T0.
|
| - // T1: Scratch register.
|
| - Label loop, done;
|
| - __ beq(T2, ZR, &done);
|
| - __ mov(T6, T3);
|
| - __ mov(T7, V0);
|
| -
|
| - __ Bind(&loop);
|
| - __ lbu(T1, Address(T6, 0));
|
| - __ AddImmediate(T6, 1);
|
| - __ addiu(T2, T2, Immediate(-1));
|
| - __ sb(T1, FieldAddress(T7, OneByteString::data_offset()));
|
| - __ bgtz(T2, &loop);
|
| - __ delay_slot()->addiu(T7, T7, Immediate(1));
|
| -
|
| - __ Bind(&done);
|
| - __ Ret();
|
| - __ Bind(&fall_through);
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::OneByteStringSetAt(Assembler* assembler) {
|
| - __ lw(T2, Address(SP, 0 * kWordSize)); // Value.
|
| - __ lw(T1, Address(SP, 1 * kWordSize)); // Index.
|
| - __ lw(T0, Address(SP, 2 * kWordSize)); // OneByteString.
|
| - __ SmiUntag(T1);
|
| - __ SmiUntag(T2);
|
| - __ addu(T3, T0, T1);
|
| - __ Ret();
|
| - __ delay_slot()->sb(T2, FieldAddress(T3, OneByteString::data_offset()));
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::OneByteString_allocate(Assembler* assembler) {
|
| - Label fall_through, ok;
|
| -
|
| - __ lw(T2, Address(SP, 0 * kWordSize)); // Length.
|
| - TryAllocateOnebyteString(assembler, &ok, &fall_through);
|
| -
|
| - __ Bind(&ok);
|
| - __ Ret();
|
| -
|
| - __ Bind(&fall_through);
|
| -}
|
| -
|
| -
|
| -// TODO(srdjan): Add combinations (one-byte/two-byte/external strings).
|
| -static void StringEquality(Assembler* assembler, intptr_t string_cid) {
|
| - Label fall_through, is_true, is_false, loop;
|
| - __ lw(T0, Address(SP, 1 * kWordSize)); // This.
|
| - __ lw(T1, Address(SP, 0 * kWordSize)); // Other.
|
| -
|
| - // Are identical?
|
| - __ beq(T0, T1, &is_true);
|
| -
|
| - // Is other OneByteString?
|
| - __ andi(CMPRES1, T1, Immediate(kSmiTagMask));
|
| - __ beq(CMPRES1, ZR, &fall_through); // Other is Smi.
|
| - __ LoadClassId(CMPRES1, T1); // Class ID check.
|
| - __ BranchNotEqual(CMPRES1, Immediate(string_cid), &fall_through);
|
| -
|
| - // Have same length?
|
| - __ lw(T2, FieldAddress(T0, String::length_offset()));
|
| - __ lw(T3, FieldAddress(T1, String::length_offset()));
|
| - __ bne(T2, T3, &is_false);
|
| -
|
| - // Check contents, no fall-through possible.
|
| - ASSERT((string_cid == kOneByteStringCid) ||
|
| - (string_cid == kTwoByteStringCid));
|
| - __ SmiUntag(T2);
|
| - __ Bind(&loop);
|
| - __ AddImmediate(T2, -1);
|
| - __ BranchSignedLess(T2, Immediate(0), &is_true);
|
| - if (string_cid == kOneByteStringCid) {
|
| - __ lbu(V0, FieldAddress(T0, OneByteString::data_offset()));
|
| - __ lbu(V1, FieldAddress(T1, OneByteString::data_offset()));
|
| - __ AddImmediate(T0, 1);
|
| - __ AddImmediate(T1, 1);
|
| - } else if (string_cid == kTwoByteStringCid) {
|
| - __ lhu(V0, FieldAddress(T0, OneByteString::data_offset()));
|
| - __ lhu(V1, FieldAddress(T1, OneByteString::data_offset()));
|
| - __ AddImmediate(T0, 2);
|
| - __ AddImmediate(T1, 2);
|
| - } else {
|
| - UNIMPLEMENTED();
|
| - }
|
| - __ bne(V0, V1, &is_false);
|
| - __ b(&loop);
|
| -
|
| - __ Bind(&is_false);
|
| - __ LoadObject(V0, Bool::False());
|
| - __ Ret();
|
| - __ Bind(&is_true);
|
| - __ LoadObject(V0, Bool::True());
|
| - __ Ret();
|
| -
|
| - __ Bind(&fall_through);
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::OneByteString_equality(Assembler* assembler) {
|
| - StringEquality(assembler, kOneByteStringCid);
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::TwoByteString_equality(Assembler* assembler) {
|
| - StringEquality(assembler, kTwoByteStringCid);
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::IntrinsifyRegExpExecuteMatch(Assembler* assembler,
|
| - bool sticky) {
|
| - if (FLAG_interpret_irregexp) return;
|
| -
|
| - static const intptr_t kRegExpParamOffset = 2 * kWordSize;
|
| - static const intptr_t kStringParamOffset = 1 * kWordSize;
|
| - // start_index smi is located at 0.
|
| -
|
| - // Incoming registers:
|
| - // T0: Function. (Will be reloaded with the specialized matcher function.)
|
| - // S4: Arguments descriptor. (Will be preserved.)
|
| - // S5: Unknown. (Must be GC safe on tail call.)
|
| -
|
| - // Load the specialized function pointer into T0. Leverage the fact the
|
| - // string CIDs as well as stored function pointers are in sequence.
|
| - __ lw(T1, Address(SP, kRegExpParamOffset));
|
| - __ lw(T3, Address(SP, kStringParamOffset));
|
| - __ LoadClassId(T2, T3);
|
| - __ AddImmediate(T2, -kOneByteStringCid);
|
| - __ sll(T2, T2, kWordSizeLog2);
|
| - __ addu(T2, T2, T1);
|
| - __ lw(T0,
|
| - FieldAddress(T2, RegExp::function_offset(kOneByteStringCid, sticky)));
|
| -
|
| - // Registers are now set up for the lazy compile stub. It expects the function
|
| - // in T0, the argument descriptor in S4, and IC-Data in S5.
|
| - __ mov(S5, ZR);
|
| -
|
| - // Tail-call the function.
|
| - __ lw(CODE_REG, FieldAddress(T0, Function::code_offset()));
|
| - __ lw(T3, FieldAddress(T0, Function::entry_point_offset()));
|
| - __ jr(T3);
|
| -}
|
| -
|
| -
|
| -// On stack: user tag (+0).
|
| -void Intrinsifier::UserTag_makeCurrent(Assembler* assembler) {
|
| - // T1: Isolate.
|
| - __ LoadIsolate(T1);
|
| - // V0: Current user tag.
|
| - __ lw(V0, Address(T1, Isolate::current_tag_offset()));
|
| - // T2: UserTag.
|
| - __ lw(T2, Address(SP, +0 * kWordSize));
|
| - // Set Isolate::current_tag_.
|
| - __ sw(T2, Address(T1, Isolate::current_tag_offset()));
|
| - // T2: UserTag's tag.
|
| - __ lw(T2, FieldAddress(T2, UserTag::tag_offset()));
|
| - // Set Isolate::user_tag_.
|
| - __ sw(T2, Address(T1, Isolate::user_tag_offset()));
|
| - __ Ret();
|
| - __ delay_slot()->sw(T2, Address(T1, Isolate::user_tag_offset()));
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::UserTag_defaultTag(Assembler* assembler) {
|
| - __ LoadIsolate(V0);
|
| - __ Ret();
|
| - __ delay_slot()->lw(V0, Address(V0, Isolate::default_tag_offset()));
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::Profiler_getCurrentTag(Assembler* assembler) {
|
| - __ LoadIsolate(V0);
|
| - __ Ret();
|
| - __ delay_slot()->lw(V0, Address(V0, Isolate::current_tag_offset()));
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::Timeline_isDartStreamEnabled(Assembler* assembler) {
|
| - if (!FLAG_support_timeline) {
|
| - __ LoadObject(V0, Bool::False());
|
| - __ Ret();
|
| - return;
|
| - }
|
| - // Load TimelineStream*.
|
| - __ lw(V0, Address(THR, Thread::dart_stream_offset()));
|
| - // Load uintptr_t from TimelineStream*.
|
| - __ lw(T0, Address(V0, TimelineStream::enabled_offset()));
|
| - __ LoadObject(V0, Bool::True());
|
| - __ LoadObject(V1, Bool::False());
|
| - __ Ret();
|
| - __ delay_slot()->movz(V0, V1, T0); // V0 = (T0 == 0) ? V1 : V0.
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::ClearAsyncThreadStackTrace(Assembler* assembler) {
|
| - __ LoadObject(V0, Object::null_object());
|
| - __ sw(V0, Address(THR, Thread::async_stack_trace_offset()));
|
| - __ Ret();
|
| -}
|
| -
|
| -
|
| -void Intrinsifier::SetAsyncThreadStackTrace(Assembler* assembler) {
|
| - __ lw(V0, Address(THR, Thread::async_stack_trace_offset()));
|
| - __ LoadObject(V0, Object::null_object());
|
| - __ Ret();
|
| -}
|
| -
|
| -} // namespace dart
|
| -
|
| -#endif // defined TARGET_ARCH_MIPS
|
|
|