Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(586)

Unified Diff: src/mlp_train.c

Issue 28553003: Updating Opus to a pre-release of 1.1 (Closed) Base URL: svn://svn.chromium.org/chrome/trunk/deps/third_party/opus
Patch Set: Removing failing file Created 7 years, 2 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « src/mlp_train.h ('k') | src/opus.c » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/mlp_train.c
diff --git a/src/mlp_train.c b/src/mlp_train.c
new file mode 100644
index 0000000000000000000000000000000000000000..2e9568ba4e15b7174716bc3644899fba56064d62
--- /dev/null
+++ b/src/mlp_train.c
@@ -0,0 +1,501 @@
+/* Copyright (c) 2008-2011 Octasic Inc.
+ Written by Jean-Marc Valin */
+/*
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions
+ are met:
+
+ - Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+
+ - Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in the
+ documentation and/or other materials provided with the distribution.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
+ CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+ LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+ NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+*/
+
+
+#include "mlp_train.h"
+#include <stdlib.h>
+#include <stdio.h>
+#include <string.h>
+#include <semaphore.h>
+#include <pthread.h>
+#include <time.h>
+#include <signal.h>
+
+int stopped = 0;
+
+void handler(int sig)
+{
+ stopped = 1;
+ signal(sig, handler);
+}
+
+MLPTrain * mlp_init(int *topo, int nbLayers, float *inputs, float *outputs, int nbSamples)
+{
+ int i, j, k;
+ MLPTrain *net;
+ int inDim, outDim;
+ net = malloc(sizeof(*net));
+ net->topo = malloc(nbLayers*sizeof(net->topo[0]));
+ for (i=0;i<nbLayers;i++)
+ net->topo[i] = topo[i];
+ inDim = topo[0];
+ outDim = topo[nbLayers-1];
+ net->in_rate = malloc((inDim+1)*sizeof(net->in_rate[0]));
+ net->weights = malloc((nbLayers-1)*sizeof(net->weights));
+ net->best_weights = malloc((nbLayers-1)*sizeof(net->weights));
+ for (i=0;i<nbLayers-1;i++)
+ {
+ net->weights[i] = malloc((topo[i]+1)*topo[i+1]*sizeof(net->weights[0][0]));
+ net->best_weights[i] = malloc((topo[i]+1)*topo[i+1]*sizeof(net->weights[0][0]));
+ }
+ double inMean[inDim];
+ for (j=0;j<inDim;j++)
+ {
+ double std=0;
+ inMean[j] = 0;
+ for (i=0;i<nbSamples;i++)
+ {
+ inMean[j] += inputs[i*inDim+j];
+ std += inputs[i*inDim+j]*inputs[i*inDim+j];
+ }
+ inMean[j] /= nbSamples;
+ std /= nbSamples;
+ net->in_rate[1+j] = .5/(.0001+std);
+ std = std-inMean[j]*inMean[j];
+ if (std<.001)
+ std = .001;
+ std = 1/sqrt(inDim*std);
+ for (k=0;k<topo[1];k++)
+ net->weights[0][k*(topo[0]+1)+j+1] = randn(std);
+ }
+ net->in_rate[0] = 1;
+ for (j=0;j<topo[1];j++)
+ {
+ double sum = 0;
+ for (k=0;k<inDim;k++)
+ sum += inMean[k]*net->weights[0][j*(topo[0]+1)+k+1];
+ net->weights[0][j*(topo[0]+1)] = -sum;
+ }
+ for (j=0;j<outDim;j++)
+ {
+ double mean = 0;
+ double std;
+ for (i=0;i<nbSamples;i++)
+ mean += outputs[i*outDim+j];
+ mean /= nbSamples;
+ std = 1/sqrt(topo[nbLayers-2]);
+ net->weights[nbLayers-2][j*(topo[nbLayers-2]+1)] = mean;
+ for (k=0;k<topo[nbLayers-2];k++)
+ net->weights[nbLayers-2][j*(topo[nbLayers-2]+1)+k+1] = randn(std);
+ }
+ return net;
+}
+
+#define MAX_NEURONS 100
+#define MAX_OUT 10
+
+double compute_gradient(MLPTrain *net, float *inputs, float *outputs, int nbSamples, double *W0_grad, double *W1_grad, double *error_rate)
+{
+ int i,j;
+ int s;
+ int inDim, outDim, hiddenDim;
+ int *topo;
+ double *W0, *W1;
+ double rms=0;
+ int W0_size, W1_size;
+ double hidden[MAX_NEURONS];
+ double netOut[MAX_NEURONS];
+ double error[MAX_NEURONS];
+
+ for (i=0;i<outDim;i++)
+ error_rate[i] = 0;
+ topo = net->topo;
+ inDim = net->topo[0];
+ hiddenDim = net->topo[1];
+ outDim = net->topo[2];
+ W0_size = (topo[0]+1)*topo[1];
+ W1_size = (topo[1]+1)*topo[2];
+ W0 = net->weights[0];
+ W1 = net->weights[1];
+ memset(W0_grad, 0, W0_size*sizeof(double));
+ memset(W1_grad, 0, W1_size*sizeof(double));
+ for (i=0;i<outDim;i++)
+ netOut[i] = outputs[i];
+ for (s=0;s<nbSamples;s++)
+ {
+ float *in, *out;
+ in = inputs+s*inDim;
+ out = outputs + s*outDim;
+ for (i=0;i<hiddenDim;i++)
+ {
+ double sum = W0[i*(inDim+1)];
+ for (j=0;j<inDim;j++)
+ sum += W0[i*(inDim+1)+j+1]*in[j];
+ hidden[i] = tansig_approx(sum);
+ }
+ for (i=0;i<outDim;i++)
+ {
+ double sum = W1[i*(hiddenDim+1)];
+ for (j=0;j<hiddenDim;j++)
+ sum += W1[i*(hiddenDim+1)+j+1]*hidden[j];
+ netOut[i] = tansig_approx(sum);
+ error[i] = out[i] - netOut[i];
+ rms += error[i]*error[i];
+ error_rate[i] += fabs(error[i])>1;
+ /*error[i] = error[i]/(1+fabs(error[i]));*/
+ }
+ /* Back-propagate error */
+ for (i=0;i<outDim;i++)
+ {
+ float grad = 1-netOut[i]*netOut[i];
+ W1_grad[i*(hiddenDim+1)] += error[i]*grad;
+ for (j=0;j<hiddenDim;j++)
+ W1_grad[i*(hiddenDim+1)+j+1] += grad*error[i]*hidden[j];
+ }
+ for (i=0;i<hiddenDim;i++)
+ {
+ double grad;
+ grad = 0;
+ for (j=0;j<outDim;j++)
+ grad += error[j]*W1[j*(hiddenDim+1)+i+1];
+ grad *= 1-hidden[i]*hidden[i];
+ W0_grad[i*(inDim+1)] += grad;
+ for (j=0;j<inDim;j++)
+ W0_grad[i*(inDim+1)+j+1] += grad*in[j];
+ }
+ }
+ return rms;
+}
+
+#define NB_THREADS 8
+
+sem_t sem_begin[NB_THREADS];
+sem_t sem_end[NB_THREADS];
+
+struct GradientArg {
+ int id;
+ int done;
+ MLPTrain *net;
+ float *inputs;
+ float *outputs;
+ int nbSamples;
+ double *W0_grad;
+ double *W1_grad;
+ double rms;
+ double error_rate[MAX_OUT];
+};
+
+void *gradient_thread_process(void *_arg)
+{
+ int W0_size, W1_size;
+ struct GradientArg *arg = _arg;
+ int *topo = arg->net->topo;
+ W0_size = (topo[0]+1)*topo[1];
+ W1_size = (topo[1]+1)*topo[2];
+ double W0_grad[W0_size];
+ double W1_grad[W1_size];
+ arg->W0_grad = W0_grad;
+ arg->W1_grad = W1_grad;
+ while (1)
+ {
+ sem_wait(&sem_begin[arg->id]);
+ if (arg->done)
+ break;
+ arg->rms = compute_gradient(arg->net, arg->inputs, arg->outputs, arg->nbSamples, arg->W0_grad, arg->W1_grad, arg->error_rate);
+ sem_post(&sem_end[arg->id]);
+ }
+ fprintf(stderr, "done\n");
+ return NULL;
+}
+
+float mlp_train_backprop(MLPTrain *net, float *inputs, float *outputs, int nbSamples, int nbEpoch, float rate)
+{
+ int i, j;
+ int e;
+ float best_rms = 1e10;
+ int inDim, outDim, hiddenDim;
+ int *topo;
+ double *W0, *W1, *best_W0, *best_W1;
+ double *W0_old, *W1_old;
+ double *W0_old2, *W1_old2;
+ double *W0_grad, *W1_grad;
+ double *W0_oldgrad, *W1_oldgrad;
+ double *W0_rate, *W1_rate;
+ double *best_W0_rate, *best_W1_rate;
+ int W0_size, W1_size;
+ topo = net->topo;
+ W0_size = (topo[0]+1)*topo[1];
+ W1_size = (topo[1]+1)*topo[2];
+ struct GradientArg args[NB_THREADS];
+ pthread_t thread[NB_THREADS];
+ int samplePerPart = nbSamples/NB_THREADS;
+ int count_worse=0;
+ int count_retries=0;
+
+ topo = net->topo;
+ inDim = net->topo[0];
+ hiddenDim = net->topo[1];
+ outDim = net->topo[2];
+ W0 = net->weights[0];
+ W1 = net->weights[1];
+ best_W0 = net->best_weights[0];
+ best_W1 = net->best_weights[1];
+ W0_old = malloc(W0_size*sizeof(double));
+ W1_old = malloc(W1_size*sizeof(double));
+ W0_old2 = malloc(W0_size*sizeof(double));
+ W1_old2 = malloc(W1_size*sizeof(double));
+ W0_grad = malloc(W0_size*sizeof(double));
+ W1_grad = malloc(W1_size*sizeof(double));
+ W0_oldgrad = malloc(W0_size*sizeof(double));
+ W1_oldgrad = malloc(W1_size*sizeof(double));
+ W0_rate = malloc(W0_size*sizeof(double));
+ W1_rate = malloc(W1_size*sizeof(double));
+ best_W0_rate = malloc(W0_size*sizeof(double));
+ best_W1_rate = malloc(W1_size*sizeof(double));
+ memcpy(W0_old, W0, W0_size*sizeof(double));
+ memcpy(W0_old2, W0, W0_size*sizeof(double));
+ memset(W0_grad, 0, W0_size*sizeof(double));
+ memset(W0_oldgrad, 0, W0_size*sizeof(double));
+ memcpy(W1_old, W1, W1_size*sizeof(double));
+ memcpy(W1_old2, W1, W1_size*sizeof(double));
+ memset(W1_grad, 0, W1_size*sizeof(double));
+ memset(W1_oldgrad, 0, W1_size*sizeof(double));
+
+ rate /= nbSamples;
+ for (i=0;i<hiddenDim;i++)
+ for (j=0;j<inDim+1;j++)
+ W0_rate[i*(inDim+1)+j] = rate*net->in_rate[j];
+ for (i=0;i<W1_size;i++)
+ W1_rate[i] = rate;
+
+ for (i=0;i<NB_THREADS;i++)
+ {
+ args[i].net = net;
+ args[i].inputs = inputs+i*samplePerPart*inDim;
+ args[i].outputs = outputs+i*samplePerPart*outDim;
+ args[i].nbSamples = samplePerPart;
+ args[i].id = i;
+ args[i].done = 0;
+ sem_init(&sem_begin[i], 0, 0);
+ sem_init(&sem_end[i], 0, 0);
+ pthread_create(&thread[i], NULL, gradient_thread_process, &args[i]);
+ }
+ for (e=0;e<nbEpoch;e++)
+ {
+ double rms=0;
+ double error_rate[2] = {0,0};
+ for (i=0;i<NB_THREADS;i++)
+ {
+ sem_post(&sem_begin[i]);
+ }
+ memset(W0_grad, 0, W0_size*sizeof(double));
+ memset(W1_grad, 0, W1_size*sizeof(double));
+ for (i=0;i<NB_THREADS;i++)
+ {
+ sem_wait(&sem_end[i]);
+ rms += args[i].rms;
+ error_rate[0] += args[i].error_rate[0];
+ error_rate[1] += args[i].error_rate[1];
+ for (j=0;j<W0_size;j++)
+ W0_grad[j] += args[i].W0_grad[j];
+ for (j=0;j<W1_size;j++)
+ W1_grad[j] += args[i].W1_grad[j];
+ }
+
+ float mean_rate = 0, min_rate = 1e10;
+ rms = (rms/(outDim*nbSamples));
+ error_rate[0] = (error_rate[0]/(nbSamples));
+ error_rate[1] = (error_rate[1]/(nbSamples));
+ fprintf (stderr, "%f %f (%f %f) ", error_rate[0], error_rate[1], rms, best_rms);
+ if (rms < best_rms)
+ {
+ best_rms = rms;
+ for (i=0;i<W0_size;i++)
+ {
+ best_W0[i] = W0[i];
+ best_W0_rate[i] = W0_rate[i];
+ }
+ for (i=0;i<W1_size;i++)
+ {
+ best_W1[i] = W1[i];
+ best_W1_rate[i] = W1_rate[i];
+ }
+ count_worse=0;
+ count_retries=0;
+ } else {
+ count_worse++;
+ if (count_worse>30)
+ {
+ count_retries++;
+ count_worse=0;
+ for (i=0;i<W0_size;i++)
+ {
+ W0[i] = best_W0[i];
+ best_W0_rate[i] *= .7;
+ if (best_W0_rate[i]<1e-15) best_W0_rate[i]=1e-15;
+ W0_rate[i] = best_W0_rate[i];
+ W0_grad[i] = 0;
+ }
+ for (i=0;i<W1_size;i++)
+ {
+ W1[i] = best_W1[i];
+ best_W1_rate[i] *= .8;
+ if (best_W1_rate[i]<1e-15) best_W1_rate[i]=1e-15;
+ W1_rate[i] = best_W1_rate[i];
+ W1_grad[i] = 0;
+ }
+ }
+ }
+ if (count_retries>10)
+ break;
+ for (i=0;i<W0_size;i++)
+ {
+ if (W0_oldgrad[i]*W0_grad[i] > 0)
+ W0_rate[i] *= 1.01;
+ else if (W0_oldgrad[i]*W0_grad[i] < 0)
+ W0_rate[i] *= .9;
+ mean_rate += W0_rate[i];
+ if (W0_rate[i] < min_rate)
+ min_rate = W0_rate[i];
+ if (W0_rate[i] < 1e-15)
+ W0_rate[i] = 1e-15;
+ /*if (W0_rate[i] > .01)
+ W0_rate[i] = .01;*/
+ W0_oldgrad[i] = W0_grad[i];
+ W0_old2[i] = W0_old[i];
+ W0_old[i] = W0[i];
+ W0[i] += W0_grad[i]*W0_rate[i];
+ }
+ for (i=0;i<W1_size;i++)
+ {
+ if (W1_oldgrad[i]*W1_grad[i] > 0)
+ W1_rate[i] *= 1.01;
+ else if (W1_oldgrad[i]*W1_grad[i] < 0)
+ W1_rate[i] *= .9;
+ mean_rate += W1_rate[i];
+ if (W1_rate[i] < min_rate)
+ min_rate = W1_rate[i];
+ if (W1_rate[i] < 1e-15)
+ W1_rate[i] = 1e-15;
+ W1_oldgrad[i] = W1_grad[i];
+ W1_old2[i] = W1_old[i];
+ W1_old[i] = W1[i];
+ W1[i] += W1_grad[i]*W1_rate[i];
+ }
+ mean_rate /= (topo[0]+1)*topo[1] + (topo[1]+1)*topo[2];
+ fprintf (stderr, "%g %d", mean_rate, e);
+ if (count_retries)
+ fprintf(stderr, " %d", count_retries);
+ fprintf(stderr, "\n");
+ if (stopped)
+ break;
+ }
+ for (i=0;i<NB_THREADS;i++)
+ {
+ args[i].done = 1;
+ sem_post(&sem_begin[i]);
+ pthread_join(thread[i], NULL);
+ fprintf (stderr, "joined %d\n", i);
+ }
+ free(W0_old);
+ free(W1_old);
+ free(W0_grad);
+ free(W1_grad);
+ free(W0_rate);
+ free(W1_rate);
+ return best_rms;
+}
+
+int main(int argc, char **argv)
+{
+ int i, j;
+ int nbInputs;
+ int nbOutputs;
+ int nbHidden;
+ int nbSamples;
+ int nbEpoch;
+ int nbRealInputs;
+ unsigned int seed;
+ int ret;
+ float rms;
+ float *inputs;
+ float *outputs;
+ if (argc!=6)
+ {
+ fprintf (stderr, "usage: mlp_train <inputs> <hidden> <outputs> <nb samples> <nb epoch>\n");
+ return 1;
+ }
+ nbInputs = atoi(argv[1]);
+ nbHidden = atoi(argv[2]);
+ nbOutputs = atoi(argv[3]);
+ nbSamples = atoi(argv[4]);
+ nbEpoch = atoi(argv[5]);
+ nbRealInputs = nbInputs;
+ inputs = malloc(nbInputs*nbSamples*sizeof(*inputs));
+ outputs = malloc(nbOutputs*nbSamples*sizeof(*outputs));
+
+ seed = time(NULL);
+ /*seed = 1361480659;*/
+ fprintf (stderr, "Seed is %u\n", seed);
+ srand(seed);
+ build_tansig_table();
+ signal(SIGTERM, handler);
+ signal(SIGINT, handler);
+ signal(SIGHUP, handler);
+ for (i=0;i<nbSamples;i++)
+ {
+ for (j=0;j<nbRealInputs;j++)
+ ret = scanf(" %f", &inputs[i*nbInputs+j]);
+ for (j=0;j<nbOutputs;j++)
+ ret = scanf(" %f", &outputs[i*nbOutputs+j]);
+ if (feof(stdin))
+ {
+ nbSamples = i;
+ break;
+ }
+ }
+ int topo[3] = {nbInputs, nbHidden, nbOutputs};
+ MLPTrain *net;
+
+ fprintf (stderr, "Got %d samples\n", nbSamples);
+ net = mlp_init(topo, 3, inputs, outputs, nbSamples);
+ rms = mlp_train_backprop(net, inputs, outputs, nbSamples, nbEpoch, 1);
+ printf ("#include \"mlp.h\"\n\n");
+ printf ("/* RMS error was %f, seed was %u */\n\n", rms, seed);
+ printf ("static const float weights[%d] = {\n", (topo[0]+1)*topo[1] + (topo[1]+1)*topo[2]);
+ printf ("\n/* hidden layer */\n");
+ for (i=0;i<(topo[0]+1)*topo[1];i++)
+ {
+ printf ("%gf, ", net->weights[0][i]);
+ if (i%5==4)
+ printf("\n");
+ }
+ printf ("\n/* output layer */\n");
+ for (i=0;i<(topo[1]+1)*topo[2];i++)
+ {
+ printf ("%g, ", net->weights[1][i]);
+ if (i%5==4)
+ printf("\n");
+ }
+ printf ("};\n\n");
+ printf ("static const int topo[3] = {%d, %d, %d};\n\n", topo[0], topo[1], topo[2]);
+ printf ("const MLP net = {\n");
+ printf ("\t3,\n");
+ printf ("\ttopo,\n");
+ printf ("\tweights\n};\n");
+ return 0;
+}
« no previous file with comments | « src/mlp_train.h ('k') | src/opus.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698