| Index: celt/bands.c
|
| diff --git a/celt/bands.c b/celt/bands.c
|
| index 3be543c3f2a52cfe4bfb96279cedecf5a5636832..93bd0bc7220a86ed86f174fe02e5c2698d380df2 100644
|
| --- a/celt/bands.c
|
| +++ b/celt/bands.c
|
| @@ -40,6 +40,23 @@
|
| #include "os_support.h"
|
| #include "mathops.h"
|
| #include "rate.h"
|
| +#include "quant_bands.h"
|
| +#include "pitch.h"
|
| +
|
| +int hysteresis_decision(opus_val16 val, const opus_val16 *thresholds, const opus_val16 *hysteresis, int N, int prev)
|
| +{
|
| + int i;
|
| + for (i=0;i<N;i++)
|
| + {
|
| + if (val < thresholds[i])
|
| + break;
|
| + }
|
| + if (i>prev && val < thresholds[prev]+hysteresis[prev])
|
| + i=prev;
|
| + if (i<prev && val > thresholds[prev-1]-hysteresis[prev-1])
|
| + i=prev;
|
| + return i;
|
| +}
|
|
|
| opus_uint32 celt_lcg_rand(opus_uint32 seed)
|
| {
|
| @@ -172,7 +189,8 @@ void normalise_bands(const CELTMode *m, const celt_sig * OPUS_RESTRICT freq, cel
|
| #endif /* FIXED_POINT */
|
|
|
| /* De-normalise the energy to produce the synthesis from the unit-energy bands */
|
| -void denormalise_bands(const CELTMode *m, const celt_norm * OPUS_RESTRICT X, celt_sig * OPUS_RESTRICT freq, const celt_ener *bandE, int end, int C, int M)
|
| +void denormalise_bands(const CELTMode *m, const celt_norm * OPUS_RESTRICT X,
|
| + celt_sig * OPUS_RESTRICT freq, const opus_val16 *bandLogE, int start, int end, int C, int M)
|
| {
|
| int i, c, N;
|
| const opus_int16 *eBands = m->eBands;
|
| @@ -182,18 +200,39 @@ void denormalise_bands(const CELTMode *m, const celt_norm * OPUS_RESTRICT X, cel
|
| celt_sig * OPUS_RESTRICT f;
|
| const celt_norm * OPUS_RESTRICT x;
|
| f = freq+c*N;
|
| - x = X+c*N;
|
| - for (i=0;i<end;i++)
|
| + x = X+c*N+M*eBands[start];
|
| + for (i=0;i<M*eBands[start];i++)
|
| + *f++ = 0;
|
| + for (i=start;i<end;i++)
|
| {
|
| int j, band_end;
|
| - opus_val32 g = SHR32(bandE[i+c*m->nbEBands],1);
|
| + opus_val16 g;
|
| + opus_val16 lg;
|
| +#ifdef FIXED_POINT
|
| + int shift;
|
| +#endif
|
| j=M*eBands[i];
|
| band_end = M*eBands[i+1];
|
| + lg = ADD16(bandLogE[i+c*m->nbEBands], SHL16((opus_val16)eMeans[i],6));
|
| +#ifdef FIXED_POINT
|
| + /* Handle the integer part of the log energy */
|
| + shift = 16-(lg>>DB_SHIFT);
|
| + if (shift>31)
|
| + {
|
| + shift=0;
|
| + g=0;
|
| + } else {
|
| + /* Handle the fractional part. */
|
| + g = celt_exp2_frac(lg&((1<<DB_SHIFT)-1));
|
| + }
|
| +#else
|
| + g = celt_exp2(lg);
|
| +#endif
|
| do {
|
| - *f++ = SHL32(MULT16_32_Q15(*x, g),2);
|
| - x++;
|
| + *f++ = SHR32(MULT16_16(*x++, g), shift);
|
| } while (++j<band_end);
|
| }
|
| + celt_assert(start <= end);
|
| for (i=M*eBands[end];i<N;i++)
|
| *f++ = 0;
|
| } while (++c<C);
|
| @@ -345,11 +384,7 @@ static void stereo_merge(celt_norm *X, celt_norm *Y, opus_val16 mid, int N)
|
| opus_val32 t, lgain, rgain;
|
|
|
| /* Compute the norm of X+Y and X-Y as |X|^2 + |Y|^2 +/- sum(xy) */
|
| - for (j=0;j<N;j++)
|
| - {
|
| - xp = MAC16_16(xp, X[j], Y[j]);
|
| - side = MAC16_16(side, Y[j], Y[j]);
|
| - }
|
| + dual_inner_prod(Y, X, Y, N, &xp, &side);
|
| /* Compensating for the mid normalization */
|
| xp = MULT16_32_Q15(mid, xp);
|
| /* mid and side are in Q15, not Q14 like X and Y */
|
| @@ -483,50 +518,6 @@ int spreading_decision(const CELTMode *m, celt_norm *X, int *average,
|
| return decision;
|
| }
|
|
|
| -#ifdef MEASURE_NORM_MSE
|
| -
|
| -float MSE[30] = {0};
|
| -int nbMSEBands = 0;
|
| -int MSECount[30] = {0};
|
| -
|
| -void dump_norm_mse(void)
|
| -{
|
| - int i;
|
| - for (i=0;i<nbMSEBands;i++)
|
| - {
|
| - printf ("%g ", MSE[i]/MSECount[i]);
|
| - }
|
| - printf ("\n");
|
| -}
|
| -
|
| -void measure_norm_mse(const CELTMode *m, float *X, float *X0, float *bandE, float *bandE0, int M, int N, int C)
|
| -{
|
| - static int init = 0;
|
| - int i;
|
| - if (!init)
|
| - {
|
| - atexit(dump_norm_mse);
|
| - init = 1;
|
| - }
|
| - for (i=0;i<m->nbEBands;i++)
|
| - {
|
| - int j;
|
| - int c;
|
| - float g;
|
| - if (bandE0[i]<10 || (C==2 && bandE0[i+m->nbEBands]<1))
|
| - continue;
|
| - c=0; do {
|
| - g = bandE[i+c*m->nbEBands]/(1e-15+bandE0[i+c*m->nbEBands]);
|
| - for (j=M*m->eBands[i];j<M*m->eBands[i+1];j++)
|
| - MSE[i] += (g*X[j+c*N]-X0[j+c*N])*(g*X[j+c*N]-X0[j+c*N]);
|
| - } while (++c<C);
|
| - MSECount[i]+=C;
|
| - }
|
| - nbMSEBands = m->nbEBands;
|
| -}
|
| -
|
| -#endif
|
| -
|
| /* Indexing table for converting from natural Hadamard to ordery Hadamard
|
| This is essentially a bit-reversed Gray, on top of which we've added
|
| an inversion of the order because we want the DC at the end rather than
|
| @@ -629,289 +620,304 @@ static int compute_qn(int N, int b, int offset, int pulse_cap, int stereo)
|
| return qn;
|
| }
|
|
|
| -/* This function is responsible for encoding and decoding a band for both
|
| - the mono and stereo case. Even in the mono case, it can split the band
|
| - in two and transmit the energy difference with the two half-bands. It
|
| - can be called recursively so bands can end up being split in 8 parts. */
|
| -static unsigned quant_band(int encode, const CELTMode *m, int i, celt_norm *X, celt_norm *Y,
|
| - int N, int b, int spread, int B, int intensity, int tf_change, celt_norm *lowband, ec_ctx *ec,
|
| - opus_int32 *remaining_bits, int LM, celt_norm *lowband_out, const celt_ener *bandE, int level,
|
| - opus_uint32 *seed, opus_val16 gain, celt_norm *lowband_scratch, int fill)
|
| +struct band_ctx {
|
| + int encode;
|
| + const CELTMode *m;
|
| + int i;
|
| + int intensity;
|
| + int spread;
|
| + int tf_change;
|
| + ec_ctx *ec;
|
| + opus_int32 remaining_bits;
|
| + const celt_ener *bandE;
|
| + opus_uint32 seed;
|
| +};
|
| +
|
| +struct split_ctx {
|
| + int inv;
|
| + int imid;
|
| + int iside;
|
| + int delta;
|
| + int itheta;
|
| + int qalloc;
|
| +};
|
| +
|
| +static void compute_theta(struct band_ctx *ctx, struct split_ctx *sctx,
|
| + celt_norm *X, celt_norm *Y, int N, int *b, int B, int B0,
|
| + int LM,
|
| + int stereo, int *fill)
|
| {
|
| - const unsigned char *cache;
|
| - int q;
|
| - int curr_bits;
|
| - int stereo, split;
|
| - int imid=0, iside=0;
|
| - int N0=N;
|
| - int N_B=N;
|
| - int N_B0;
|
| - int B0=B;
|
| - int time_divide=0;
|
| - int recombine=0;
|
| - int inv = 0;
|
| - opus_val16 mid=0, side=0;
|
| - int longBlocks;
|
| - unsigned cm=0;
|
| -#ifdef RESYNTH
|
| - int resynth = 1;
|
| -#else
|
| - int resynth = !encode;
|
| -#endif
|
| + int qn;
|
| + int itheta=0;
|
| + int delta;
|
| + int imid, iside;
|
| + int qalloc;
|
| + int pulse_cap;
|
| + int offset;
|
| + opus_int32 tell;
|
| + int inv=0;
|
| + int encode;
|
| + const CELTMode *m;
|
| + int i;
|
| + int intensity;
|
| + ec_ctx *ec;
|
| + const celt_ener *bandE;
|
| +
|
| + encode = ctx->encode;
|
| + m = ctx->m;
|
| + i = ctx->i;
|
| + intensity = ctx->intensity;
|
| + ec = ctx->ec;
|
| + bandE = ctx->bandE;
|
| +
|
| + /* Decide on the resolution to give to the split parameter theta */
|
| + pulse_cap = m->logN[i]+LM*(1<<BITRES);
|
| + offset = (pulse_cap>>1) - (stereo&&N==2 ? QTHETA_OFFSET_TWOPHASE : QTHETA_OFFSET);
|
| + qn = compute_qn(N, *b, offset, pulse_cap, stereo);
|
| + if (stereo && i>=intensity)
|
| + qn = 1;
|
| + if (encode)
|
| + {
|
| + /* theta is the atan() of the ratio between the (normalized)
|
| + side and mid. With just that parameter, we can re-scale both
|
| + mid and side because we know that 1) they have unit norm and
|
| + 2) they are orthogonal. */
|
| + itheta = stereo_itheta(X, Y, stereo, N);
|
| + }
|
| + tell = ec_tell_frac(ec);
|
| + if (qn!=1)
|
| + {
|
| + if (encode)
|
| + itheta = (itheta*qn+8192)>>14;
|
|
|
| - longBlocks = B0==1;
|
| + /* Entropy coding of the angle. We use a uniform pdf for the
|
| + time split, a step for stereo, and a triangular one for the rest. */
|
| + if (stereo && N>2)
|
| + {
|
| + int p0 = 3;
|
| + int x = itheta;
|
| + int x0 = qn/2;
|
| + int ft = p0*(x0+1) + x0;
|
| + /* Use a probability of p0 up to itheta=8192 and then use 1 after */
|
| + if (encode)
|
| + {
|
| + ec_encode(ec,x<=x0?p0*x:(x-1-x0)+(x0+1)*p0,x<=x0?p0*(x+1):(x-x0)+(x0+1)*p0,ft);
|
| + } else {
|
| + int fs;
|
| + fs=ec_decode(ec,ft);
|
| + if (fs<(x0+1)*p0)
|
| + x=fs/p0;
|
| + else
|
| + x=x0+1+(fs-(x0+1)*p0);
|
| + ec_dec_update(ec,x<=x0?p0*x:(x-1-x0)+(x0+1)*p0,x<=x0?p0*(x+1):(x-x0)+(x0+1)*p0,ft);
|
| + itheta = x;
|
| + }
|
| + } else if (B0>1 || stereo) {
|
| + /* Uniform pdf */
|
| + if (encode)
|
| + ec_enc_uint(ec, itheta, qn+1);
|
| + else
|
| + itheta = ec_dec_uint(ec, qn+1);
|
| + } else {
|
| + int fs=1, ft;
|
| + ft = ((qn>>1)+1)*((qn>>1)+1);
|
| + if (encode)
|
| + {
|
| + int fl;
|
|
|
| - N_B /= B;
|
| - N_B0 = N_B;
|
| + fs = itheta <= (qn>>1) ? itheta + 1 : qn + 1 - itheta;
|
| + fl = itheta <= (qn>>1) ? itheta*(itheta + 1)>>1 :
|
| + ft - ((qn + 1 - itheta)*(qn + 2 - itheta)>>1);
|
|
|
| - split = stereo = Y != NULL;
|
| + ec_encode(ec, fl, fl+fs, ft);
|
| + } else {
|
| + /* Triangular pdf */
|
| + int fl=0;
|
| + int fm;
|
| + fm = ec_decode(ec, ft);
|
|
|
| - /* Special case for one sample */
|
| - if (N==1)
|
| - {
|
| - int c;
|
| - celt_norm *x = X;
|
| - c=0; do {
|
| - int sign=0;
|
| - if (*remaining_bits>=1<<BITRES)
|
| - {
|
| - if (encode)
|
| + if (fm < ((qn>>1)*((qn>>1) + 1)>>1))
|
| {
|
| - sign = x[0]<0;
|
| - ec_enc_bits(ec, sign, 1);
|
| - } else {
|
| - sign = ec_dec_bits(ec, 1);
|
| + itheta = (isqrt32(8*(opus_uint32)fm + 1) - 1)>>1;
|
| + fs = itheta + 1;
|
| + fl = itheta*(itheta + 1)>>1;
|
| + }
|
| + else
|
| + {
|
| + itheta = (2*(qn + 1)
|
| + - isqrt32(8*(opus_uint32)(ft - fm - 1) + 1))>>1;
|
| + fs = qn + 1 - itheta;
|
| + fl = ft - ((qn + 1 - itheta)*(qn + 2 - itheta)>>1);
|
| }
|
| - *remaining_bits -= 1<<BITRES;
|
| - b-=1<<BITRES;
|
| - }
|
| - if (resynth)
|
| - x[0] = sign ? -NORM_SCALING : NORM_SCALING;
|
| - x = Y;
|
| - } while (++c<1+stereo);
|
| - if (lowband_out)
|
| - lowband_out[0] = SHR16(X[0],4);
|
| - return 1;
|
| - }
|
| -
|
| - if (!stereo && level == 0)
|
| - {
|
| - int k;
|
| - if (tf_change>0)
|
| - recombine = tf_change;
|
| - /* Band recombining to increase frequency resolution */
|
|
|
| - if (lowband && (recombine || ((N_B&1) == 0 && tf_change<0) || B0>1))
|
| - {
|
| - int j;
|
| - for (j=0;j<N;j++)
|
| - lowband_scratch[j] = lowband[j];
|
| - lowband = lowband_scratch;
|
| + ec_dec_update(ec, fl, fl+fs, ft);
|
| + }
|
| }
|
| -
|
| - for (k=0;k<recombine;k++)
|
| + itheta = (opus_int32)itheta*16384/qn;
|
| + if (encode && stereo)
|
| {
|
| - static const unsigned char bit_interleave_table[16]={
|
| - 0,1,1,1,2,3,3,3,2,3,3,3,2,3,3,3
|
| - };
|
| - if (encode)
|
| - haar1(X, N>>k, 1<<k);
|
| - if (lowband)
|
| - haar1(lowband, N>>k, 1<<k);
|
| - fill = bit_interleave_table[fill&0xF]|bit_interleave_table[fill>>4]<<2;
|
| + if (itheta==0)
|
| + intensity_stereo(m, X, Y, bandE, i, N);
|
| + else
|
| + stereo_split(X, Y, N);
|
| }
|
| - B>>=recombine;
|
| - N_B<<=recombine;
|
| -
|
| - /* Increasing the time resolution */
|
| - while ((N_B&1) == 0 && tf_change<0)
|
| + /* NOTE: Renormalising X and Y *may* help fixed-point a bit at very high rate.
|
| + Let's do that at higher complexity */
|
| + } else if (stereo) {
|
| + if (encode)
|
| {
|
| - if (encode)
|
| - haar1(X, N_B, B);
|
| - if (lowband)
|
| - haar1(lowband, N_B, B);
|
| - fill |= fill<<B;
|
| - B <<= 1;
|
| - N_B >>= 1;
|
| - time_divide++;
|
| - tf_change++;
|
| + inv = itheta > 8192;
|
| + if (inv)
|
| + {
|
| + int j;
|
| + for (j=0;j<N;j++)
|
| + Y[j] = -Y[j];
|
| + }
|
| + intensity_stereo(m, X, Y, bandE, i, N);
|
| }
|
| - B0=B;
|
| - N_B0 = N_B;
|
| -
|
| - /* Reorganize the samples in time order instead of frequency order */
|
| - if (B0>1)
|
| + if (*b>2<<BITRES && ctx->remaining_bits > 2<<BITRES)
|
| {
|
| if (encode)
|
| - deinterleave_hadamard(X, N_B>>recombine, B0<<recombine, longBlocks);
|
| - if (lowband)
|
| - deinterleave_hadamard(lowband, N_B>>recombine, B0<<recombine, longBlocks);
|
| - }
|
| + ec_enc_bit_logp(ec, inv, 2);
|
| + else
|
| + inv = ec_dec_bit_logp(ec, 2);
|
| + } else
|
| + inv = 0;
|
| + itheta = 0;
|
| }
|
| + qalloc = ec_tell_frac(ec) - tell;
|
| + *b -= qalloc;
|
|
|
| - /* If we need 1.5 more bit than we can produce, split the band in two. */
|
| - cache = m->cache.bits + m->cache.index[(LM+1)*m->nbEBands+i];
|
| - if (!stereo && LM != -1 && b > cache[cache[0]]+12 && N>2)
|
| + if (itheta == 0)
|
| {
|
| - N >>= 1;
|
| - Y = X+N;
|
| - split = 1;
|
| - LM -= 1;
|
| - if (B==1)
|
| - fill = (fill&1)|(fill<<1);
|
| - B = (B+1)>>1;
|
| + imid = 32767;
|
| + iside = 0;
|
| + *fill &= (1<<B)-1;
|
| + delta = -16384;
|
| + } else if (itheta == 16384)
|
| + {
|
| + imid = 0;
|
| + iside = 32767;
|
| + *fill &= ((1<<B)-1)<<B;
|
| + delta = 16384;
|
| + } else {
|
| + imid = bitexact_cos((opus_int16)itheta);
|
| + iside = bitexact_cos((opus_int16)(16384-itheta));
|
| + /* This is the mid vs side allocation that minimizes squared error
|
| + in that band. */
|
| + delta = FRAC_MUL16((N-1)<<7,bitexact_log2tan(iside,imid));
|
| }
|
|
|
| - if (split)
|
| - {
|
| - int qn;
|
| - int itheta=0;
|
| - int mbits, sbits, delta;
|
| - int qalloc;
|
| - int pulse_cap;
|
| - int offset;
|
| - int orig_fill;
|
| - opus_int32 tell;
|
| + sctx->inv = inv;
|
| + sctx->imid = imid;
|
| + sctx->iside = iside;
|
| + sctx->delta = delta;
|
| + sctx->itheta = itheta;
|
| + sctx->qalloc = qalloc;
|
| +}
|
| +static unsigned quant_band_n1(struct band_ctx *ctx, celt_norm *X, celt_norm *Y, int b,
|
| + celt_norm *lowband_out)
|
| +{
|
| +#ifdef RESYNTH
|
| + int resynth = 1;
|
| +#else
|
| + int resynth = !ctx->encode;
|
| +#endif
|
| + int c;
|
| + int stereo;
|
| + celt_norm *x = X;
|
| + int encode;
|
| + ec_ctx *ec;
|
|
|
| - /* Decide on the resolution to give to the split parameter theta */
|
| - pulse_cap = m->logN[i]+LM*(1<<BITRES);
|
| - offset = (pulse_cap>>1) - (stereo&&N==2 ? QTHETA_OFFSET_TWOPHASE : QTHETA_OFFSET);
|
| - qn = compute_qn(N, b, offset, pulse_cap, stereo);
|
| - if (stereo && i>=intensity)
|
| - qn = 1;
|
| - if (encode)
|
| - {
|
| - /* theta is the atan() of the ratio between the (normalized)
|
| - side and mid. With just that parameter, we can re-scale both
|
| - mid and side because we know that 1) they have unit norm and
|
| - 2) they are orthogonal. */
|
| - itheta = stereo_itheta(X, Y, stereo, N);
|
| - }
|
| - tell = ec_tell_frac(ec);
|
| - if (qn!=1)
|
| + encode = ctx->encode;
|
| + ec = ctx->ec;
|
| +
|
| + stereo = Y != NULL;
|
| + c=0; do {
|
| + int sign=0;
|
| + if (ctx->remaining_bits>=1<<BITRES)
|
| {
|
| if (encode)
|
| - itheta = (itheta*qn+8192)>>14;
|
| -
|
| - /* Entropy coding of the angle. We use a uniform pdf for the
|
| - time split, a step for stereo, and a triangular one for the rest. */
|
| - if (stereo && N>2)
|
| {
|
| - int p0 = 3;
|
| - int x = itheta;
|
| - int x0 = qn/2;
|
| - int ft = p0*(x0+1) + x0;
|
| - /* Use a probability of p0 up to itheta=8192 and then use 1 after */
|
| - if (encode)
|
| - {
|
| - ec_encode(ec,x<=x0?p0*x:(x-1-x0)+(x0+1)*p0,x<=x0?p0*(x+1):(x-x0)+(x0+1)*p0,ft);
|
| - } else {
|
| - int fs;
|
| - fs=ec_decode(ec,ft);
|
| - if (fs<(x0+1)*p0)
|
| - x=fs/p0;
|
| - else
|
| - x=x0+1+(fs-(x0+1)*p0);
|
| - ec_dec_update(ec,x<=x0?p0*x:(x-1-x0)+(x0+1)*p0,x<=x0?p0*(x+1):(x-x0)+(x0+1)*p0,ft);
|
| - itheta = x;
|
| - }
|
| - } else if (B0>1 || stereo) {
|
| - /* Uniform pdf */
|
| - if (encode)
|
| - ec_enc_uint(ec, itheta, qn+1);
|
| - else
|
| - itheta = ec_dec_uint(ec, qn+1);
|
| + sign = x[0]<0;
|
| + ec_enc_bits(ec, sign, 1);
|
| } else {
|
| - int fs=1, ft;
|
| - ft = ((qn>>1)+1)*((qn>>1)+1);
|
| - if (encode)
|
| - {
|
| - int fl;
|
| + sign = ec_dec_bits(ec, 1);
|
| + }
|
| + ctx->remaining_bits -= 1<<BITRES;
|
| + b-=1<<BITRES;
|
| + }
|
| + if (resynth)
|
| + x[0] = sign ? -NORM_SCALING : NORM_SCALING;
|
| + x = Y;
|
| + } while (++c<1+stereo);
|
| + if (lowband_out)
|
| + lowband_out[0] = SHR16(X[0],4);
|
| + return 1;
|
| +}
|
|
|
| - fs = itheta <= (qn>>1) ? itheta + 1 : qn + 1 - itheta;
|
| - fl = itheta <= (qn>>1) ? itheta*(itheta + 1)>>1 :
|
| - ft - ((qn + 1 - itheta)*(qn + 2 - itheta)>>1);
|
| +/* This function is responsible for encoding and decoding a mono partition.
|
| + It can split the band in two and transmit the energy difference with
|
| + the two half-bands. It can be called recursively so bands can end up being
|
| + split in 8 parts. */
|
| +static unsigned quant_partition(struct band_ctx *ctx, celt_norm *X,
|
| + int N, int b, int B, celt_norm *lowband,
|
| + int LM,
|
| + opus_val16 gain, int fill)
|
| +{
|
| + const unsigned char *cache;
|
| + int q;
|
| + int curr_bits;
|
| + int imid=0, iside=0;
|
| + int N_B=N;
|
| + int B0=B;
|
| + opus_val16 mid=0, side=0;
|
| + unsigned cm=0;
|
| +#ifdef RESYNTH
|
| + int resynth = 1;
|
| +#else
|
| + int resynth = !ctx->encode;
|
| +#endif
|
| + celt_norm *Y=NULL;
|
| + int encode;
|
| + const CELTMode *m;
|
| + int i;
|
| + int spread;
|
| + ec_ctx *ec;
|
|
|
| - ec_encode(ec, fl, fl+fs, ft);
|
| - } else {
|
| - /* Triangular pdf */
|
| - int fl=0;
|
| - int fm;
|
| - fm = ec_decode(ec, ft);
|
| + encode = ctx->encode;
|
| + m = ctx->m;
|
| + i = ctx->i;
|
| + spread = ctx->spread;
|
| + ec = ctx->ec;
|
|
|
| - if (fm < ((qn>>1)*((qn>>1) + 1)>>1))
|
| - {
|
| - itheta = (isqrt32(8*(opus_uint32)fm + 1) - 1)>>1;
|
| - fs = itheta + 1;
|
| - fl = itheta*(itheta + 1)>>1;
|
| - }
|
| - else
|
| - {
|
| - itheta = (2*(qn + 1)
|
| - - isqrt32(8*(opus_uint32)(ft - fm - 1) + 1))>>1;
|
| - fs = qn + 1 - itheta;
|
| - fl = ft - ((qn + 1 - itheta)*(qn + 2 - itheta)>>1);
|
| - }
|
| + N_B /= B;
|
|
|
| - ec_dec_update(ec, fl, fl+fs, ft);
|
| - }
|
| - }
|
| - itheta = (opus_int32)itheta*16384/qn;
|
| - if (encode && stereo)
|
| - {
|
| - if (itheta==0)
|
| - intensity_stereo(m, X, Y, bandE, i, N);
|
| - else
|
| - stereo_split(X, Y, N);
|
| - }
|
| - /* NOTE: Renormalising X and Y *may* help fixed-point a bit at very high rate.
|
| - Let's do that at higher complexity */
|
| - } else if (stereo) {
|
| - if (encode)
|
| - {
|
| - inv = itheta > 8192;
|
| - if (inv)
|
| - {
|
| - int j;
|
| - for (j=0;j<N;j++)
|
| - Y[j] = -Y[j];
|
| - }
|
| - intensity_stereo(m, X, Y, bandE, i, N);
|
| - }
|
| - if (b>2<<BITRES && *remaining_bits > 2<<BITRES)
|
| - {
|
| - if (encode)
|
| - ec_enc_bit_logp(ec, inv, 2);
|
| - else
|
| - inv = ec_dec_bit_logp(ec, 2);
|
| - } else
|
| - inv = 0;
|
| - itheta = 0;
|
| - }
|
| - qalloc = ec_tell_frac(ec) - tell;
|
| - b -= qalloc;
|
| + /* If we need 1.5 more bit than we can produce, split the band in two. */
|
| + cache = m->cache.bits + m->cache.index[(LM+1)*m->nbEBands+i];
|
| + if (LM != -1 && b > cache[cache[0]]+12 && N>2)
|
| + {
|
| + int mbits, sbits, delta;
|
| + int itheta;
|
| + int qalloc;
|
| + struct split_ctx sctx;
|
| + celt_norm *next_lowband2=NULL;
|
| + opus_int32 rebalance;
|
|
|
| - orig_fill = fill;
|
| - if (itheta == 0)
|
| - {
|
| - imid = 32767;
|
| - iside = 0;
|
| - fill &= (1<<B)-1;
|
| - delta = -16384;
|
| - } else if (itheta == 16384)
|
| - {
|
| - imid = 0;
|
| - iside = 32767;
|
| - fill &= ((1<<B)-1)<<B;
|
| - delta = 16384;
|
| - } else {
|
| - imid = bitexact_cos((opus_int16)itheta);
|
| - iside = bitexact_cos((opus_int16)(16384-itheta));
|
| - /* This is the mid vs side allocation that minimizes squared error
|
| - in that band. */
|
| - delta = FRAC_MUL16((N-1)<<7,bitexact_log2tan(iside,imid));
|
| - }
|
| + N >>= 1;
|
| + Y = X+N;
|
| + LM -= 1;
|
| + if (B==1)
|
| + fill = (fill&1)|(fill<<1);
|
| + B = (B+1)>>1;
|
|
|
| + compute_theta(ctx, &sctx, X, Y, N, &b, B, B0,
|
| + LM, 0, &fill);
|
| + imid = sctx.imid;
|
| + iside = sctx.iside;
|
| + delta = sctx.delta;
|
| + itheta = sctx.itheta;
|
| + qalloc = sctx.qalloc;
|
| #ifdef FIXED_POINT
|
| mid = imid;
|
| side = iside;
|
| @@ -920,136 +926,59 @@ static unsigned quant_band(int encode, const CELTMode *m, int i, celt_norm *X, c
|
| side = (1.f/32768)*iside;
|
| #endif
|
|
|
| - /* This is a special case for N=2 that only works for stereo and takes
|
| - advantage of the fact that mid and side are orthogonal to encode
|
| - the side with just one bit. */
|
| - if (N==2 && stereo)
|
| + /* Give more bits to low-energy MDCTs than they would otherwise deserve */
|
| + if (B0>1 && (itheta&0x3fff))
|
| {
|
| - int c;
|
| - int sign=0;
|
| - celt_norm *x2, *y2;
|
| - mbits = b;
|
| - sbits = 0;
|
| - /* Only need one bit for the side */
|
| - if (itheta != 0 && itheta != 16384)
|
| - sbits = 1<<BITRES;
|
| - mbits -= sbits;
|
| - c = itheta > 8192;
|
| - *remaining_bits -= qalloc+sbits;
|
| -
|
| - x2 = c ? Y : X;
|
| - y2 = c ? X : Y;
|
| - if (sbits)
|
| - {
|
| - if (encode)
|
| - {
|
| - /* Here we only need to encode a sign for the side */
|
| - sign = x2[0]*y2[1] - x2[1]*y2[0] < 0;
|
| - ec_enc_bits(ec, sign, 1);
|
| - } else {
|
| - sign = ec_dec_bits(ec, 1);
|
| - }
|
| - }
|
| - sign = 1-2*sign;
|
| - /* We use orig_fill here because we want to fold the side, but if
|
| - itheta==16384, we'll have cleared the low bits of fill. */
|
| - cm = quant_band(encode, m, i, x2, NULL, N, mbits, spread, B, intensity, tf_change, lowband, ec, remaining_bits, LM, lowband_out, NULL, level, seed, gain, lowband_scratch, orig_fill);
|
| - /* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse),
|
| - and there's no need to worry about mixing with the other channel. */
|
| - y2[0] = -sign*x2[1];
|
| - y2[1] = sign*x2[0];
|
| - if (resynth)
|
| - {
|
| - celt_norm tmp;
|
| - X[0] = MULT16_16_Q15(mid, X[0]);
|
| - X[1] = MULT16_16_Q15(mid, X[1]);
|
| - Y[0] = MULT16_16_Q15(side, Y[0]);
|
| - Y[1] = MULT16_16_Q15(side, Y[1]);
|
| - tmp = X[0];
|
| - X[0] = SUB16(tmp,Y[0]);
|
| - Y[0] = ADD16(tmp,Y[0]);
|
| - tmp = X[1];
|
| - X[1] = SUB16(tmp,Y[1]);
|
| - Y[1] = ADD16(tmp,Y[1]);
|
| - }
|
| - } else {
|
| - /* "Normal" split code */
|
| - celt_norm *next_lowband2=NULL;
|
| - celt_norm *next_lowband_out1=NULL;
|
| - int next_level=0;
|
| - opus_int32 rebalance;
|
| -
|
| - /* Give more bits to low-energy MDCTs than they would otherwise deserve */
|
| - if (B0>1 && !stereo && (itheta&0x3fff))
|
| - {
|
| - if (itheta > 8192)
|
| - /* Rough approximation for pre-echo masking */
|
| - delta -= delta>>(4-LM);
|
| - else
|
| - /* Corresponds to a forward-masking slope of 1.5 dB per 10 ms */
|
| - delta = IMIN(0, delta + (N<<BITRES>>(5-LM)));
|
| - }
|
| - mbits = IMAX(0, IMIN(b, (b-delta)/2));
|
| - sbits = b-mbits;
|
| - *remaining_bits -= qalloc;
|
| -
|
| - if (lowband && !stereo)
|
| - next_lowband2 = lowband+N; /* >32-bit split case */
|
| -
|
| - /* Only stereo needs to pass on lowband_out. Otherwise, it's
|
| - handled at the end */
|
| - if (stereo)
|
| - next_lowband_out1 = lowband_out;
|
| + if (itheta > 8192)
|
| + /* Rough approximation for pre-echo masking */
|
| + delta -= delta>>(4-LM);
|
| else
|
| - next_level = level+1;
|
| -
|
| - rebalance = *remaining_bits;
|
| - if (mbits >= sbits)
|
| - {
|
| - /* In stereo mode, we do not apply a scaling to the mid because we need the normalized
|
| - mid for folding later */
|
| - cm = quant_band(encode, m, i, X, NULL, N, mbits, spread, B, intensity, tf_change,
|
| - lowband, ec, remaining_bits, LM, next_lowband_out1,
|
| - NULL, next_level, seed, stereo ? Q15ONE : MULT16_16_P15(gain,mid), lowband_scratch, fill);
|
| - rebalance = mbits - (rebalance-*remaining_bits);
|
| - if (rebalance > 3<<BITRES && itheta!=0)
|
| - sbits += rebalance - (3<<BITRES);
|
| -
|
| - /* For a stereo split, the high bits of fill are always zero, so no
|
| - folding will be done to the side. */
|
| - cm |= quant_band(encode, m, i, Y, NULL, N, sbits, spread, B, intensity, tf_change,
|
| - next_lowband2, ec, remaining_bits, LM, NULL,
|
| - NULL, next_level, seed, MULT16_16_P15(gain,side), NULL, fill>>B)<<((B0>>1)&(stereo-1));
|
| - } else {
|
| - /* For a stereo split, the high bits of fill are always zero, so no
|
| - folding will be done to the side. */
|
| - cm = quant_band(encode, m, i, Y, NULL, N, sbits, spread, B, intensity, tf_change,
|
| - next_lowband2, ec, remaining_bits, LM, NULL,
|
| - NULL, next_level, seed, MULT16_16_P15(gain,side), NULL, fill>>B)<<((B0>>1)&(stereo-1));
|
| - rebalance = sbits - (rebalance-*remaining_bits);
|
| - if (rebalance > 3<<BITRES && itheta!=16384)
|
| - mbits += rebalance - (3<<BITRES);
|
| - /* In stereo mode, we do not apply a scaling to the mid because we need the normalized
|
| - mid for folding later */
|
| - cm |= quant_band(encode, m, i, X, NULL, N, mbits, spread, B, intensity, tf_change,
|
| - lowband, ec, remaining_bits, LM, next_lowband_out1,
|
| - NULL, next_level, seed, stereo ? Q15ONE : MULT16_16_P15(gain,mid), lowband_scratch, fill);
|
| - }
|
| + /* Corresponds to a forward-masking slope of 1.5 dB per 10 ms */
|
| + delta = IMIN(0, delta + (N<<BITRES>>(5-LM)));
|
| }
|
| + mbits = IMAX(0, IMIN(b, (b-delta)/2));
|
| + sbits = b-mbits;
|
| + ctx->remaining_bits -= qalloc;
|
| +
|
| + if (lowband)
|
| + next_lowband2 = lowband+N; /* >32-bit split case */
|
|
|
| + rebalance = ctx->remaining_bits;
|
| + if (mbits >= sbits)
|
| + {
|
| + cm = quant_partition(ctx, X, N, mbits, B,
|
| + lowband, LM,
|
| + MULT16_16_P15(gain,mid), fill);
|
| + rebalance = mbits - (rebalance-ctx->remaining_bits);
|
| + if (rebalance > 3<<BITRES && itheta!=0)
|
| + sbits += rebalance - (3<<BITRES);
|
| + cm |= quant_partition(ctx, Y, N, sbits, B,
|
| + next_lowband2, LM,
|
| + MULT16_16_P15(gain,side), fill>>B)<<(B0>>1);
|
| + } else {
|
| + cm = quant_partition(ctx, Y, N, sbits, B,
|
| + next_lowband2, LM,
|
| + MULT16_16_P15(gain,side), fill>>B)<<(B0>>1);
|
| + rebalance = sbits - (rebalance-ctx->remaining_bits);
|
| + if (rebalance > 3<<BITRES && itheta!=16384)
|
| + mbits += rebalance - (3<<BITRES);
|
| + cm |= quant_partition(ctx, X, N, mbits, B,
|
| + lowband, LM,
|
| + MULT16_16_P15(gain,mid), fill);
|
| + }
|
| } else {
|
| /* This is the basic no-split case */
|
| q = bits2pulses(m, i, LM, b);
|
| curr_bits = pulses2bits(m, i, LM, q);
|
| - *remaining_bits -= curr_bits;
|
| + ctx->remaining_bits -= curr_bits;
|
|
|
| /* Ensures we can never bust the budget */
|
| - while (*remaining_bits < 0 && q > 0)
|
| + while (ctx->remaining_bits < 0 && q > 0)
|
| {
|
| - *remaining_bits += curr_bits;
|
| + ctx->remaining_bits += curr_bits;
|
| q--;
|
| curr_bits = pulses2bits(m, i, LM, q);
|
| - *remaining_bits -= curr_bits;
|
| + ctx->remaining_bits -= curr_bits;
|
| }
|
|
|
| if (q!=0)
|
| @@ -1073,7 +1002,7 @@ static unsigned quant_band(int encode, const CELTMode *m, int i, celt_norm *X, c
|
| if (resynth)
|
| {
|
| unsigned cm_mask;
|
| - /*B can be as large as 16, so this shift might overflow an int on a
|
| + /* B can be as large as 16, so this shift might overflow an int on a
|
| 16-bit platform; use a long to get defined behavior.*/
|
| cm_mask = (unsigned)(1UL<<B)-1;
|
| fill &= cm_mask;
|
| @@ -1087,8 +1016,8 @@ static unsigned quant_band(int encode, const CELTMode *m, int i, celt_norm *X, c
|
| /* Noise */
|
| for (j=0;j<N;j++)
|
| {
|
| - *seed = celt_lcg_rand(*seed);
|
| - X[j] = (celt_norm)((opus_int32)*seed>>20);
|
| + ctx->seed = celt_lcg_rand(ctx->seed);
|
| + X[j] = (celt_norm)((opus_int32)ctx->seed>>20);
|
| }
|
| cm = cm_mask;
|
| } else {
|
| @@ -1096,10 +1025,10 @@ static unsigned quant_band(int encode, const CELTMode *m, int i, celt_norm *X, c
|
| for (j=0;j<N;j++)
|
| {
|
| opus_val16 tmp;
|
| - *seed = celt_lcg_rand(*seed);
|
| + ctx->seed = celt_lcg_rand(ctx->seed);
|
| /* About 48 dB below the "normal" folding level */
|
| tmp = QCONST16(1.0f/256, 10);
|
| - tmp = (*seed)&0x8000 ? tmp : -tmp;
|
| + tmp = (ctx->seed)&0x8000 ? tmp : -tmp;
|
| X[j] = lowband[j]+tmp;
|
| }
|
| cm = fill;
|
| @@ -1110,64 +1039,307 @@ static unsigned quant_band(int encode, const CELTMode *m, int i, celt_norm *X, c
|
| }
|
| }
|
|
|
| + return cm;
|
| +}
|
| +
|
| +
|
| +/* This function is responsible for encoding and decoding a band for the mono case. */
|
| +static unsigned quant_band(struct band_ctx *ctx, celt_norm *X,
|
| + int N, int b, int B, celt_norm *lowband,
|
| + int LM, celt_norm *lowband_out,
|
| + opus_val16 gain, celt_norm *lowband_scratch, int fill)
|
| +{
|
| + int N0=N;
|
| + int N_B=N;
|
| + int N_B0;
|
| + int B0=B;
|
| + int time_divide=0;
|
| + int recombine=0;
|
| + int longBlocks;
|
| + unsigned cm=0;
|
| +#ifdef RESYNTH
|
| + int resynth = 1;
|
| +#else
|
| + int resynth = !ctx->encode;
|
| +#endif
|
| + int k;
|
| + int encode;
|
| + int tf_change;
|
| +
|
| + encode = ctx->encode;
|
| + tf_change = ctx->tf_change;
|
| +
|
| + longBlocks = B0==1;
|
| +
|
| + N_B /= B;
|
| + N_B0 = N_B;
|
| +
|
| + /* Special case for one sample */
|
| + if (N==1)
|
| + {
|
| + return quant_band_n1(ctx, X, NULL, b, lowband_out);
|
| + }
|
| +
|
| + if (tf_change>0)
|
| + recombine = tf_change;
|
| + /* Band recombining to increase frequency resolution */
|
| +
|
| + if (lowband_scratch && lowband && (recombine || ((N_B&1) == 0 && tf_change<0) || B0>1))
|
| + {
|
| + int j;
|
| + for (j=0;j<N;j++)
|
| + lowband_scratch[j] = lowband[j];
|
| + lowband = lowband_scratch;
|
| + }
|
| +
|
| + for (k=0;k<recombine;k++)
|
| + {
|
| + static const unsigned char bit_interleave_table[16]={
|
| + 0,1,1,1,2,3,3,3,2,3,3,3,2,3,3,3
|
| + };
|
| + if (encode)
|
| + haar1(X, N>>k, 1<<k);
|
| + if (lowband)
|
| + haar1(lowband, N>>k, 1<<k);
|
| + fill = bit_interleave_table[fill&0xF]|bit_interleave_table[fill>>4]<<2;
|
| + }
|
| + B>>=recombine;
|
| + N_B<<=recombine;
|
| +
|
| + /* Increasing the time resolution */
|
| + while ((N_B&1) == 0 && tf_change<0)
|
| + {
|
| + if (encode)
|
| + haar1(X, N_B, B);
|
| + if (lowband)
|
| + haar1(lowband, N_B, B);
|
| + fill |= fill<<B;
|
| + B <<= 1;
|
| + N_B >>= 1;
|
| + time_divide++;
|
| + tf_change++;
|
| + }
|
| + B0=B;
|
| + N_B0 = N_B;
|
| +
|
| + /* Reorganize the samples in time order instead of frequency order */
|
| + if (B0>1)
|
| + {
|
| + if (encode)
|
| + deinterleave_hadamard(X, N_B>>recombine, B0<<recombine, longBlocks);
|
| + if (lowband)
|
| + deinterleave_hadamard(lowband, N_B>>recombine, B0<<recombine, longBlocks);
|
| + }
|
| +
|
| + cm = quant_partition(ctx, X, N, b, B, lowband,
|
| + LM, gain, fill);
|
| +
|
| /* This code is used by the decoder and by the resynthesis-enabled encoder */
|
| if (resynth)
|
| {
|
| - if (stereo)
|
| + /* Undo the sample reorganization going from time order to frequency order */
|
| + if (B0>1)
|
| + interleave_hadamard(X, N_B>>recombine, B0<<recombine, longBlocks);
|
| +
|
| + /* Undo time-freq changes that we did earlier */
|
| + N_B = N_B0;
|
| + B = B0;
|
| + for (k=0;k<time_divide;k++)
|
| {
|
| - if (N!=2)
|
| - stereo_merge(X, Y, mid, N);
|
| - if (inv)
|
| - {
|
| - int j;
|
| - for (j=0;j<N;j++)
|
| - Y[j] = -Y[j];
|
| - }
|
| - } else if (level == 0)
|
| + B >>= 1;
|
| + N_B <<= 1;
|
| + cm |= cm>>B;
|
| + haar1(X, N_B, B);
|
| + }
|
| +
|
| + for (k=0;k<recombine;k++)
|
| {
|
| - int k;
|
| + static const unsigned char bit_deinterleave_table[16]={
|
| + 0x00,0x03,0x0C,0x0F,0x30,0x33,0x3C,0x3F,
|
| + 0xC0,0xC3,0xCC,0xCF,0xF0,0xF3,0xFC,0xFF
|
| + };
|
| + cm = bit_deinterleave_table[cm];
|
| + haar1(X, N0>>k, 1<<k);
|
| + }
|
| + B<<=recombine;
|
|
|
| - /* Undo the sample reorganization going from time order to frequency order */
|
| - if (B0>1)
|
| - interleave_hadamard(X, N_B>>recombine, B0<<recombine, longBlocks);
|
| + /* Scale output for later folding */
|
| + if (lowband_out)
|
| + {
|
| + int j;
|
| + opus_val16 n;
|
| + n = celt_sqrt(SHL32(EXTEND32(N0),22));
|
| + for (j=0;j<N0;j++)
|
| + lowband_out[j] = MULT16_16_Q15(n,X[j]);
|
| + }
|
| + cm &= (1<<B)-1;
|
| + }
|
| + return cm;
|
| +}
|
|
|
| - /* Undo time-freq changes that we did earlier */
|
| - N_B = N_B0;
|
| - B = B0;
|
| - for (k=0;k<time_divide;k++)
|
| - {
|
| - B >>= 1;
|
| - N_B <<= 1;
|
| - cm |= cm>>B;
|
| - haar1(X, N_B, B);
|
| - }
|
|
|
| - for (k=0;k<recombine;k++)
|
| - {
|
| - static const unsigned char bit_deinterleave_table[16]={
|
| - 0x00,0x03,0x0C,0x0F,0x30,0x33,0x3C,0x3F,
|
| - 0xC0,0xC3,0xCC,0xCF,0xF0,0xF3,0xFC,0xFF
|
| - };
|
| - cm = bit_deinterleave_table[cm];
|
| - haar1(X, N0>>k, 1<<k);
|
| - }
|
| - B<<=recombine;
|
| +/* This function is responsible for encoding and decoding a band for the stereo case. */
|
| +static unsigned quant_band_stereo(struct band_ctx *ctx, celt_norm *X, celt_norm *Y,
|
| + int N, int b, int B, celt_norm *lowband,
|
| + int LM, celt_norm *lowband_out,
|
| + celt_norm *lowband_scratch, int fill)
|
| +{
|
| + int imid=0, iside=0;
|
| + int inv = 0;
|
| + opus_val16 mid=0, side=0;
|
| + unsigned cm=0;
|
| +#ifdef RESYNTH
|
| + int resynth = 1;
|
| +#else
|
| + int resynth = !ctx->encode;
|
| +#endif
|
| + int mbits, sbits, delta;
|
| + int itheta;
|
| + int qalloc;
|
| + struct split_ctx sctx;
|
| + int orig_fill;
|
| + int encode;
|
| + ec_ctx *ec;
|
| +
|
| + encode = ctx->encode;
|
| + ec = ctx->ec;
|
| +
|
| + /* Special case for one sample */
|
| + if (N==1)
|
| + {
|
| + return quant_band_n1(ctx, X, Y, b, lowband_out);
|
| + }
|
| +
|
| + orig_fill = fill;
|
| +
|
| + compute_theta(ctx, &sctx, X, Y, N, &b, B, B,
|
| + LM, 1, &fill);
|
| + inv = sctx.inv;
|
| + imid = sctx.imid;
|
| + iside = sctx.iside;
|
| + delta = sctx.delta;
|
| + itheta = sctx.itheta;
|
| + qalloc = sctx.qalloc;
|
| +#ifdef FIXED_POINT
|
| + mid = imid;
|
| + side = iside;
|
| +#else
|
| + mid = (1.f/32768)*imid;
|
| + side = (1.f/32768)*iside;
|
| +#endif
|
|
|
| - /* Scale output for later folding */
|
| - if (lowband_out)
|
| + /* This is a special case for N=2 that only works for stereo and takes
|
| + advantage of the fact that mid and side are orthogonal to encode
|
| + the side with just one bit. */
|
| + if (N==2)
|
| + {
|
| + int c;
|
| + int sign=0;
|
| + celt_norm *x2, *y2;
|
| + mbits = b;
|
| + sbits = 0;
|
| + /* Only need one bit for the side. */
|
| + if (itheta != 0 && itheta != 16384)
|
| + sbits = 1<<BITRES;
|
| + mbits -= sbits;
|
| + c = itheta > 8192;
|
| + ctx->remaining_bits -= qalloc+sbits;
|
| +
|
| + x2 = c ? Y : X;
|
| + y2 = c ? X : Y;
|
| + if (sbits)
|
| + {
|
| + if (encode)
|
| {
|
| - int j;
|
| - opus_val16 n;
|
| - n = celt_sqrt(SHL32(EXTEND32(N0),22));
|
| - for (j=0;j<N0;j++)
|
| - lowband_out[j] = MULT16_16_Q15(n,X[j]);
|
| + /* Here we only need to encode a sign for the side. */
|
| + sign = x2[0]*y2[1] - x2[1]*y2[0] < 0;
|
| + ec_enc_bits(ec, sign, 1);
|
| + } else {
|
| + sign = ec_dec_bits(ec, 1);
|
| }
|
| - cm &= (1<<B)-1;
|
| + }
|
| + sign = 1-2*sign;
|
| + /* We use orig_fill here because we want to fold the side, but if
|
| + itheta==16384, we'll have cleared the low bits of fill. */
|
| + cm = quant_band(ctx, x2, N, mbits, B, lowband,
|
| + LM, lowband_out, Q15ONE, lowband_scratch, orig_fill);
|
| + /* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse),
|
| + and there's no need to worry about mixing with the other channel. */
|
| + y2[0] = -sign*x2[1];
|
| + y2[1] = sign*x2[0];
|
| + if (resynth)
|
| + {
|
| + celt_norm tmp;
|
| + X[0] = MULT16_16_Q15(mid, X[0]);
|
| + X[1] = MULT16_16_Q15(mid, X[1]);
|
| + Y[0] = MULT16_16_Q15(side, Y[0]);
|
| + Y[1] = MULT16_16_Q15(side, Y[1]);
|
| + tmp = X[0];
|
| + X[0] = SUB16(tmp,Y[0]);
|
| + Y[0] = ADD16(tmp,Y[0]);
|
| + tmp = X[1];
|
| + X[1] = SUB16(tmp,Y[1]);
|
| + Y[1] = ADD16(tmp,Y[1]);
|
| + }
|
| + } else {
|
| + /* "Normal" split code */
|
| + opus_int32 rebalance;
|
| +
|
| + mbits = IMAX(0, IMIN(b, (b-delta)/2));
|
| + sbits = b-mbits;
|
| + ctx->remaining_bits -= qalloc;
|
| +
|
| + rebalance = ctx->remaining_bits;
|
| + if (mbits >= sbits)
|
| + {
|
| + /* In stereo mode, we do not apply a scaling to the mid because we need the normalized
|
| + mid for folding later. */
|
| + cm = quant_band(ctx, X, N, mbits, B,
|
| + lowband, LM, lowband_out,
|
| + Q15ONE, lowband_scratch, fill);
|
| + rebalance = mbits - (rebalance-ctx->remaining_bits);
|
| + if (rebalance > 3<<BITRES && itheta!=0)
|
| + sbits += rebalance - (3<<BITRES);
|
| +
|
| + /* For a stereo split, the high bits of fill are always zero, so no
|
| + folding will be done to the side. */
|
| + cm |= quant_band(ctx, Y, N, sbits, B,
|
| + NULL, LM, NULL,
|
| + side, NULL, fill>>B);
|
| + } else {
|
| + /* For a stereo split, the high bits of fill are always zero, so no
|
| + folding will be done to the side. */
|
| + cm = quant_band(ctx, Y, N, sbits, B,
|
| + NULL, LM, NULL,
|
| + side, NULL, fill>>B);
|
| + rebalance = sbits - (rebalance-ctx->remaining_bits);
|
| + if (rebalance > 3<<BITRES && itheta!=16384)
|
| + mbits += rebalance - (3<<BITRES);
|
| + /* In stereo mode, we do not apply a scaling to the mid because we need the normalized
|
| + mid for folding later. */
|
| + cm |= quant_band(ctx, X, N, mbits, B,
|
| + lowband, LM, lowband_out,
|
| + Q15ONE, lowband_scratch, fill);
|
| + }
|
| + }
|
| +
|
| +
|
| + /* This code is used by the decoder and by the resynthesis-enabled encoder */
|
| + if (resynth)
|
| + {
|
| + if (N!=2)
|
| + stereo_merge(X, Y, mid, N);
|
| + if (inv)
|
| + {
|
| + int j;
|
| + for (j=0;j<N;j++)
|
| + Y[j] = -Y[j];
|
| }
|
| }
|
| return cm;
|
| }
|
|
|
| +
|
| void quant_all_bands(int encode, const CELTMode *m, int start, int end,
|
| celt_norm *X_, celt_norm *Y_, unsigned char *collapse_masks, const celt_ener *bandE, int *pulses,
|
| int shortBlocks, int spread, int dual_stereo, int intensity, int *tf_res,
|
| @@ -1178,27 +1350,41 @@ void quant_all_bands(int encode, const CELTMode *m, int start, int end,
|
| const opus_int16 * OPUS_RESTRICT eBands = m->eBands;
|
| celt_norm * OPUS_RESTRICT norm, * OPUS_RESTRICT norm2;
|
| VARDECL(celt_norm, _norm);
|
| - VARDECL(celt_norm, lowband_scratch);
|
| + celt_norm *lowband_scratch;
|
| int B;
|
| int M;
|
| int lowband_offset;
|
| int update_lowband = 1;
|
| int C = Y_ != NULL ? 2 : 1;
|
| + int norm_offset;
|
| #ifdef RESYNTH
|
| int resynth = 1;
|
| #else
|
| int resynth = !encode;
|
| #endif
|
| + struct band_ctx ctx;
|
| SAVE_STACK;
|
|
|
| M = 1<<LM;
|
| B = shortBlocks ? M : 1;
|
| - ALLOC(_norm, C*M*eBands[m->nbEBands], celt_norm);
|
| - ALLOC(lowband_scratch, M*(eBands[m->nbEBands]-eBands[m->nbEBands-1]), celt_norm);
|
| + norm_offset = M*eBands[start];
|
| + /* No need to allocate norm for the last band because we don't need an
|
| + output in that band. */
|
| + ALLOC(_norm, C*(M*eBands[m->nbEBands-1]-norm_offset), celt_norm);
|
| norm = _norm;
|
| - norm2 = norm + M*eBands[m->nbEBands];
|
| + norm2 = norm + M*eBands[m->nbEBands-1]-norm_offset;
|
| + /* We can use the last band as scratch space because we don't need that
|
| + scratch space for the last band. */
|
| + lowband_scratch = X_+M*eBands[m->nbEBands-1];
|
|
|
| lowband_offset = 0;
|
| + ctx.bandE = bandE;
|
| + ctx.ec = ec;
|
| + ctx.encode = encode;
|
| + ctx.intensity = intensity;
|
| + ctx.m = m;
|
| + ctx.seed = *seed;
|
| + ctx.spread = spread;
|
| for (i=start;i<end;i++)
|
| {
|
| opus_int32 tell;
|
| @@ -1210,6 +1396,10 @@ void quant_all_bands(int encode, const CELTMode *m, int start, int end,
|
| int tf_change=0;
|
| unsigned x_cm;
|
| unsigned y_cm;
|
| + int last;
|
| +
|
| + ctx.i = i;
|
| + last = (i==end-1);
|
|
|
| X = X_+M*eBands[i];
|
| if (Y_!=NULL)
|
| @@ -1223,6 +1413,7 @@ void quant_all_bands(int encode, const CELTMode *m, int start, int end,
|
| if (i != start)
|
| balance -= tell;
|
| remaining_bits = total_bits-tell-1;
|
| + ctx.remaining_bits = remaining_bits;
|
| if (i <= codedBands-1)
|
| {
|
| curr_balance = balance / IMIN(3, codedBands-i);
|
| @@ -1235,26 +1426,30 @@ void quant_all_bands(int encode, const CELTMode *m, int start, int end,
|
| lowband_offset = i;
|
|
|
| tf_change = tf_res[i];
|
| + ctx.tf_change = tf_change;
|
| if (i>=m->effEBands)
|
| {
|
| X=norm;
|
| if (Y_!=NULL)
|
| Y = norm;
|
| + lowband_scratch = NULL;
|
| }
|
| + if (i==end-1)
|
| + lowband_scratch = NULL;
|
|
|
| /* Get a conservative estimate of the collapse_mask's for the bands we're
|
| - going to be folding from. */
|
| + going to be folding from. */
|
| if (lowband_offset != 0 && (spread!=SPREAD_AGGRESSIVE || B>1 || tf_change<0))
|
| {
|
| int fold_start;
|
| int fold_end;
|
| int fold_i;
|
| /* This ensures we never repeat spectral content within one band */
|
| - effective_lowband = IMAX(M*eBands[start], M*eBands[lowband_offset]-N);
|
| + effective_lowband = IMAX(0, M*eBands[lowband_offset]-norm_offset-N);
|
| fold_start = lowband_offset;
|
| - while(M*eBands[--fold_start] > effective_lowband);
|
| + while(M*eBands[--fold_start] > effective_lowband+norm_offset);
|
| fold_end = lowband_offset-1;
|
| - while(M*eBands[++fold_end] < effective_lowband+N);
|
| + while(M*eBands[++fold_end] < effective_lowband+norm_offset+N);
|
| x_cm = y_cm = 0;
|
| fold_i = fold_start; do {
|
| x_cm |= collapse_masks[fold_i*C+0];
|
| @@ -1262,7 +1457,7 @@ void quant_all_bands(int encode, const CELTMode *m, int start, int end,
|
| } while (++fold_i<fold_end);
|
| }
|
| /* Otherwise, we'll be using the LCG to fold, so all blocks will (almost
|
| - always) be non-zero.*/
|
| + always) be non-zero. */
|
| else
|
| x_cm = y_cm = (1<<B)-1;
|
|
|
| @@ -1270,33 +1465,42 @@ void quant_all_bands(int encode, const CELTMode *m, int start, int end,
|
| {
|
| int j;
|
|
|
| - /* Switch off dual stereo to do intensity */
|
| + /* Switch off dual stereo to do intensity. */
|
| dual_stereo = 0;
|
| if (resynth)
|
| - for (j=M*eBands[start];j<M*eBands[i];j++)
|
| + for (j=0;j<M*eBands[i]-norm_offset;j++)
|
| norm[j] = HALF32(norm[j]+norm2[j]);
|
| }
|
| if (dual_stereo)
|
| {
|
| - x_cm = quant_band(encode, m, i, X, NULL, N, b/2, spread, B, intensity, tf_change,
|
| - effective_lowband != -1 ? norm+effective_lowband : NULL, ec, &remaining_bits, LM,
|
| - norm+M*eBands[i], bandE, 0, seed, Q15ONE, lowband_scratch, x_cm);
|
| - y_cm = quant_band(encode, m, i, Y, NULL, N, b/2, spread, B, intensity, tf_change,
|
| - effective_lowband != -1 ? norm2+effective_lowband : NULL, ec, &remaining_bits, LM,
|
| - norm2+M*eBands[i], bandE, 0, seed, Q15ONE, lowband_scratch, y_cm);
|
| + x_cm = quant_band(&ctx, X, N, b/2, B,
|
| + effective_lowband != -1 ? norm+effective_lowband : NULL, LM,
|
| + last?NULL:norm+M*eBands[i]-norm_offset, Q15ONE, lowband_scratch, x_cm);
|
| + y_cm = quant_band(&ctx, Y, N, b/2, B,
|
| + effective_lowband != -1 ? norm2+effective_lowband : NULL, LM,
|
| + last?NULL:norm2+M*eBands[i]-norm_offset, Q15ONE, lowband_scratch, y_cm);
|
| } else {
|
| - x_cm = quant_band(encode, m, i, X, Y, N, b, spread, B, intensity, tf_change,
|
| - effective_lowband != -1 ? norm+effective_lowband : NULL, ec, &remaining_bits, LM,
|
| - norm+M*eBands[i], bandE, 0, seed, Q15ONE, lowband_scratch, x_cm|y_cm);
|
| + if (Y!=NULL)
|
| + {
|
| + x_cm = quant_band_stereo(&ctx, X, Y, N, b, B,
|
| + effective_lowband != -1 ? norm+effective_lowband : NULL, LM,
|
| + last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, x_cm|y_cm);
|
| + } else {
|
| + x_cm = quant_band(&ctx, X, N, b, B,
|
| + effective_lowband != -1 ? norm+effective_lowband : NULL, LM,
|
| + last?NULL:norm+M*eBands[i]-norm_offset, Q15ONE, lowband_scratch, x_cm|y_cm);
|
| + }
|
| y_cm = x_cm;
|
| }
|
| collapse_masks[i*C+0] = (unsigned char)x_cm;
|
| collapse_masks[i*C+C-1] = (unsigned char)y_cm;
|
| balance += pulses[i] + tell;
|
|
|
| - /* Update the folding position only as long as we have 1 bit/sample depth */
|
| + /* Update the folding position only as long as we have 1 bit/sample depth. */
|
| update_lowband = b>(N<<BITRES);
|
| }
|
| + *seed = ctx.seed;
|
| +
|
| RESTORE_STACK;
|
| }
|
|
|
|
|