| Index: silk/fixed/pitch_analysis_core_FIX.c
|
| diff --git a/silk/fixed/pitch_analysis_core_FIX.c b/silk/fixed/pitch_analysis_core_FIX.c
|
| index d43f444d8acd39f9d78524d2c752a810d30139e4..b6bc0bbfaa111e0924f856d93c5f1c5d5d5cb1f9 100644
|
| --- a/silk/fixed/pitch_analysis_core_FIX.c
|
| +++ b/silk/fixed/pitch_analysis_core_FIX.c
|
| @@ -8,11 +8,11 @@ this list of conditions and the following disclaimer.
|
| - Redistributions in binary form must reproduce the above copyright
|
| notice, this list of conditions and the following disclaimer in the
|
| documentation and/or other materials provided with the distribution.
|
| -- Neither the name of Internet Society, IETF or IETF Trust, nor the
|
| +- Neither the name of Internet Society, IETF or IETF Trust, nor the
|
| names of specific contributors, may be used to endorse or promote
|
| products derived from this software without specific prior written
|
| permission.
|
| -THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
|
| +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
| AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
| IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
| ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
| @@ -34,15 +34,30 @@ POSSIBILITY OF SUCH DAMAGE.
|
| ********************************************************** */
|
| #include "SigProc_FIX.h"
|
| #include "pitch_est_defines.h"
|
| +#include "stack_alloc.h"
|
| #include "debug.h"
|
| +#include "pitch.h"
|
|
|
| #define SCRATCH_SIZE 22
|
| +#define SF_LENGTH_4KHZ ( PE_SUBFR_LENGTH_MS * 4 )
|
| +#define SF_LENGTH_8KHZ ( PE_SUBFR_LENGTH_MS * 8 )
|
| +#define MIN_LAG_4KHZ ( PE_MIN_LAG_MS * 4 )
|
| +#define MIN_LAG_8KHZ ( PE_MIN_LAG_MS * 8 )
|
| +#define MAX_LAG_4KHZ ( PE_MAX_LAG_MS * 4 )
|
| +#define MAX_LAG_8KHZ ( PE_MAX_LAG_MS * 8 - 1 )
|
| +#define CSTRIDE_4KHZ ( MAX_LAG_4KHZ + 1 - MIN_LAG_4KHZ )
|
| +#define CSTRIDE_8KHZ ( MAX_LAG_8KHZ + 3 - ( MIN_LAG_8KHZ - 2 ) )
|
| +#define D_COMP_MIN ( MIN_LAG_8KHZ - 3 )
|
| +#define D_COMP_MAX ( MAX_LAG_8KHZ + 4 )
|
| +#define D_COMP_STRIDE ( D_COMP_MAX - D_COMP_MIN )
|
| +
|
| +typedef opus_int32 silk_pe_stage3_vals[ PE_NB_STAGE3_LAGS ];
|
|
|
| /************************************************************/
|
| /* Internally used functions */
|
| /************************************************************/
|
| -void silk_P_Ana_calc_corr_st3(
|
| - opus_int32 cross_corr_st3[ PE_MAX_NB_SUBFR ][ PE_NB_CBKS_STAGE3_MAX ][ PE_NB_STAGE3_LAGS ],/* (O) 3 DIM correlation array */
|
| +static void silk_P_Ana_calc_corr_st3(
|
| + silk_pe_stage3_vals cross_corr_st3[], /* O 3 DIM correlation array */
|
| const opus_int16 frame[], /* I vector to correlate */
|
| opus_int start_lag, /* I lag offset to search around */
|
| opus_int sf_length, /* I length of a 5 ms subframe */
|
| @@ -50,8 +65,8 @@ void silk_P_Ana_calc_corr_st3(
|
| opus_int complexity /* I Complexity setting */
|
| );
|
|
|
| -void silk_P_Ana_calc_energy_st3(
|
| - opus_int32 energies_st3[ PE_MAX_NB_SUBFR ][ PE_NB_CBKS_STAGE3_MAX ][ PE_NB_STAGE3_LAGS ],/* (O) 3 DIM energy array */
|
| +static void silk_P_Ana_calc_energy_st3(
|
| + silk_pe_stage3_vals energies_st3[], /* O 3 DIM energy array */
|
| const opus_int16 frame[], /* I vector to calc energy in */
|
| opus_int start_lag, /* I lag offset to search around */
|
| opus_int sf_length, /* I length of one 5 ms subframe */
|
| @@ -59,12 +74,6 @@ void silk_P_Ana_calc_energy_st3(
|
| opus_int complexity /* I Complexity setting */
|
| );
|
|
|
| -opus_int32 silk_P_Ana_find_scaling(
|
| - const opus_int16 *frame,
|
| - const opus_int frame_length,
|
| - const opus_int sum_sqr_len
|
| -);
|
| -
|
| /*************************************************************/
|
| /* FIXED POINT CORE PITCH ANALYSIS FUNCTION */
|
| /*************************************************************/
|
| @@ -76,36 +85,37 @@ opus_int silk_pitch_analysis_core( /* O Voicing estimate: 0
|
| opus_int *LTPCorr_Q15, /* I/O Normalized correlation; input: value from previous frame */
|
| opus_int prevLag, /* I Last lag of previous frame; set to zero is unvoiced */
|
| const opus_int32 search_thres1_Q16, /* I First stage threshold for lag candidates 0 - 1 */
|
| - const opus_int search_thres2_Q15, /* I Final threshold for lag candidates 0 - 1 */
|
| + const opus_int search_thres2_Q13, /* I Final threshold for lag candidates 0 - 1 */
|
| const opus_int Fs_kHz, /* I Sample frequency (kHz) */
|
| const opus_int complexity, /* I Complexity setting, 0-2, where 2 is highest */
|
| const opus_int nb_subfr /* I number of 5 ms subframes */
|
| )
|
| {
|
| - opus_int16 frame_8kHz[ PE_MAX_FRAME_LENGTH_ST_2 ];
|
| - opus_int16 frame_4kHz[ PE_MAX_FRAME_LENGTH_ST_1 ];
|
| + VARDECL( opus_int16, frame_8kHz );
|
| + VARDECL( opus_int16, frame_4kHz );
|
| opus_int32 filt_state[ 6 ];
|
| - opus_int32 scratch_mem[ 3 * PE_MAX_FRAME_LENGTH ];
|
| - opus_int16 *input_frame_ptr;
|
| + const opus_int16 *input_frame_ptr;
|
| opus_int i, k, d, j;
|
| - opus_int16 C[ PE_MAX_NB_SUBFR ][ ( PE_MAX_LAG >> 1 ) + 5 ];
|
| + VARDECL( opus_int16, C );
|
| + VARDECL( opus_int32, xcorr32 );
|
| const opus_int16 *target_ptr, *basis_ptr;
|
| opus_int32 cross_corr, normalizer, energy, shift, energy_basis, energy_target;
|
| opus_int d_srch[ PE_D_SRCH_LENGTH ], Cmax, length_d_srch, length_d_comp;
|
| - opus_int16 d_comp[ ( PE_MAX_LAG >> 1 ) + 5 ];
|
| - opus_int32 sum, threshold, temp32, lag_counter;
|
| + VARDECL( opus_int16, d_comp );
|
| + opus_int32 sum, threshold, lag_counter;
|
| opus_int CBimax, CBimax_new, CBimax_old, lag, start_lag, end_lag, lag_new;
|
| opus_int32 CC[ PE_NB_CBKS_STAGE2_EXT ], CCmax, CCmax_b, CCmax_new_b, CCmax_new;
|
| - opus_int32 energies_st3[ PE_MAX_NB_SUBFR ][ PE_NB_CBKS_STAGE3_MAX ][ PE_NB_STAGE3_LAGS ];
|
| - opus_int32 crosscorr_st3[ PE_MAX_NB_SUBFR ][ PE_NB_CBKS_STAGE3_MAX ][ PE_NB_STAGE3_LAGS ];
|
| - opus_int frame_length, frame_length_8kHz, frame_length_4kHz, max_sum_sq_length;
|
| - opus_int sf_length, sf_length_8kHz, sf_length_4kHz;
|
| - opus_int min_lag, min_lag_8kHz, min_lag_4kHz;
|
| - opus_int max_lag, max_lag_8kHz, max_lag_4kHz;
|
| - opus_int32 contour_bias_Q20, diff, lz, lshift;
|
| + VARDECL( silk_pe_stage3_vals, energies_st3 );
|
| + VARDECL( silk_pe_stage3_vals, cross_corr_st3 );
|
| + opus_int frame_length, frame_length_8kHz, frame_length_4kHz;
|
| + opus_int sf_length;
|
| + opus_int min_lag;
|
| + opus_int max_lag;
|
| + opus_int32 contour_bias_Q15, diff;
|
| opus_int nb_cbk_search, cbk_size;
|
| - opus_int32 delta_lag_log2_sqr_Q7, lag_log2_Q7, prevLag_log2_Q7, prev_lag_bias_Q15, corr_thres_Q15;
|
| + opus_int32 delta_lag_log2_sqr_Q7, lag_log2_Q7, prevLag_log2_Q7, prev_lag_bias_Q13;
|
| const opus_int8 *Lag_CB_ptr;
|
| + SAVE_STACK;
|
| /* Check for valid sampling frequency */
|
| silk_assert( Fs_kHz == 8 || Fs_kHz == 12 || Fs_kHz == 16 );
|
|
|
| @@ -114,25 +124,18 @@ opus_int silk_pitch_analysis_core( /* O Voicing estimate: 0
|
| silk_assert( complexity <= SILK_PE_MAX_COMPLEX );
|
|
|
| silk_assert( search_thres1_Q16 >= 0 && search_thres1_Q16 <= (1<<16) );
|
| - silk_assert( search_thres2_Q15 >= 0 && search_thres2_Q15 <= (1<<15) );
|
| + silk_assert( search_thres2_Q13 >= 0 && search_thres2_Q13 <= (1<<13) );
|
|
|
| /* Set up frame lengths max / min lag for the sampling frequency */
|
| frame_length = ( PE_LTP_MEM_LENGTH_MS + nb_subfr * PE_SUBFR_LENGTH_MS ) * Fs_kHz;
|
| frame_length_4kHz = ( PE_LTP_MEM_LENGTH_MS + nb_subfr * PE_SUBFR_LENGTH_MS ) * 4;
|
| frame_length_8kHz = ( PE_LTP_MEM_LENGTH_MS + nb_subfr * PE_SUBFR_LENGTH_MS ) * 8;
|
| sf_length = PE_SUBFR_LENGTH_MS * Fs_kHz;
|
| - sf_length_4kHz = PE_SUBFR_LENGTH_MS * 4;
|
| - sf_length_8kHz = PE_SUBFR_LENGTH_MS * 8;
|
| min_lag = PE_MIN_LAG_MS * Fs_kHz;
|
| - min_lag_4kHz = PE_MIN_LAG_MS * 4;
|
| - min_lag_8kHz = PE_MIN_LAG_MS * 8;
|
| max_lag = PE_MAX_LAG_MS * Fs_kHz - 1;
|
| - max_lag_4kHz = PE_MAX_LAG_MS * 4;
|
| - max_lag_8kHz = PE_MAX_LAG_MS * 8 - 1;
|
| -
|
| - silk_memset( C, 0, sizeof( opus_int16 ) * nb_subfr * ( ( PE_MAX_LAG >> 1 ) + 5) );
|
|
|
| /* Resample from input sampled at Fs_kHz to 8 kHz */
|
| + ALLOC( frame_8kHz, frame_length_8kHz, opus_int16 );
|
| if( Fs_kHz == 16 ) {
|
| silk_memset( filt_state, 0, 2 * sizeof( opus_int32 ) );
|
| silk_resampler_down2( filt_state, frame_8kHz, frame, frame_length );
|
| @@ -146,6 +149,7 @@ opus_int silk_pitch_analysis_core( /* O Voicing estimate: 0
|
|
|
| /* Decimate again to 4 kHz */
|
| silk_memset( filt_state, 0, 2 * sizeof( opus_int32 ) );/* Set state to zero */
|
| + ALLOC( frame_4kHz, frame_length_4kHz, opus_int16 );
|
| silk_resampler_down2( filt_state, frame_4kHz, frame_8kHz, frame_length_8kHz );
|
|
|
| /* Low-pass filter */
|
| @@ -159,9 +163,9 @@ opus_int silk_pitch_analysis_core( /* O Voicing estimate: 0
|
| *******************************************************************************/
|
|
|
| /* Inner product is calculated with different lengths, so scale for the worst case */
|
| - max_sum_sq_length = silk_max_32( sf_length_8kHz, silk_LSHIFT( sf_length_4kHz, 2 ) );
|
| - shift = silk_P_Ana_find_scaling( frame_4kHz, frame_length_4kHz, max_sum_sq_length );
|
| + silk_sum_sqr_shift( &energy, &shift, frame_4kHz, frame_length_4kHz );
|
| if( shift > 0 ) {
|
| + shift = silk_RSHIFT( shift, 1 );
|
| for( i = 0; i < frame_length_4kHz; i++ ) {
|
| frame_4kHz[ i ] = silk_RSHIFT( frame_4kHz[ i ], shift );
|
| }
|
| @@ -170,94 +174,93 @@ opus_int silk_pitch_analysis_core( /* O Voicing estimate: 0
|
| /******************************************************************************
|
| * FIRST STAGE, operating in 4 khz
|
| ******************************************************************************/
|
| - target_ptr = &frame_4kHz[ silk_LSHIFT( sf_length_4kHz, 2 ) ];
|
| + ALLOC( C, nb_subfr * CSTRIDE_8KHZ, opus_int16 );
|
| + ALLOC( xcorr32, MAX_LAG_4KHZ-MIN_LAG_4KHZ+1, opus_int32 );
|
| + silk_memset( C, 0, (nb_subfr >> 1) * CSTRIDE_4KHZ * sizeof( opus_int16 ) );
|
| + target_ptr = &frame_4kHz[ silk_LSHIFT( SF_LENGTH_4KHZ, 2 ) ];
|
| for( k = 0; k < nb_subfr >> 1; k++ ) {
|
| /* Check that we are within range of the array */
|
| silk_assert( target_ptr >= frame_4kHz );
|
| - silk_assert( target_ptr + sf_length_8kHz <= frame_4kHz + frame_length_4kHz );
|
| + silk_assert( target_ptr + SF_LENGTH_8KHZ <= frame_4kHz + frame_length_4kHz );
|
|
|
| - basis_ptr = target_ptr - min_lag_4kHz;
|
| + basis_ptr = target_ptr - MIN_LAG_4KHZ;
|
|
|
| /* Check that we are within range of the array */
|
| silk_assert( basis_ptr >= frame_4kHz );
|
| - silk_assert( basis_ptr + sf_length_8kHz <= frame_4kHz + frame_length_4kHz );
|
| + silk_assert( basis_ptr + SF_LENGTH_8KHZ <= frame_4kHz + frame_length_4kHz );
|
| +
|
| + celt_pitch_xcorr( target_ptr, target_ptr - MAX_LAG_4KHZ, xcorr32, SF_LENGTH_8KHZ, MAX_LAG_4KHZ - MIN_LAG_4KHZ + 1 );
|
|
|
| /* Calculate first vector products before loop */
|
| - cross_corr = silk_inner_prod_aligned( target_ptr, basis_ptr, sf_length_8kHz );
|
| - normalizer = silk_inner_prod_aligned( basis_ptr, basis_ptr, sf_length_8kHz );
|
| - normalizer = silk_ADD_SAT32( normalizer, silk_SMULBB( sf_length_8kHz, 4000 ) );
|
| + cross_corr = xcorr32[ MAX_LAG_4KHZ - MIN_LAG_4KHZ ];
|
| + normalizer = silk_inner_prod_aligned( target_ptr, target_ptr, SF_LENGTH_8KHZ );
|
| + normalizer = silk_ADD32( normalizer, silk_inner_prod_aligned( basis_ptr, basis_ptr, SF_LENGTH_8KHZ ) );
|
| + normalizer = silk_ADD32( normalizer, silk_SMULBB( SF_LENGTH_8KHZ, 4000 ) );
|
|
|
| - temp32 = silk_DIV32( cross_corr, silk_SQRT_APPROX( normalizer ) + 1 );
|
| - C[ k ][ min_lag_4kHz ] = (opus_int16)silk_SAT16( temp32 ); /* Q0 */
|
| + matrix_ptr( C, k, 0, CSTRIDE_4KHZ ) =
|
| + (opus_int16)silk_DIV32_varQ( cross_corr, normalizer, 13 + 1 ); /* Q13 */
|
|
|
| /* From now on normalizer is computed recursively */
|
| - for( d = min_lag_4kHz + 1; d <= max_lag_4kHz; d++ ) {
|
| + for( d = MIN_LAG_4KHZ + 1; d <= MAX_LAG_4KHZ; d++ ) {
|
| basis_ptr--;
|
|
|
| /* Check that we are within range of the array */
|
| silk_assert( basis_ptr >= frame_4kHz );
|
| - silk_assert( basis_ptr + sf_length_8kHz <= frame_4kHz + frame_length_4kHz );
|
| + silk_assert( basis_ptr + SF_LENGTH_8KHZ <= frame_4kHz + frame_length_4kHz );
|
|
|
| - cross_corr = silk_inner_prod_aligned( target_ptr, basis_ptr, sf_length_8kHz );
|
| + cross_corr = xcorr32[ MAX_LAG_4KHZ - d ];
|
|
|
| /* Add contribution of new sample and remove contribution from oldest sample */
|
| - normalizer +=
|
| + normalizer = silk_ADD32( normalizer,
|
| silk_SMULBB( basis_ptr[ 0 ], basis_ptr[ 0 ] ) -
|
| - silk_SMULBB( basis_ptr[ sf_length_8kHz ], basis_ptr[ sf_length_8kHz ] );
|
| + silk_SMULBB( basis_ptr[ SF_LENGTH_8KHZ ], basis_ptr[ SF_LENGTH_8KHZ ] ) );
|
|
|
| - temp32 = silk_DIV32( cross_corr, silk_SQRT_APPROX( normalizer ) + 1 );
|
| - C[ k ][ d ] = (opus_int16)silk_SAT16( temp32 ); /* Q0 */
|
| + matrix_ptr( C, k, d - MIN_LAG_4KHZ, CSTRIDE_4KHZ) =
|
| + (opus_int16)silk_DIV32_varQ( cross_corr, normalizer, 13 + 1 ); /* Q13 */
|
| }
|
| /* Update target pointer */
|
| - target_ptr += sf_length_8kHz;
|
| + target_ptr += SF_LENGTH_8KHZ;
|
| }
|
|
|
| /* Combine two subframes into single correlation measure and apply short-lag bias */
|
| if( nb_subfr == PE_MAX_NB_SUBFR ) {
|
| - for( i = max_lag_4kHz; i >= min_lag_4kHz; i-- ) {
|
| - sum = (opus_int32)C[ 0 ][ i ] + (opus_int32)C[ 1 ][ i ]; /* Q0 */
|
| - silk_assert( silk_RSHIFT( sum, 1 ) == silk_SAT16( silk_RSHIFT( sum, 1 ) ) );
|
| - sum = silk_RSHIFT( sum, 1 ); /* Q-1 */
|
| - silk_assert( silk_LSHIFT( (opus_int32)-i, 4 ) == silk_SAT16( silk_LSHIFT( (opus_int32)-i, 4 ) ) );
|
| - sum = silk_SMLAWB( sum, sum, silk_LSHIFT( -i, 4 ) ); /* Q-1 */
|
| - silk_assert( sum == silk_SAT16( sum ) );
|
| - C[ 0 ][ i ] = (opus_int16)sum; /* Q-1 */
|
| + for( i = MAX_LAG_4KHZ; i >= MIN_LAG_4KHZ; i-- ) {
|
| + sum = (opus_int32)matrix_ptr( C, 0, i - MIN_LAG_4KHZ, CSTRIDE_4KHZ )
|
| + + (opus_int32)matrix_ptr( C, 1, i - MIN_LAG_4KHZ, CSTRIDE_4KHZ ); /* Q14 */
|
| + sum = silk_SMLAWB( sum, sum, silk_LSHIFT( -i, 4 ) ); /* Q14 */
|
| + C[ i - MIN_LAG_4KHZ ] = (opus_int16)sum; /* Q14 */
|
| }
|
| } else {
|
| /* Only short-lag bias */
|
| - for( i = max_lag_4kHz; i >= min_lag_4kHz; i-- ) {
|
| - sum = (opus_int32)C[ 0 ][ i ];
|
| - sum = silk_SMLAWB( sum, sum, silk_LSHIFT( -i, 4 ) ); /* Q-1 */
|
| - C[ 0 ][ i ] = (opus_int16)sum; /* Q-1 */
|
| + for( i = MAX_LAG_4KHZ; i >= MIN_LAG_4KHZ; i-- ) {
|
| + sum = silk_LSHIFT( (opus_int32)C[ i - MIN_LAG_4KHZ ], 1 ); /* Q14 */
|
| + sum = silk_SMLAWB( sum, sum, silk_LSHIFT( -i, 4 ) ); /* Q14 */
|
| + C[ i - MIN_LAG_4KHZ ] = (opus_int16)sum; /* Q14 */
|
| }
|
| }
|
|
|
| /* Sort */
|
| length_d_srch = silk_ADD_LSHIFT32( 4, complexity, 1 );
|
| silk_assert( 3 * length_d_srch <= PE_D_SRCH_LENGTH );
|
| - silk_insertion_sort_decreasing_int16( &C[ 0 ][ min_lag_4kHz ], d_srch, max_lag_4kHz - min_lag_4kHz + 1, length_d_srch );
|
| + silk_insertion_sort_decreasing_int16( C, d_srch, CSTRIDE_4KHZ,
|
| + length_d_srch );
|
|
|
| /* Escape if correlation is very low already here */
|
| - target_ptr = &frame_4kHz[ silk_SMULBB( sf_length_4kHz, nb_subfr ) ];
|
| - energy = silk_inner_prod_aligned( target_ptr, target_ptr, silk_LSHIFT( sf_length_4kHz, 2 ) );
|
| - energy = silk_ADD_SAT32( energy, 1000 ); /* Q0 */
|
| - Cmax = (opus_int)C[ 0 ][ min_lag_4kHz ]; /* Q-1 */
|
| - threshold = silk_SMULBB( Cmax, Cmax ); /* Q-2 */
|
| -
|
| - /* Compare in Q-2 domain */
|
| - if( silk_RSHIFT( energy, 4 + 2 ) > threshold ) {
|
| + Cmax = (opus_int)C[ 0 ]; /* Q14 */
|
| + if( Cmax < SILK_FIX_CONST( 0.2, 14 ) ) {
|
| silk_memset( pitch_out, 0, nb_subfr * sizeof( opus_int ) );
|
| *LTPCorr_Q15 = 0;
|
| *lagIndex = 0;
|
| *contourIndex = 0;
|
| + RESTORE_STACK;
|
| return 1;
|
| }
|
|
|
| threshold = silk_SMULWB( search_thres1_Q16, Cmax );
|
| for( i = 0; i < length_d_srch; i++ ) {
|
| /* Convert to 8 kHz indices for the sorted correlation that exceeds the threshold */
|
| - if( C[ 0 ][ min_lag_4kHz + i ] > threshold ) {
|
| - d_srch[ i ] = silk_LSHIFT( d_srch[ i ] + min_lag_4kHz, 1 );
|
| + if( C[ i ] > threshold ) {
|
| + d_srch[ i ] = silk_LSHIFT( d_srch[ i ] + MIN_LAG_4KHZ, 1 );
|
| } else {
|
| length_d_srch = i;
|
| break;
|
| @@ -265,34 +268,37 @@ opus_int silk_pitch_analysis_core( /* O Voicing estimate: 0
|
| }
|
| silk_assert( length_d_srch > 0 );
|
|
|
| - for( i = min_lag_8kHz - 5; i < max_lag_8kHz + 5; i++ ) {
|
| - d_comp[ i ] = 0;
|
| + ALLOC( d_comp, D_COMP_STRIDE, opus_int16 );
|
| + for( i = D_COMP_MIN; i < D_COMP_MAX; i++ ) {
|
| + d_comp[ i - D_COMP_MIN ] = 0;
|
| }
|
| for( i = 0; i < length_d_srch; i++ ) {
|
| - d_comp[ d_srch[ i ] ] = 1;
|
| + d_comp[ d_srch[ i ] - D_COMP_MIN ] = 1;
|
| }
|
|
|
| /* Convolution */
|
| - for( i = max_lag_8kHz + 3; i >= min_lag_8kHz; i-- ) {
|
| - d_comp[ i ] += d_comp[ i - 1 ] + d_comp[ i - 2 ];
|
| + for( i = D_COMP_MAX - 1; i >= MIN_LAG_8KHZ; i-- ) {
|
| + d_comp[ i - D_COMP_MIN ] +=
|
| + d_comp[ i - 1 - D_COMP_MIN ] + d_comp[ i - 2 - D_COMP_MIN ];
|
| }
|
|
|
| length_d_srch = 0;
|
| - for( i = min_lag_8kHz; i < max_lag_8kHz + 1; i++ ) {
|
| - if( d_comp[ i + 1 ] > 0 ) {
|
| + for( i = MIN_LAG_8KHZ; i < MAX_LAG_8KHZ + 1; i++ ) {
|
| + if( d_comp[ i + 1 - D_COMP_MIN ] > 0 ) {
|
| d_srch[ length_d_srch ] = i;
|
| length_d_srch++;
|
| }
|
| }
|
|
|
| /* Convolution */
|
| - for( i = max_lag_8kHz + 3; i >= min_lag_8kHz; i-- ) {
|
| - d_comp[ i ] += d_comp[ i - 1 ] + d_comp[ i - 2 ] + d_comp[ i - 3 ];
|
| + for( i = D_COMP_MAX - 1; i >= MIN_LAG_8KHZ; i-- ) {
|
| + d_comp[ i - D_COMP_MIN ] += d_comp[ i - 1 - D_COMP_MIN ]
|
| + + d_comp[ i - 2 - D_COMP_MIN ] + d_comp[ i - 3 - D_COMP_MIN ];
|
| }
|
|
|
| length_d_comp = 0;
|
| - for( i = min_lag_8kHz; i < max_lag_8kHz + 4; i++ ) {
|
| - if( d_comp[ i ] > 0 ) {
|
| + for( i = MIN_LAG_8KHZ; i < D_COMP_MAX; i++ ) {
|
| + if( d_comp[ i - D_COMP_MIN ] > 0 ) {
|
| d_comp[ length_d_comp ] = i - 2;
|
| length_d_comp++;
|
| }
|
| @@ -306,8 +312,9 @@ opus_int silk_pitch_analysis_core( /* O Voicing estimate: 0
|
| ** Scale signal down to avoid correlations measures from overflowing
|
| *******************************************************************************/
|
| /* find scaling as max scaling for each subframe */
|
| - shift = silk_P_Ana_find_scaling( frame_8kHz, frame_length_8kHz, sf_length_8kHz );
|
| + silk_sum_sqr_shift( &energy, &shift, frame_8kHz, frame_length_8kHz );
|
| if( shift > 0 ) {
|
| + shift = silk_RSHIFT( shift, 1 );
|
| for( i = 0; i < frame_length_8kHz; i++ ) {
|
| frame_8kHz[ i ] = silk_RSHIFT( frame_8kHz[ i ], shift );
|
| }
|
| @@ -316,43 +323,37 @@ opus_int silk_pitch_analysis_core( /* O Voicing estimate: 0
|
| /*********************************************************************************
|
| * Find energy of each subframe projected onto its history, for a range of delays
|
| *********************************************************************************/
|
| - silk_memset( C, 0, PE_MAX_NB_SUBFR * ( ( PE_MAX_LAG >> 1 ) + 5 ) * sizeof( opus_int16 ) );
|
| + silk_memset( C, 0, nb_subfr * CSTRIDE_8KHZ * sizeof( opus_int16 ) );
|
|
|
| target_ptr = &frame_8kHz[ PE_LTP_MEM_LENGTH_MS * 8 ];
|
| for( k = 0; k < nb_subfr; k++ ) {
|
|
|
| /* Check that we are within range of the array */
|
| silk_assert( target_ptr >= frame_8kHz );
|
| - silk_assert( target_ptr + sf_length_8kHz <= frame_8kHz + frame_length_8kHz );
|
| + silk_assert( target_ptr + SF_LENGTH_8KHZ <= frame_8kHz + frame_length_8kHz );
|
|
|
| - energy_target = silk_inner_prod_aligned( target_ptr, target_ptr, sf_length_8kHz );
|
| + energy_target = silk_ADD32( silk_inner_prod_aligned( target_ptr, target_ptr, SF_LENGTH_8KHZ ), 1 );
|
| for( j = 0; j < length_d_comp; j++ ) {
|
| d = d_comp[ j ];
|
| basis_ptr = target_ptr - d;
|
|
|
| /* Check that we are within range of the array */
|
| silk_assert( basis_ptr >= frame_8kHz );
|
| - silk_assert( basis_ptr + sf_length_8kHz <= frame_8kHz + frame_length_8kHz );
|
| + silk_assert( basis_ptr + SF_LENGTH_8KHZ <= frame_8kHz + frame_length_8kHz );
|
|
|
| - cross_corr = silk_inner_prod_aligned( target_ptr, basis_ptr, sf_length_8kHz );
|
| - energy_basis = silk_inner_prod_aligned( basis_ptr, basis_ptr, sf_length_8kHz );
|
| + cross_corr = silk_inner_prod_aligned( target_ptr, basis_ptr, SF_LENGTH_8KHZ );
|
| if( cross_corr > 0 ) {
|
| - energy = silk_max( energy_target, energy_basis ); /* Find max to make sure first division < 1.0 */
|
| - lz = silk_CLZ32( cross_corr );
|
| - lshift = silk_LIMIT_32( lz - 1, 0, 15 );
|
| - temp32 = silk_DIV32( silk_LSHIFT( cross_corr, lshift ), silk_RSHIFT( energy, 15 - lshift ) + 1 ); /* Q15 */
|
| - silk_assert( temp32 == silk_SAT16( temp32 ) );
|
| - temp32 = silk_SMULWB( cross_corr, temp32 ); /* Q(-1), cc * ( cc / max(b, t) ) */
|
| - temp32 = silk_ADD_SAT32( temp32, temp32 ); /* Q(0) */
|
| - lz = silk_CLZ32( temp32 );
|
| - lshift = silk_LIMIT_32( lz - 1, 0, 15 );
|
| - energy = silk_min( energy_target, energy_basis );
|
| - C[ k ][ d ] = silk_DIV32( silk_LSHIFT( temp32, lshift ), silk_RSHIFT( energy, 15 - lshift ) + 1 ); /* Q15*/
|
| + energy_basis = silk_inner_prod_aligned( basis_ptr, basis_ptr, SF_LENGTH_8KHZ );
|
| + matrix_ptr( C, k, d - ( MIN_LAG_8KHZ - 2 ), CSTRIDE_8KHZ ) =
|
| + (opus_int16)silk_DIV32_varQ( cross_corr,
|
| + silk_ADD32( energy_target,
|
| + energy_basis ),
|
| + 13 + 1 ); /* Q13 */
|
| } else {
|
| - C[ k ][ d ] = 0;
|
| + matrix_ptr( C, k, d - ( MIN_LAG_8KHZ - 2 ), CSTRIDE_8KHZ ) = 0;
|
| }
|
| }
|
| - target_ptr += sf_length_8kHz;
|
| + target_ptr += SF_LENGTH_8KHZ;
|
| }
|
|
|
| /* search over lag range and lags codebook */
|
| @@ -374,7 +375,7 @@ opus_int silk_pitch_analysis_core( /* O Voicing estimate: 0
|
| } else {
|
| prevLag_log2_Q7 = 0;
|
| }
|
| - silk_assert( search_thres2_Q15 == silk_SAT16( search_thres2_Q15 ) );
|
| + silk_assert( search_thres2_Q13 == silk_SAT16( search_thres2_Q13 ) );
|
| /* Set up stage 2 codebook based on number of subframes */
|
| if( nb_subfr == PE_MAX_NB_SUBFR ) {
|
| cbk_size = PE_NB_CBKS_STAGE2_EXT;
|
| @@ -385,12 +386,10 @@ opus_int silk_pitch_analysis_core( /* O Voicing estimate: 0
|
| } else {
|
| nb_cbk_search = PE_NB_CBKS_STAGE2;
|
| }
|
| - corr_thres_Q15 = silk_RSHIFT( silk_SMULBB( search_thres2_Q15, search_thres2_Q15 ), 13 );
|
| } else {
|
| cbk_size = PE_NB_CBKS_STAGE2_10MS;
|
| Lag_CB_ptr = &silk_CB_lags_stage2_10_ms[ 0 ][ 0 ];
|
| nb_cbk_search = PE_NB_CBKS_STAGE2_10MS;
|
| - corr_thres_Q15 = silk_RSHIFT( silk_SMULBB( search_thres2_Q15, search_thres2_Q15 ), 14 );
|
| }
|
|
|
| for( k = 0; k < length_d_srch; k++ ) {
|
| @@ -398,8 +397,13 @@ opus_int silk_pitch_analysis_core( /* O Voicing estimate: 0
|
| for( j = 0; j < nb_cbk_search; j++ ) {
|
| CC[ j ] = 0;
|
| for( i = 0; i < nb_subfr; i++ ) {
|
| + opus_int d_subfr;
|
| /* Try all codebooks */
|
| - CC[ j ] = CC[ j ] + (opus_int32)C[ i ][ d + matrix_ptr( Lag_CB_ptr, i, j, cbk_size )];
|
| + d_subfr = d + matrix_ptr( Lag_CB_ptr, i, j, cbk_size );
|
| + CC[ j ] = CC[ j ]
|
| + + (opus_int32)matrix_ptr( C, i,
|
| + d_subfr - ( MIN_LAG_8KHZ - 2 ),
|
| + CSTRIDE_8KHZ );
|
| }
|
| }
|
| /* Find best codebook */
|
| @@ -413,25 +417,25 @@ opus_int silk_pitch_analysis_core( /* O Voicing estimate: 0
|
| }
|
|
|
| /* Bias towards shorter lags */
|
| - lag_log2_Q7 = silk_lin2log( (opus_int32)d ); /* Q7 */
|
| + lag_log2_Q7 = silk_lin2log( d ); /* Q7 */
|
| silk_assert( lag_log2_Q7 == silk_SAT16( lag_log2_Q7 ) );
|
| - silk_assert( nb_subfr * SILK_FIX_CONST( PE_SHORTLAG_BIAS, 15 ) == silk_SAT16( nb_subfr * SILK_FIX_CONST( PE_SHORTLAG_BIAS, 15 ) ) );
|
| - CCmax_new_b = CCmax_new - silk_RSHIFT( silk_SMULBB( nb_subfr * SILK_FIX_CONST( PE_SHORTLAG_BIAS, 15 ), lag_log2_Q7 ), 7 ); /* Q15 */
|
| + silk_assert( nb_subfr * SILK_FIX_CONST( PE_SHORTLAG_BIAS, 13 ) == silk_SAT16( nb_subfr * SILK_FIX_CONST( PE_SHORTLAG_BIAS, 13 ) ) );
|
| + CCmax_new_b = CCmax_new - silk_RSHIFT( silk_SMULBB( nb_subfr * SILK_FIX_CONST( PE_SHORTLAG_BIAS, 13 ), lag_log2_Q7 ), 7 ); /* Q13 */
|
|
|
| /* Bias towards previous lag */
|
| - silk_assert( nb_subfr * SILK_FIX_CONST( PE_PREVLAG_BIAS, 15 ) == silk_SAT16( nb_subfr * SILK_FIX_CONST( PE_PREVLAG_BIAS, 15 ) ) );
|
| + silk_assert( nb_subfr * SILK_FIX_CONST( PE_PREVLAG_BIAS, 13 ) == silk_SAT16( nb_subfr * SILK_FIX_CONST( PE_PREVLAG_BIAS, 13 ) ) );
|
| if( prevLag > 0 ) {
|
| delta_lag_log2_sqr_Q7 = lag_log2_Q7 - prevLag_log2_Q7;
|
| silk_assert( delta_lag_log2_sqr_Q7 == silk_SAT16( delta_lag_log2_sqr_Q7 ) );
|
| delta_lag_log2_sqr_Q7 = silk_RSHIFT( silk_SMULBB( delta_lag_log2_sqr_Q7, delta_lag_log2_sqr_Q7 ), 7 );
|
| - prev_lag_bias_Q15 = silk_RSHIFT( silk_SMULBB( nb_subfr * SILK_FIX_CONST( PE_PREVLAG_BIAS, 15 ), *LTPCorr_Q15 ), 15 ); /* Q15 */
|
| - prev_lag_bias_Q15 = silk_DIV32( silk_MUL( prev_lag_bias_Q15, delta_lag_log2_sqr_Q7 ), delta_lag_log2_sqr_Q7 + ( 1 << 6 ) );
|
| - CCmax_new_b -= prev_lag_bias_Q15; /* Q15 */
|
| + prev_lag_bias_Q13 = silk_RSHIFT( silk_SMULBB( nb_subfr * SILK_FIX_CONST( PE_PREVLAG_BIAS, 13 ), *LTPCorr_Q15 ), 15 ); /* Q13 */
|
| + prev_lag_bias_Q13 = silk_DIV32( silk_MUL( prev_lag_bias_Q13, delta_lag_log2_sqr_Q7 ), delta_lag_log2_sqr_Q7 + SILK_FIX_CONST( 0.5, 7 ) );
|
| + CCmax_new_b -= prev_lag_bias_Q13; /* Q13 */
|
| }
|
|
|
| if( CCmax_new_b > CCmax_b && /* Find maximum biased correlation */
|
| - CCmax_new > corr_thres_Q15 && /* Correlation needs to be high enough to be voiced */
|
| - silk_CB_lags_stage2[ 0 ][ CBimax_new ] <= min_lag_8kHz /* Lag must be in range */
|
| + CCmax_new > silk_SMULBB( nb_subfr, search_thres2_Q13 ) && /* Correlation needs to be high enough to be voiced */
|
| + silk_CB_lags_stage2[ 0 ][ CBimax_new ] <= MIN_LAG_8KHZ /* Lag must be in range */
|
| ) {
|
| CCmax_b = CCmax_new_b;
|
| CCmax = CCmax_new;
|
| @@ -446,24 +450,31 @@ opus_int silk_pitch_analysis_core( /* O Voicing estimate: 0
|
| *LTPCorr_Q15 = 0;
|
| *lagIndex = 0;
|
| *contourIndex = 0;
|
| + RESTORE_STACK;
|
| return 1;
|
| }
|
|
|
| + /* Output normalized correlation */
|
| + *LTPCorr_Q15 = (opus_int)silk_LSHIFT( silk_DIV32_16( CCmax, nb_subfr ), 2 );
|
| + silk_assert( *LTPCorr_Q15 >= 0 );
|
| +
|
| if( Fs_kHz > 8 ) {
|
| + VARDECL( opus_int16, scratch_mem );
|
| /***************************************************************************/
|
| /* Scale input signal down to avoid correlations measures from overflowing */
|
| /***************************************************************************/
|
| /* find scaling as max scaling for each subframe */
|
| - shift = silk_P_Ana_find_scaling( frame, frame_length, sf_length );
|
| + silk_sum_sqr_shift( &energy, &shift, frame, frame_length );
|
| + ALLOC( scratch_mem, shift > 0 ? frame_length : 0, opus_int16 );
|
| if( shift > 0 ) {
|
| /* Move signal to scratch mem because the input signal should be unchanged */
|
| - /* Reuse the 32 bit scratch mem vector, use a 16 bit pointer from now */
|
| - input_frame_ptr = (opus_int16*)scratch_mem;
|
| + shift = silk_RSHIFT( shift, 1 );
|
| for( i = 0; i < frame_length; i++ ) {
|
| - input_frame_ptr[ i ] = silk_RSHIFT( frame[ i ], shift );
|
| + scratch_mem[ i ] = silk_RSHIFT( frame[ i ], shift );
|
| }
|
| + input_frame_ptr = scratch_mem;
|
| } else {
|
| - input_frame_ptr = (opus_int16*)frame;
|
| + input_frame_ptr = frame;
|
| }
|
|
|
| /* Search in original signal */
|
| @@ -483,22 +494,13 @@ opus_int silk_pitch_analysis_core( /* O Voicing estimate: 0
|
| start_lag = silk_max_int( lag - 2, min_lag );
|
| end_lag = silk_min_int( lag + 2, max_lag );
|
| lag_new = lag; /* to avoid undefined lag */
|
| - CBimax = 0; /* to avoid undefined lag */
|
| - silk_assert( silk_LSHIFT( CCmax, 13 ) >= 0 );
|
| - *LTPCorr_Q15 = (opus_int)silk_SQRT_APPROX( silk_LSHIFT( CCmax, 13 ) ); /* Output normalized correlation */
|
| + CBimax = 0; /* to avoid undefined lag */
|
|
|
| CCmax = silk_int32_MIN;
|
| /* pitch lags according to second stage */
|
| for( k = 0; k < nb_subfr; k++ ) {
|
| pitch_out[ k ] = lag + 2 * silk_CB_lags_stage2[ k ][ CBimax_old ];
|
| }
|
| - /* Calculate the correlations and energies needed in stage 3 */
|
| - silk_P_Ana_calc_corr_st3( crosscorr_st3, input_frame_ptr, start_lag, sf_length, nb_subfr, complexity );
|
| - silk_P_Ana_calc_energy_st3( energies_st3, input_frame_ptr, start_lag, sf_length, nb_subfr, complexity );
|
| -
|
| - lag_counter = 0;
|
| - silk_assert( lag == silk_SAT16( lag ) );
|
| - contour_bias_Q20 = silk_DIV32_16( SILK_FIX_CONST( PE_FLATCONTOUR_BIAS, 20 ), lag );
|
|
|
| /* Set up codebook parameters according to complexity setting and frame length */
|
| if( nb_subfr == PE_MAX_NB_SUBFR ) {
|
| @@ -510,41 +512,43 @@ opus_int silk_pitch_analysis_core( /* O Voicing estimate: 0
|
| cbk_size = PE_NB_CBKS_STAGE3_10MS;
|
| Lag_CB_ptr = &silk_CB_lags_stage3_10_ms[ 0 ][ 0 ];
|
| }
|
| +
|
| + /* Calculate the correlations and energies needed in stage 3 */
|
| + ALLOC( energies_st3, nb_subfr * nb_cbk_search, silk_pe_stage3_vals );
|
| + ALLOC( cross_corr_st3, nb_subfr * nb_cbk_search, silk_pe_stage3_vals );
|
| + silk_P_Ana_calc_corr_st3( cross_corr_st3, input_frame_ptr, start_lag, sf_length, nb_subfr, complexity );
|
| + silk_P_Ana_calc_energy_st3( energies_st3, input_frame_ptr, start_lag, sf_length, nb_subfr, complexity );
|
| +
|
| + lag_counter = 0;
|
| + silk_assert( lag == silk_SAT16( lag ) );
|
| + contour_bias_Q15 = silk_DIV32_16( SILK_FIX_CONST( PE_FLATCONTOUR_BIAS, 15 ), lag );
|
| +
|
| + target_ptr = &input_frame_ptr[ PE_LTP_MEM_LENGTH_MS * Fs_kHz ];
|
| + energy_target = silk_ADD32( silk_inner_prod_aligned( target_ptr, target_ptr, nb_subfr * sf_length ), 1 );
|
| for( d = start_lag; d <= end_lag; d++ ) {
|
| for( j = 0; j < nb_cbk_search; j++ ) {
|
| cross_corr = 0;
|
| - energy = 0;
|
| + energy = energy_target;
|
| for( k = 0; k < nb_subfr; k++ ) {
|
| - silk_assert( PE_MAX_NB_SUBFR == 4 );
|
| - energy += silk_RSHIFT( energies_st3[ k ][ j ][ lag_counter ], 2 ); /* use mean, to avoid overflow */
|
| + cross_corr = silk_ADD32( cross_corr,
|
| + matrix_ptr( cross_corr_st3, k, j,
|
| + nb_cbk_search )[ lag_counter ] );
|
| + energy = silk_ADD32( energy,
|
| + matrix_ptr( energies_st3, k, j,
|
| + nb_cbk_search )[ lag_counter ] );
|
| silk_assert( energy >= 0 );
|
| - cross_corr += silk_RSHIFT( crosscorr_st3[ k ][ j ][ lag_counter ], 2 ); /* use mean, to avoid overflow */
|
| }
|
| if( cross_corr > 0 ) {
|
| - /* Divide cross_corr / energy and get result in Q15 */
|
| - lz = silk_CLZ32( cross_corr );
|
| - /* Divide with result in Q13, cross_corr could be larger than energy */
|
| - lshift = silk_LIMIT_32( lz - 1, 0, 13 );
|
| - CCmax_new = silk_DIV32( silk_LSHIFT( cross_corr, lshift ), silk_RSHIFT( energy, 13 - lshift ) + 1 );
|
| - CCmax_new = silk_SAT16( CCmax_new );
|
| - CCmax_new = silk_SMULWB( cross_corr, CCmax_new );
|
| - /* Saturate */
|
| - if( CCmax_new > silk_RSHIFT( silk_int32_MAX, 3 ) ) {
|
| - CCmax_new = silk_int32_MAX;
|
| - } else {
|
| - CCmax_new = silk_LSHIFT( CCmax_new, 3 );
|
| - }
|
| + CCmax_new = silk_DIV32_varQ( cross_corr, energy, 13 + 1 ); /* Q13 */
|
| /* Reduce depending on flatness of contour */
|
| - diff = silk_int16_MAX - silk_RSHIFT( silk_MUL( contour_bias_Q20, j ), 5 ); /* Q20 -> Q15 */
|
| + diff = silk_int16_MAX - silk_MUL( contour_bias_Q15, j ); /* Q15 */
|
| silk_assert( diff == silk_SAT16( diff ) );
|
| - CCmax_new = silk_LSHIFT( silk_SMULWB( CCmax_new, diff ), 1 );
|
| + CCmax_new = silk_SMULWB( CCmax_new, diff ); /* Q14 */
|
| } else {
|
| CCmax_new = 0;
|
| }
|
|
|
| - if( CCmax_new > CCmax &&
|
| - ( d + silk_CB_lags_stage3[ 0 ][ j ] ) <= max_lag
|
| - ) {
|
| + if( CCmax_new > CCmax && ( d + silk_CB_lags_stage3[ 0 ][ j ] ) <= max_lag ) {
|
| CCmax = CCmax_new;
|
| lag_new = d;
|
| CBimax = j;
|
| @@ -560,27 +564,35 @@ opus_int silk_pitch_analysis_core( /* O Voicing estimate: 0
|
| *lagIndex = (opus_int16)( lag_new - min_lag);
|
| *contourIndex = (opus_int8)CBimax;
|
| } else { /* Fs_kHz == 8 */
|
| - /* Save Lags and correlation */
|
| - CCmax = silk_max( CCmax, 0 );
|
| - *LTPCorr_Q15 = (opus_int)silk_SQRT_APPROX( silk_LSHIFT( CCmax, 13 ) ); /* Output normalized correlation */
|
| + /* Save Lags */
|
| for( k = 0; k < nb_subfr; k++ ) {
|
| pitch_out[ k ] = lag + matrix_ptr( Lag_CB_ptr, k, CBimax, cbk_size );
|
| - pitch_out[ k ] = silk_LIMIT( pitch_out[ k ], min_lag_8kHz, PE_MAX_LAG_MS * Fs_kHz );
|
| + pitch_out[ k ] = silk_LIMIT( pitch_out[ k ], MIN_LAG_8KHZ, PE_MAX_LAG_MS * 8 );
|
| }
|
| - *lagIndex = (opus_int16)( lag - min_lag_8kHz );
|
| + *lagIndex = (opus_int16)( lag - MIN_LAG_8KHZ );
|
| *contourIndex = (opus_int8)CBimax;
|
| }
|
| silk_assert( *lagIndex >= 0 );
|
| /* return as voiced */
|
| + RESTORE_STACK;
|
| return 0;
|
| }
|
|
|
| -/*************************************************************************/
|
| -/* Calculates the correlations used in stage 3 search. In order to cover */
|
| -/* the whole lag codebook for all the searched offset lags (lag +- 2), */
|
| -/*************************************************************************/
|
| -void silk_P_Ana_calc_corr_st3(
|
| - opus_int32 cross_corr_st3[ PE_MAX_NB_SUBFR ][ PE_NB_CBKS_STAGE3_MAX ][ PE_NB_STAGE3_LAGS ],/* (O) 3 DIM correlation array */
|
| +/***********************************************************************
|
| + * Calculates the correlations used in stage 3 search. In order to cover
|
| + * the whole lag codebook for all the searched offset lags (lag +- 2),
|
| + * the following correlations are needed in each sub frame:
|
| + *
|
| + * sf1: lag range [-8,...,7] total 16 correlations
|
| + * sf2: lag range [-4,...,4] total 9 correlations
|
| + * sf3: lag range [-3,....4] total 8 correltions
|
| + * sf4: lag range [-6,....8] total 15 correlations
|
| + *
|
| + * In total 48 correlations. The direct implementation computed in worst
|
| + * case 4*12*5 = 240 correlations, but more likely around 120.
|
| + ***********************************************************************/
|
| +static void silk_P_Ana_calc_corr_st3(
|
| + silk_pe_stage3_vals cross_corr_st3[], /* O 3 DIM correlation array */
|
| const opus_int16 frame[], /* I vector to correlate */
|
| opus_int start_lag, /* I lag offset to search around */
|
| opus_int sf_length, /* I length of a 5 ms subframe */
|
| @@ -588,12 +600,13 @@ void silk_P_Ana_calc_corr_st3(
|
| opus_int complexity /* I Complexity setting */
|
| )
|
| {
|
| - const opus_int16 *target_ptr, *basis_ptr;
|
| - opus_int32 cross_corr;
|
| + const opus_int16 *target_ptr;
|
| opus_int i, j, k, lag_counter, lag_low, lag_high;
|
| opus_int nb_cbk_search, delta, idx, cbk_size;
|
| - opus_int32 scratch_mem[ SCRATCH_SIZE ];
|
| + VARDECL( opus_int32, scratch_mem );
|
| + VARDECL( opus_int32, xcorr32 );
|
| const opus_int8 *Lag_range_ptr, *Lag_CB_ptr;
|
| + SAVE_STACK;
|
|
|
| silk_assert( complexity >= SILK_PE_MIN_COMPLEX );
|
| silk_assert( complexity <= SILK_PE_MAX_COMPLEX );
|
| @@ -610,6 +623,8 @@ void silk_P_Ana_calc_corr_st3(
|
| nb_cbk_search = PE_NB_CBKS_STAGE3_10MS;
|
| cbk_size = PE_NB_CBKS_STAGE3_10MS;
|
| }
|
| + ALLOC( scratch_mem, SCRATCH_SIZE, opus_int32 );
|
| + ALLOC( xcorr32, SCRATCH_SIZE, opus_int32 );
|
|
|
| target_ptr = &frame[ silk_LSHIFT( sf_length, 2 ) ]; /* Pointer to middle of frame */
|
| for( k = 0; k < nb_subfr; k++ ) {
|
| @@ -618,11 +633,11 @@ void silk_P_Ana_calc_corr_st3(
|
| /* Calculate the correlations for each subframe */
|
| lag_low = matrix_ptr( Lag_range_ptr, k, 0, 2 );
|
| lag_high = matrix_ptr( Lag_range_ptr, k, 1, 2 );
|
| + silk_assert(lag_high-lag_low+1 <= SCRATCH_SIZE);
|
| + celt_pitch_xcorr( target_ptr, target_ptr - start_lag - lag_high, xcorr32, sf_length, lag_high - lag_low + 1 );
|
| for( j = lag_low; j <= lag_high; j++ ) {
|
| - basis_ptr = target_ptr - ( start_lag + j );
|
| - cross_corr = silk_inner_prod_aligned( (opus_int16*)target_ptr, (opus_int16*)basis_ptr, sf_length );
|
| silk_assert( lag_counter < SCRATCH_SIZE );
|
| - scratch_mem[ lag_counter ] = cross_corr;
|
| + scratch_mem[ lag_counter ] = xcorr32[ lag_high - j ];
|
| lag_counter++;
|
| }
|
|
|
| @@ -634,32 +649,35 @@ void silk_P_Ana_calc_corr_st3(
|
| for( j = 0; j < PE_NB_STAGE3_LAGS; j++ ) {
|
| silk_assert( idx + j < SCRATCH_SIZE );
|
| silk_assert( idx + j < lag_counter );
|
| - cross_corr_st3[ k ][ i ][ j ] = scratch_mem[ idx + j ];
|
| + matrix_ptr( cross_corr_st3, k, i, nb_cbk_search )[ j ] =
|
| + scratch_mem[ idx + j ];
|
| }
|
| }
|
| target_ptr += sf_length;
|
| }
|
| + RESTORE_STACK;
|
| }
|
|
|
| /********************************************************************/
|
| /* Calculate the energies for first two subframes. The energies are */
|
| /* calculated recursively. */
|
| /********************************************************************/
|
| -void silk_P_Ana_calc_energy_st3(
|
| - opus_int32 energies_st3[ PE_MAX_NB_SUBFR ][ PE_NB_CBKS_STAGE3_MAX ][ PE_NB_STAGE3_LAGS ],/* (O) 3 DIM energy array */
|
| - const opus_int16 frame[], /* I vector to calc energy in */
|
| - opus_int start_lag, /* I lag offset to search around */
|
| - opus_int sf_length, /* I length of one 5 ms subframe */
|
| - opus_int nb_subfr, /* I number of subframes */
|
| - opus_int complexity /* I Complexity setting */
|
| +static void silk_P_Ana_calc_energy_st3(
|
| + silk_pe_stage3_vals energies_st3[], /* O 3 DIM energy array */
|
| + const opus_int16 frame[], /* I vector to calc energy in */
|
| + opus_int start_lag, /* I lag offset to search around */
|
| + opus_int sf_length, /* I length of one 5 ms subframe */
|
| + opus_int nb_subfr, /* I number of subframes */
|
| + opus_int complexity /* I Complexity setting */
|
| )
|
| {
|
| const opus_int16 *target_ptr, *basis_ptr;
|
| opus_int32 energy;
|
| opus_int k, i, j, lag_counter;
|
| opus_int nb_cbk_search, delta, idx, cbk_size, lag_diff;
|
| - opus_int32 scratch_mem[ SCRATCH_SIZE ];
|
| + VARDECL( opus_int32, scratch_mem );
|
| const opus_int8 *Lag_range_ptr, *Lag_CB_ptr;
|
| + SAVE_STACK;
|
|
|
| silk_assert( complexity >= SILK_PE_MIN_COMPLEX );
|
| silk_assert( complexity <= SILK_PE_MAX_COMPLEX );
|
| @@ -676,6 +694,8 @@ void silk_P_Ana_calc_energy_st3(
|
| nb_cbk_search = PE_NB_CBKS_STAGE3_10MS;
|
| cbk_size = PE_NB_CBKS_STAGE3_10MS;
|
| }
|
| + ALLOC( scratch_mem, SCRATCH_SIZE, opus_int32 );
|
| +
|
| target_ptr = &frame[ silk_LSHIFT( sf_length, 2 ) ];
|
| for( k = 0; k < nb_subfr; k++ ) {
|
| lag_counter = 0;
|
| @@ -709,37 +729,13 @@ void silk_P_Ana_calc_energy_st3(
|
| for( j = 0; j < PE_NB_STAGE3_LAGS; j++ ) {
|
| silk_assert( idx + j < SCRATCH_SIZE );
|
| silk_assert( idx + j < lag_counter );
|
| - energies_st3[ k ][ i ][ j ] = scratch_mem[ idx + j ];
|
| - silk_assert( energies_st3[ k ][ i ][ j ] >= 0 );
|
| + matrix_ptr( energies_st3, k, i, nb_cbk_search )[ j ] =
|
| + scratch_mem[ idx + j ];
|
| + silk_assert(
|
| + matrix_ptr( energies_st3, k, i, nb_cbk_search )[ j ] >= 0 );
|
| }
|
| }
|
| target_ptr += sf_length;
|
| }
|
| -}
|
| -
|
| -opus_int32 silk_P_Ana_find_scaling(
|
| - const opus_int16 *frame,
|
| - const opus_int frame_length,
|
| - const opus_int sum_sqr_len
|
| -)
|
| -{
|
| - opus_int32 nbits, x_max;
|
| -
|
| - x_max = silk_int16_array_maxabs( frame, frame_length );
|
| -
|
| - if( x_max < silk_int16_MAX ) {
|
| - /* Number of bits needed for the sum of the squares */
|
| - nbits = 32 - silk_CLZ32( silk_SMULBB( x_max, x_max ) );
|
| - } else {
|
| - /* Here we don't know if x_max should have been silk_int16_MAX + 1, so we expect the worst case */
|
| - nbits = 30;
|
| - }
|
| - nbits += 17 - silk_CLZ16( sum_sqr_len );
|
| -
|
| - /* Without a guarantee of saturation, we need to keep the 31st bit free */
|
| - if( nbits < 31 ) {
|
| - return 0;
|
| - } else {
|
| - return( nbits - 30 );
|
| - }
|
| + RESTORE_STACK;
|
| }
|
|
|