Index: runtime/vm/intrinsifier_arm64.cc |
=================================================================== |
--- runtime/vm/intrinsifier_arm64.cc (revision 36300) |
+++ runtime/vm/intrinsifier_arm64.cc (working copy) |
@@ -15,60 +15,260 @@ |
namespace dart { |
+DECLARE_FLAG(bool, enable_type_checks); |
+ |
#define __ assembler-> |
void Intrinsifier::Array_getLength(Assembler* assembler) { |
- return; |
+ __ ldr(R0, Address(SP, 0 * kWordSize)); |
+ __ ldr(R0, FieldAddress(R0, Array::length_offset())); |
+ __ ret(); |
} |
void Intrinsifier::ImmutableList_getLength(Assembler* assembler) { |
- return; |
+ Array_getLength(assembler); |
} |
void Intrinsifier::Array_getIndexed(Assembler* assembler) { |
- return; |
+ Label fall_through; |
+ |
+ __ ldr(R0, Address(SP, + 0 * kWordSize)); // Index |
+ __ ldr(R1, Address(SP, + 1 * kWordSize)); // Array |
+ |
+ __ tsti(R0, kSmiTagMask); |
+ __ b(&fall_through, NE); // Index is not an smi, fall through. |
+ |
+ // range check |
+ __ ldr(R6, FieldAddress(R1, Array::length_offset())); |
+ __ cmp(R0, Operand(R6)); |
+ __ b(&fall_through, CS); |
+ |
+ ASSERT(kSmiTagShift == 1); |
+ // array element at R1 + R0*4 + Array::data_offset - 1 |
+ __ add(R6, R1, Operand(R0, LSL, 2)); |
+ __ ldr(R0, FieldAddress(R6, Array::data_offset())); |
+ __ ret(); |
+ __ Bind(&fall_through); |
} |
void Intrinsifier::ImmutableList_getIndexed(Assembler* assembler) { |
- return; |
+ Array_getIndexed(assembler); |
} |
+static intptr_t ComputeObjectArrayTypeArgumentsOffset() { |
+ const Library& core_lib = Library::Handle(Library::CoreLibrary()); |
+ const Class& cls = Class::Handle( |
+ core_lib.LookupClassAllowPrivate(Symbols::_List())); |
+ ASSERT(!cls.IsNull()); |
+ ASSERT(cls.NumTypeArguments() == 1); |
+ const intptr_t field_offset = cls.type_arguments_field_offset(); |
+ ASSERT(field_offset != Class::kNoTypeArguments); |
+ return field_offset; |
+} |
+ |
+ |
+// Intrinsify only for Smi value and index. Non-smi values need a store buffer |
+// update. Array length is always a Smi. |
void Intrinsifier::Array_setIndexed(Assembler* assembler) { |
- return; |
+ Label fall_through; |
+ |
+ if (FLAG_enable_type_checks) { |
+ const intptr_t type_args_field_offset = |
+ ComputeObjectArrayTypeArgumentsOffset(); |
+ // Inline simple tests (Smi, null), fallthrough if not positive. |
+ Label checked_ok; |
+ __ ldr(R2, Address(SP, 0 * kWordSize)); // Value. |
+ |
+ // Null value is valid for any type. |
+ __ CompareObject(R2, Object::null_object(), PP); |
+ __ b(&checked_ok, EQ); |
+ |
+ __ ldr(R1, Address(SP, 2 * kWordSize)); // Array. |
+ __ ldr(R1, FieldAddress(R1, type_args_field_offset)); |
+ |
+ // R1: Type arguments of array. |
+ __ CompareObject(R1, Object::null_object(), PP); |
+ __ b(&checked_ok, EQ); |
+ |
+ // Check if it's dynamic. |
+ // Get type at index 0. |
+ __ ldr(R0, FieldAddress(R1, TypeArguments::type_at_offset(0))); |
+ __ CompareObject(R0, Type::ZoneHandle(Type::DynamicType()), PP); |
+ __ b(&checked_ok, EQ); |
+ |
+ // Check for int and num. |
+ __ tsti(R2, kSmiTagMask); // Value is Smi? |
+ __ b(&fall_through, NE); // Non-smi value. |
+ __ CompareObject(R0, Type::ZoneHandle(Type::IntType()), PP); |
+ __ b(&checked_ok, EQ); |
+ __ CompareObject(R0, Type::ZoneHandle(Type::Number()), PP); |
+ __ b(&fall_through, NE); |
+ __ Bind(&checked_ok); |
+ } |
+ __ ldr(R1, Address(SP, 1 * kWordSize)); // Index. |
+ __ tsti(R1, kSmiTagMask); |
+ // Index not Smi. |
+ __ b(&fall_through, NE); |
+ __ ldr(R0, Address(SP, 2 * kWordSize)); // Array. |
+ |
+ // Range check. |
+ __ ldr(R3, FieldAddress(R0, Array::length_offset())); // Array length. |
+ __ cmp(R1, Operand(R3)); |
+ // Runtime throws exception. |
+ __ b(&fall_through, CS); |
+ |
+ // Note that R1 is Smi, i.e, times 2. |
+ ASSERT(kSmiTagShift == 1); |
+ __ ldr(R2, Address(SP, 0 * kWordSize)); // Value. |
+ __ add(R1, R0, Operand(R1, LSL, 2)); // R1 is Smi. |
+ __ StoreIntoObject(R0, |
+ FieldAddress(R1, Array::data_offset()), |
+ R2); |
+ // Caller is responsible for preserving the value if necessary. |
+ __ ret(); |
+ __ Bind(&fall_through); |
} |
// Allocate a GrowableObjectArray using the backing array specified. |
// On stack: type argument (+1), data (+0). |
void Intrinsifier::GrowableList_Allocate(Assembler* assembler) { |
- return; |
+ // The newly allocated object is returned in R0. |
+ const intptr_t kTypeArgumentsOffset = 1 * kWordSize; |
+ const intptr_t kArrayOffset = 0 * kWordSize; |
+ Label fall_through; |
+ |
+ // Compute the size to be allocated, it is based on the array length |
+ // and is computed as: |
+ // RoundedAllocationSize(sizeof(RawGrowableObjectArray)) + |
+ intptr_t fixed_size = GrowableObjectArray::InstanceSize(); |
+ |
+ Isolate* isolate = Isolate::Current(); |
+ Heap* heap = isolate->heap(); |
+ |
+ __ LoadImmediate(R2, heap->TopAddress(), kNoPP); |
+ __ ldr(R0, Address(R2, 0)); |
+ __ AddImmediate(R1, R0, fixed_size, kNoPP); |
+ |
+ // Check if the allocation fits into the remaining space. |
+ // R0: potential new backing array object start. |
+ // R1: potential next object start. |
+ __ LoadImmediate(R3, heap->EndAddress(), kNoPP); |
+ __ ldr(R3, Address(R3, 0)); |
+ __ cmp(R1, Operand(R3)); |
+ __ b(&fall_through, CS); |
+ |
+ // Successfully allocated the object(s), now update top to point to |
+ // next object start and initialize the object. |
+ __ str(R1, Address(R2, 0)); |
+ __ AddImmediate(R0, R0, kHeapObjectTag, kNoPP); |
+ |
+ // Initialize the tags. |
+ // R0: new growable array object start as a tagged pointer. |
+ const Class& cls = Class::Handle( |
+ isolate->object_store()->growable_object_array_class()); |
+ uword tags = 0; |
+ tags = RawObject::SizeTag::update(fixed_size, tags); |
+ tags = RawObject::ClassIdTag::update(cls.id(), tags); |
+ __ LoadImmediate(R1, tags, kNoPP); |
+ __ str(R1, FieldAddress(R0, GrowableObjectArray::tags_offset())); |
+ |
+ // Store backing array object in growable array object. |
+ __ ldr(R1, Address(SP, kArrayOffset)); // Data argument. |
+ // R0 is new, no barrier needed. |
+ __ StoreIntoObjectNoBarrier( |
+ R0, |
+ FieldAddress(R0, GrowableObjectArray::data_offset()), |
+ R1); |
+ |
+ // R0: new growable array object start as a tagged pointer. |
+ // Store the type argument field in the growable array object. |
+ __ ldr(R1, Address(SP, kTypeArgumentsOffset)); // Type argument. |
+ __ StoreIntoObjectNoBarrier( |
+ R0, |
+ FieldAddress(R0, GrowableObjectArray::type_arguments_offset()), |
+ R1); |
+ |
+ // Set the length field in the growable array object to 0. |
+ __ LoadImmediate(R1, 0, kNoPP); |
+ __ str(R1, FieldAddress(R0, GrowableObjectArray::length_offset())); |
+ __ UpdateAllocationStats(kGrowableObjectArrayCid, R1, kNoPP); |
+ __ ret(); // Returns the newly allocated object in R0. |
+ |
+ __ Bind(&fall_through); |
} |
void Intrinsifier::GrowableList_getLength(Assembler* assembler) { |
- return; |
+ __ ldr(R0, Address(SP, 0 * kWordSize)); |
+ __ ldr(R0, FieldAddress(R0, GrowableObjectArray::length_offset())); |
+ __ ret(); |
} |
void Intrinsifier::GrowableList_getCapacity(Assembler* assembler) { |
- return; |
+ __ ldr(R0, Address(SP, 0 * kWordSize)); |
+ __ ldr(R0, FieldAddress(R0, GrowableObjectArray::data_offset())); |
+ __ ldr(R0, FieldAddress(R0, Array::length_offset())); |
+ __ ret(); |
} |
void Intrinsifier::GrowableList_getIndexed(Assembler* assembler) { |
- return; |
+ Label fall_through; |
+ |
+ __ ldr(R0, Address(SP, + 0 * kWordSize)); // Index |
+ __ ldr(R1, Address(SP, + 1 * kWordSize)); // Array |
+ |
+ __ tsti(R0, kSmiTagMask); |
+ __ b(&fall_through, NE); // Index is not an smi, fall through. |
+ |
+ // range check |
+ __ ldr(R6, FieldAddress(R1, GrowableObjectArray::length_offset())); |
+ __ cmp(R0, Operand(R6)); |
+ __ b(&fall_through, CS); |
+ |
+ ASSERT(kSmiTagShift == 1); |
+ // array element at R6 + R0 * 4 + Array::data_offset - 1 |
+ __ ldr(R6, FieldAddress(R1, GrowableObjectArray::data_offset())); // Data |
+ __ add(R6, R6, Operand(R0, LSL, 2)); |
+ __ ldr(R0, FieldAddress(R6, Array::data_offset())); |
+ __ ret(); |
+ __ Bind(&fall_through); |
} |
// Set value into growable object array at specified index. |
// On stack: growable array (+2), index (+1), value (+0). |
void Intrinsifier::GrowableList_setIndexed(Assembler* assembler) { |
- return; |
+ if (FLAG_enable_type_checks) { |
+ return; |
+ } |
+ Label fall_through; |
+ __ ldr(R1, Address(SP, 1 * kWordSize)); // Index. |
+ __ ldr(R0, Address(SP, 2 * kWordSize)); // GrowableArray. |
+ __ tsti(R1, kSmiTagMask); |
+ __ b(&fall_through, NE); // Non-smi index. |
+ // Range check using _length field. |
+ __ ldr(R2, FieldAddress(R0, GrowableObjectArray::length_offset())); |
+ __ cmp(R1, Operand(R2)); |
+ // Runtime throws exception. |
+ __ b(&fall_through, CS); |
+ __ ldr(R0, FieldAddress(R0, GrowableObjectArray::data_offset())); // data. |
+ __ ldr(R2, Address(SP, 0 * kWordSize)); // Value. |
+ // Note that R1 is Smi, i.e, times 2. |
+ ASSERT(kSmiTagShift == 1); |
+ __ add(R1, R0, Operand(R1, LSL, 2)); |
+ __ StoreIntoObject(R0, |
+ FieldAddress(R1, Array::data_offset()), |
+ R2); |
+ __ ret(); |
+ __ Bind(&fall_through); |
} |
@@ -76,69 +276,315 @@ |
// be greater than the length of the data container. |
// On stack: growable array (+1), length (+0). |
void Intrinsifier::GrowableList_setLength(Assembler* assembler) { |
- return; |
+ Label fall_through; |
+ __ ldr(R0, Address(SP, 1 * kWordSize)); // Growable array. |
+ __ ldr(R1, Address(SP, 0 * kWordSize)); // Length value. |
+ __ tsti(R1, kSmiTagMask); // Check for Smi. |
+ __ b(&fall_through, NE); |
+ __ str(R1, FieldAddress(R0, GrowableObjectArray::length_offset())); |
+ __ ret(); |
+ __ Bind(&fall_through); |
+ // Fall through on non-Smi. |
} |
// Set data of growable object array. |
// On stack: growable array (+1), data (+0). |
void Intrinsifier::GrowableList_setData(Assembler* assembler) { |
- return; |
+ if (FLAG_enable_type_checks) { |
+ return; |
+ } |
+ Label fall_through; |
+ __ ldr(R1, Address(SP, 0 * kWordSize)); // Data. |
+ // Check that data is an ObjectArray. |
+ __ tsti(R1, kSmiTagMask); |
+ __ b(&fall_through, EQ); // Data is Smi. |
+ __ CompareClassId(R1, kArrayCid, kNoPP); |
+ __ b(&fall_through, NE); |
+ __ ldr(R0, Address(SP, 1 * kWordSize)); // Growable array. |
+ __ StoreIntoObject(R0, |
+ FieldAddress(R0, GrowableObjectArray::data_offset()), |
+ R1); |
+ __ ret(); |
+ __ Bind(&fall_through); |
} |
+// Add an element to growable array if it doesn't need to grow, otherwise |
+// call into regular code. |
+// On stack: growable array (+1), value (+0). |
void Intrinsifier::GrowableList_add(Assembler* assembler) { |
- return; |
+ // In checked mode we need to type-check the incoming argument. |
+ if (FLAG_enable_type_checks) { |
+ return; |
+ } |
+ Label fall_through; |
+ // R0: Array. |
+ __ ldr(R0, Address(SP, 1 * kWordSize)); |
+ // R1: length. |
+ __ ldr(R1, FieldAddress(R0, GrowableObjectArray::length_offset())); |
+ // R2: data. |
+ __ ldr(R2, FieldAddress(R0, GrowableObjectArray::data_offset())); |
+ // R3: capacity. |
+ __ ldr(R3, FieldAddress(R2, Array::length_offset())); |
+ // Compare length with capacity. |
+ __ cmp(R1, Operand(R3)); |
+ __ b(&fall_through, EQ); // Must grow data. |
+ const int64_t value_one = reinterpret_cast<int64_t>(Smi::New(1)); |
+ // len = len + 1; |
+ __ add(R3, R1, Operand(value_one)); |
+ __ str(R3, FieldAddress(R0, GrowableObjectArray::length_offset())); |
+ __ ldr(R0, Address(SP, 0 * kWordSize)); // Value. |
+ ASSERT(kSmiTagShift == 1); |
+ __ add(R1, R2, Operand(R1, LSL, 2)); |
+ __ StoreIntoObject(R2, |
+ FieldAddress(R1, Array::data_offset()), |
+ R0); |
+ __ LoadObject(R0, Object::null_object(), PP); |
+ __ ret(); |
+ __ Bind(&fall_through); |
} |
// Gets the length of a TypedData. |
void Intrinsifier::TypedData_getLength(Assembler* assembler) { |
- return; |
+ __ ldr(R0, Address(SP, 0 * kWordSize)); |
+ __ ldr(R0, FieldAddress(R0, TypedData::length_offset())); |
+ __ ret(); |
} |
+static int GetScaleFactor(intptr_t size) { |
+ switch (size) { |
+ case 1: return 0; |
+ case 2: return 1; |
+ case 4: return 2; |
+ case 8: return 3; |
+ case 16: return 4; |
+ } |
+ UNREACHABLE(); |
+ return -1; |
+} |
+ |
+ |
+#define TYPED_ARRAY_ALLOCATION(type_name, cid, max_len, scale_shift) \ |
+ Label fall_through; \ |
+ const intptr_t kArrayLengthStackOffset = 0 * kWordSize; \ |
+ __ ldr(R2, Address(SP, kArrayLengthStackOffset)); /* Array length. */ \ |
+ /* Check that length is a positive Smi. */ \ |
+ /* R2: requested array length argument. */ \ |
+ __ tsti(R2, kSmiTagMask); \ |
+ __ b(&fall_through, NE); \ |
+ __ CompareRegisters(R2, ZR); \ |
+ __ b(&fall_through, LT); \ |
+ __ SmiUntag(R2); \ |
+ /* Check for maximum allowed length. */ \ |
+ /* R2: untagged array length. */ \ |
+ __ CompareImmediate(R2, max_len, kNoPP); \ |
+ __ b(&fall_through, GT); \ |
+ __ Lsl(R2, R2, scale_shift); \ |
+ const intptr_t fixed_size = sizeof(Raw##type_name) + kObjectAlignment - 1; \ |
+ __ AddImmediate(R2, R2, fixed_size, kNoPP); \ |
+ __ andi(R2, R2, ~(kObjectAlignment - 1)); \ |
+ Heap* heap = Isolate::Current()->heap(); \ |
+ \ |
+ __ LoadImmediate(R0, heap->TopAddress(), kNoPP); \ |
+ __ ldr(R0, Address(R0, 0)); \ |
+ \ |
+ /* R2: allocation size. */ \ |
+ __ add(R1, R0, Operand(R2)); \ |
+ __ b(&fall_through, VS); \ |
+ \ |
+ /* Check if the allocation fits into the remaining space. */ \ |
+ /* R0: potential new object start. */ \ |
+ /* R1: potential next object start. */ \ |
+ /* R2: allocation size. */ \ |
+ __ LoadImmediate(R3, heap->EndAddress(), kNoPP); \ |
+ __ ldr(R3, Address(R3, 0)); \ |
+ __ cmp(R1, Operand(R3)); \ |
+ __ b(&fall_through, CS); \ |
+ \ |
+ /* Successfully allocated the object(s), now update top to point to */ \ |
+ /* next object start and initialize the object. */ \ |
+ __ LoadImmediate(R3, heap->TopAddress(), kNoPP); \ |
+ __ str(R1, Address(R3, 0)); \ |
+ __ AddImmediate(R0, R0, kHeapObjectTag, kNoPP); \ |
+ __ UpdateAllocationStatsWithSize(cid, R2, R4, kNoPP); \ |
+ /* Initialize the tags. */ \ |
+ /* R0: new object start as a tagged pointer. */ \ |
+ /* R1: new object end address. */ \ |
+ /* R2: allocation size. */ \ |
+ { \ |
+ __ CompareImmediate(R2, RawObject::SizeTag::kMaxSizeTag, kNoPP); \ |
+ __ Lsl(R2, R2, RawObject::kSizeTagPos - kObjectAlignmentLog2); \ |
+ __ csel(R2, ZR, R2, HI); \ |
+ \ |
+ /* Get the class index and insert it into the tags. */ \ |
+ __ LoadImmediate(TMP, RawObject::ClassIdTag::encode(cid), kNoPP); \ |
+ __ orr(R2, R2, Operand(TMP)); \ |
+ __ str(R2, FieldAddress(R0, type_name::tags_offset())); /* Tags. */ \ |
+ } \ |
+ /* Set the length field. */ \ |
+ /* R0: new object start as a tagged pointer. */ \ |
+ /* R1: new object end address. */ \ |
+ __ ldr(R2, Address(SP, kArrayLengthStackOffset)); /* Array length. */ \ |
+ __ StoreIntoObjectNoBarrier(R0, \ |
+ FieldAddress(R0, type_name::length_offset()), \ |
+ R2); \ |
+ /* Initialize all array elements to 0. */ \ |
+ /* R0: new object start as a tagged pointer. */ \ |
+ /* R1: new object end address. */ \ |
+ /* R2: iterator which initially points to the start of the variable */ \ |
+ /* R3: scratch register. */ \ |
+ /* data area to be initialized. */ \ |
+ __ mov(R3, ZR); \ |
+ __ AddImmediate(R2, R0, sizeof(Raw##type_name) - 1, kNoPP); \ |
+ Label init_loop, done; \ |
+ __ Bind(&init_loop); \ |
+ __ cmp(R2, Operand(R1)); \ |
+ __ b(&done, CS); \ |
+ __ str(R3, Address(R2, 0)); \ |
+ __ add(R2, R2, Operand(kWordSize)); \ |
+ __ b(&init_loop); \ |
+ __ Bind(&done); \ |
+ \ |
+ __ ret(); \ |
+ __ Bind(&fall_through); \ |
+ |
+ |
#define TYPED_DATA_ALLOCATOR(clazz) \ |
void Intrinsifier::TypedData_##clazz##_new(Assembler* assembler) { \ |
- return; \ |
+ intptr_t size = TypedData::ElementSizeInBytes(kTypedData##clazz##Cid); \ |
+ intptr_t max_len = TypedData::MaxElements(kTypedData##clazz##Cid); \ |
+ int shift = GetScaleFactor(size); \ |
+ TYPED_ARRAY_ALLOCATION(TypedData, kTypedData##clazz##Cid, max_len, shift); \ |
} \ |
void Intrinsifier::TypedData_##clazz##_factory(Assembler* assembler) { \ |
- return; \ |
+ intptr_t size = TypedData::ElementSizeInBytes(kTypedData##clazz##Cid); \ |
+ intptr_t max_len = TypedData::MaxElements(kTypedData##clazz##Cid); \ |
+ int shift = GetScaleFactor(size); \ |
+ TYPED_ARRAY_ALLOCATION(TypedData, kTypedData##clazz##Cid, max_len, shift); \ |
} |
CLASS_LIST_TYPED_DATA(TYPED_DATA_ALLOCATOR) |
#undef TYPED_DATA_ALLOCATOR |
+// Loads args from stack into R0 and R1 |
+// Tests if they are smis, jumps to label not_smi if not. |
+static void TestBothArgumentsSmis(Assembler* assembler, Label* not_smi) { |
+ __ ldr(R0, Address(SP, + 0 * kWordSize)); |
+ __ ldr(R1, Address(SP, + 1 * kWordSize)); |
+ __ orr(TMP, R0, Operand(R1)); |
+ __ tsti(TMP, kSmiTagMask); |
+ __ b(not_smi, NE); |
+} |
+ |
+ |
void Intrinsifier::Integer_addFromInteger(Assembler* assembler) { |
- return; |
+ Label fall_through; |
+ TestBothArgumentsSmis(assembler, &fall_through); // Checks two smis. |
+ __ adds(R0, R0, Operand(R1)); // Adds. |
+ __ b(&fall_through, VS); // Fall-through on overflow. |
+ __ ret(); |
+ __ Bind(&fall_through); |
} |
void Intrinsifier::Integer_add(Assembler* assembler) { |
- return; |
+ Integer_addFromInteger(assembler); |
} |
void Intrinsifier::Integer_subFromInteger(Assembler* assembler) { |
- return; |
+ Label fall_through; |
+ TestBothArgumentsSmis(assembler, &fall_through); |
+ __ subs(R0, R0, Operand(R1)); // Subtract. |
+ __ b(&fall_through, VS); // Fall-through on overflow. |
+ __ ret(); |
+ __ Bind(&fall_through); |
} |
void Intrinsifier::Integer_sub(Assembler* assembler) { |
- return; |
+ Label fall_through; |
+ TestBothArgumentsSmis(assembler, &fall_through); |
+ __ subs(R0, R1, Operand(R0)); // Subtract. |
+ __ b(&fall_through, VS); // Fall-through on overflow. |
+ __ ret(); |
+ __ Bind(&fall_through); |
} |
void Intrinsifier::Integer_mulFromInteger(Assembler* assembler) { |
- return; |
+ Label fall_through; |
+ |
+ TestBothArgumentsSmis(assembler, &fall_through); // checks two smis |
+ __ SmiUntag(R0); // Untags R6. We only want result shifted by one. |
+ |
+ __ mul(TMP, R0, R1); |
+ __ smulh(TMP2, R0, R1); |
+ // TMP: result bits 64..127. |
+ __ cmp(TMP2, Operand(TMP, ASR, 63)); |
+ __ b(&fall_through, NE); |
+ __ mov(R0, TMP); |
+ __ ret(); |
+ __ Bind(&fall_through); |
} |
void Intrinsifier::Integer_mul(Assembler* assembler) { |
- return; |
+ Integer_mulFromInteger(assembler); |
} |
+// Optimizations: |
+// - result is 0 if: |
+// - left is 0 |
+// - left equals right |
+// - result is left if |
+// - left > 0 && left < right |
+// R1: Tagged left (dividend). |
+// R0: Tagged right (divisor). |
+// Returns with result in R0, OR: |
+// R1: Untagged result (remainder). |
+static void EmitRemainderOperation(Assembler* assembler) { |
+ Label return_zero, modulo; |
+ const Register left = R1; |
+ const Register right = R0; |
+ const Register result = R1; |
+ const Register tmp = R2; |
+ ASSERT(left == result); |
+ |
+ // Check for quick zero results. |
+ __ CompareRegisters(left, ZR); |
+ __ b(&return_zero, EQ); |
+ __ CompareRegisters(left, right); |
+ __ b(&return_zero, EQ); |
+ |
+ // Check if result should be left. |
+ __ CompareRegisters(left, ZR); |
+ __ b(&modulo, LT); |
+ // left is positive. |
+ __ CompareRegisters(left, right); |
+ // left is less than right, result is left. |
+ __ b(&modulo, GT); |
+ __ mov(R0, left); |
+ __ ret(); |
+ |
+ __ Bind(&return_zero); |
+ __ mov(R0, ZR); |
+ __ ret(); |
+ |
+ __ Bind(&modulo); |
+ // result <- left - right * (left / right) |
+ __ SmiUntag(left); |
+ __ SmiUntag(right); |
+ |
+ __ sdiv(tmp, left, right); |
+ __ msub(result, right, tmp, left); // result <- left - right * tmp |
+} |
+ |
+ |
// Implementation: |
// res = left % right; |
// if (res < 0) { |
@@ -149,180 +595,518 @@ |
// } |
// } |
void Intrinsifier::Integer_moduloFromInteger(Assembler* assembler) { |
- return; |
+ // Check to see if we have integer division |
+ Label neg_remainder, fall_through; |
+ __ ldr(R1, Address(SP, + 0 * kWordSize)); |
+ __ ldr(R0, Address(SP, + 1 * kWordSize)); |
+ __ orr(TMP, R0, Operand(R1)); |
+ __ tsti(TMP, kSmiTagMask); |
+ __ b(&fall_through, NE); |
+ // R1: Tagged left (dividend). |
+ // R0: Tagged right (divisor). |
+ // Check if modulo by zero -> exception thrown in main function. |
+ __ CompareRegisters(R0, ZR); |
+ __ b(&fall_through, EQ); |
+ EmitRemainderOperation(assembler); |
+ // Untagged right in R0. Untagged remainder result in R1. |
+ |
+ __ CompareRegisters(R1, ZR); |
+ __ b(&neg_remainder, LT); |
+ __ Lsl(R0, R1, 1); // Tag and move result to R0. |
+ __ ret(); |
+ |
+ __ Bind(&neg_remainder); |
+ // Result is negative, adjust it. |
+ __ CompareRegisters(R0, ZR); |
+ __ sub(TMP, R1, Operand(R0)); |
+ __ add(TMP2, R1, Operand(R0)); |
+ __ csel(R0, TMP2, TMP, GE); |
+ __ SmiTag(R0); |
+ __ ret(); |
+ |
+ __ Bind(&fall_through); |
} |
void Intrinsifier::Integer_truncDivide(Assembler* assembler) { |
- return; |
+ // Check to see if we have integer division |
+ Label fall_through; |
+ |
+ TestBothArgumentsSmis(assembler, &fall_through); |
+ __ CompareRegisters(R0, ZR); |
+ __ b(&fall_through, EQ); // If b is 0, fall through. |
+ |
+ __ SmiUntag(R0); |
+ __ SmiUntag(R1); |
+ |
+ __ sdiv(R0, R1, R0); |
+ |
+ // Check the corner case of dividing the 'MIN_SMI' with -1, in which case we |
+ // cannot tag the result. |
+ __ CompareImmediate(R0, 0x4000000000000000, kNoPP); |
+ __ b(&fall_through, EQ); |
+ __ SmiTag(R0); // Not equal. Okay to tag and return. |
+ __ ret(); // Return. |
+ __ Bind(&fall_through); |
} |
void Intrinsifier::Integer_negate(Assembler* assembler) { |
- return; |
+ Label fall_through; |
+ __ ldr(R0, Address(SP, + 0 * kWordSize)); // Grab first argument. |
+ __ tsti(R0, kSmiTagMask); // Test for Smi. |
+ __ b(&fall_through, NE); |
+ __ negs(R0, R0); |
+ __ b(&fall_through, VS); |
+ __ ret(); |
+ __ Bind(&fall_through); |
} |
void Intrinsifier::Integer_bitAndFromInteger(Assembler* assembler) { |
- return; |
+ Label fall_through; |
+ TestBothArgumentsSmis(assembler, &fall_through); // Checks two smis. |
+ __ and_(R0, R0, Operand(R1)); |
+ __ ret(); |
+ __ Bind(&fall_through); |
} |
void Intrinsifier::Integer_bitAnd(Assembler* assembler) { |
- return; |
+ Integer_bitAndFromInteger(assembler); |
} |
void Intrinsifier::Integer_bitOrFromInteger(Assembler* assembler) { |
- return; |
+ Label fall_through; |
+ TestBothArgumentsSmis(assembler, &fall_through); // Checks two smis. |
+ __ orr(R0, R0, Operand(R1)); |
+ __ ret(); |
+ __ Bind(&fall_through); |
} |
void Intrinsifier::Integer_bitOr(Assembler* assembler) { |
- return; |
+ Integer_bitOrFromInteger(assembler); |
} |
void Intrinsifier::Integer_bitXorFromInteger(Assembler* assembler) { |
- return; |
+ Label fall_through; |
+ |
+ TestBothArgumentsSmis(assembler, &fall_through); // Checks two smis. |
+ __ eor(R0, R0, Operand(R1)); |
+ __ ret(); |
+ __ Bind(&fall_through); |
} |
void Intrinsifier::Integer_bitXor(Assembler* assembler) { |
- return; |
+ Integer_bitXorFromInteger(assembler); |
} |
void Intrinsifier::Integer_shl(Assembler* assembler) { |
- return; |
+ ASSERT(kSmiTagShift == 1); |
+ ASSERT(kSmiTag == 0); |
+ const Register right = R0; |
+ const Register left = R1; |
+ const Register temp = R2; |
+ const Register result = R0; |
+ Label fall_through; |
+ |
+ TestBothArgumentsSmis(assembler, &fall_through); |
+ __ CompareImmediate( |
+ right, reinterpret_cast<int64_t>(Smi::New(Smi::kBits)), PP); |
+ __ b(&fall_through, CS); |
+ |
+ // Left is not a constant. |
+ // Check if count too large for handling it inlined. |
+ __ Asr(TMP, right, kSmiTagSize); // SmiUntag right into TMP. |
+ // Overflow test (preserve left, right, and TMP); |
+ __ lslv(temp, left, TMP); |
+ __ asrv(TMP2, temp, TMP); |
+ __ CompareRegisters(left, TMP2); |
+ __ b(&fall_through, NE); // Overflow. |
+ // Shift for result now we know there is no overflow. |
+ __ lslv(result, left, TMP); |
+ __ ret(); |
+ __ Bind(&fall_through); |
} |
+static void CompareIntegers(Assembler* assembler, Condition true_condition) { |
+ Label fall_through, true_label; |
+ TestBothArgumentsSmis(assembler, &fall_through); |
+ // R0 contains the right argument, R1 the left. |
+ __ CompareRegisters(R1, R0); |
+ __ LoadObject(R0, Bool::False(), PP); |
+ __ LoadObject(TMP, Bool::True(), PP); |
+ __ csel(R0, TMP, R0, true_condition); |
+ __ ret(); |
+ __ Bind(&fall_through); |
+} |
+ |
+ |
void Intrinsifier::Integer_greaterThanFromInt(Assembler* assembler) { |
- return; |
+ CompareIntegers(assembler, LT); |
} |
void Intrinsifier::Integer_lessThan(Assembler* assembler) { |
- return; |
+ Integer_greaterThanFromInt(assembler); |
} |
void Intrinsifier::Integer_greaterThan(Assembler* assembler) { |
- return; |
+ CompareIntegers(assembler, GT); |
} |
void Intrinsifier::Integer_lessEqualThan(Assembler* assembler) { |
- return; |
+ CompareIntegers(assembler, LE); |
} |
void Intrinsifier::Integer_greaterEqualThan(Assembler* assembler) { |
- return; |
+ CompareIntegers(assembler, GE); |
} |
// This is called for Smi, Mint and Bigint receivers. The right argument |
// can be Smi, Mint, Bigint or double. |
void Intrinsifier::Integer_equalToInteger(Assembler* assembler) { |
- return; |
+ Label fall_through, true_label, check_for_mint; |
+ // For integer receiver '===' check first. |
+ __ ldr(R0, Address(SP, 0 * kWordSize)); |
+ __ ldr(R1, Address(SP, 1 * kWordSize)); |
+ __ cmp(R0, Operand(R1)); |
+ __ b(&true_label, EQ); |
+ |
+ __ orr(R2, R0, Operand(R1)); |
+ __ tsti(R2, kSmiTagMask); |
+ __ b(&check_for_mint, NE); // If R0 or R1 is not a smi do Mint checks. |
+ |
+ // Both arguments are smi, '===' is good enough. |
+ __ LoadObject(R0, Bool::False(), PP); |
+ __ ret(); |
+ __ Bind(&true_label); |
+ __ LoadObject(R0, Bool::True(), PP); |
+ __ ret(); |
+ |
+ // At least one of the arguments was not Smi. |
+ Label receiver_not_smi; |
+ __ Bind(&check_for_mint); |
+ |
+ __ tsti(R1, kSmiTagMask); // Check receiver. |
+ __ b(&receiver_not_smi, NE); |
+ |
+ // Left (receiver) is Smi, return false if right is not Double. |
+ // Note that an instance of Mint or Bigint never contains a value that can be |
+ // represented by Smi. |
+ |
+ __ CompareClassId(R0, kDoubleCid, kNoPP); |
+ __ b(&fall_through, EQ); |
+ __ LoadObject(R0, Bool::False(), PP); // Smi == Mint -> false. |
+ __ ret(); |
+ |
+ __ Bind(&receiver_not_smi); |
+ // R1: receiver. |
+ |
+ __ CompareClassId(R1, kMintCid, kNoPP); |
+ __ b(&fall_through, NE); |
+ // Receiver is Mint, return false if right is Smi. |
+ __ tsti(R0, kSmiTagMask); |
+ __ b(&fall_through, NE); |
+ __ LoadObject(R0, Bool::False(), PP); |
+ __ ret(); |
+ // TODO(srdjan): Implement Mint == Mint comparison. |
+ |
+ __ Bind(&fall_through); |
} |
void Intrinsifier::Integer_equal(Assembler* assembler) { |
- return; |
+ Integer_equalToInteger(assembler); |
} |
void Intrinsifier::Integer_sar(Assembler* assembler) { |
- return; |
+ Label fall_through; |
+ |
+ TestBothArgumentsSmis(assembler, &fall_through); |
+ // Shift amount in R0. Value to shift in R1. |
+ |
+ // Fall through if shift amount is negative. |
+ __ SmiUntag(R0); |
+ __ CompareRegisters(R0, ZR); |
+ __ b(&fall_through, LT); |
+ |
+ // If shift amount is bigger than 63, set to 63. |
+ __ LoadImmediate(TMP, 0x3F, kNoPP); |
+ __ CompareRegisters(R0, TMP); |
+ __ csel(R0, TMP, R0, GT); |
+ __ SmiUntag(R1); |
+ __ asrv(R0, R1, R0); |
+ __ SmiTag(R0); |
+ __ ret(); |
+ __ Bind(&fall_through); |
} |
void Intrinsifier::Smi_bitNegate(Assembler* assembler) { |
- return; |
+ __ ldr(R0, Address(SP, 0 * kWordSize)); |
+ __ mvn(R0, R0); |
+ __ andi(R0, R0, ~kSmiTagMask); // Remove inverted smi-tag. |
+ __ ret(); |
} |
void Intrinsifier::Smi_bitLength(Assembler* assembler) { |
- return; |
+ // TODO(sra): Implement as word-length - CLZ. |
} |
+// Check if the last argument is a double, jump to label 'is_smi' if smi |
+// (easy to convert to double), otherwise jump to label 'not_double_smi', |
+// Returns the last argument in R0. |
+static void TestLastArgumentIsDouble(Assembler* assembler, |
+ Label* is_smi, |
+ Label* not_double_smi) { |
+ __ ldr(R0, Address(SP, 0 * kWordSize)); |
+ __ tsti(R0, kSmiTagMask); |
+ __ b(is_smi, EQ); |
+ __ CompareClassId(R0, kDoubleCid, kNoPP); |
+ __ b(not_double_smi, NE); |
+ // Fall through with Double in R0. |
+} |
+ |
+ |
+// Both arguments on stack, arg0 (left) is a double, arg1 (right) is of unknown |
+// type. Return true or false object in the register R0. Any NaN argument |
+// returns false. Any non-double arg1 causes control flow to fall through to the |
+// slow case (compiled method body). |
+static void CompareDoubles(Assembler* assembler, Condition true_condition) { |
+ Label fall_through, is_smi, double_op, not_nan; |
+ |
+ TestLastArgumentIsDouble(assembler, &is_smi, &fall_through); |
+ // Both arguments are double, right operand is in R0. |
+ |
+ __ LoadDFieldFromOffset(V1, R0, Double::value_offset(), kNoPP); |
+ __ Bind(&double_op); |
+ __ ldr(R0, Address(SP, 1 * kWordSize)); // Left argument. |
+ __ LoadDFieldFromOffset(V0, R0, Double::value_offset(), kNoPP); |
+ |
+ __ fcmpd(V0, V1); |
+ __ LoadObject(R0, Bool::False(), PP); |
+ // Return false if D0 or D1 was NaN before checking true condition. |
+ __ b(¬_nan, VC); |
+ __ ret(); |
+ __ Bind(¬_nan); |
+ __ LoadObject(TMP, Bool::True(), PP); |
+ __ csel(R0, TMP, R0, true_condition); |
+ __ ret(); |
+ |
+ __ Bind(&is_smi); // Convert R0 to a double. |
+ __ SmiUntag(R0); |
+ __ scvtfd(V1, R0); |
+ __ b(&double_op); // Then do the comparison. |
+ __ Bind(&fall_through); |
+} |
+ |
+ |
void Intrinsifier::Double_greaterThan(Assembler* assembler) { |
- return; |
+ CompareDoubles(assembler, HI); |
} |
void Intrinsifier::Double_greaterEqualThan(Assembler* assembler) { |
- return; |
+ CompareDoubles(assembler, CS); |
} |
void Intrinsifier::Double_lessThan(Assembler* assembler) { |
- return; |
+ CompareDoubles(assembler, CC); |
} |
void Intrinsifier::Double_equal(Assembler* assembler) { |
- return; |
+ CompareDoubles(assembler, EQ); |
} |
void Intrinsifier::Double_lessEqualThan(Assembler* assembler) { |
- return; |
+ CompareDoubles(assembler, LS); |
} |
+// Expects left argument to be double (receiver). Right argument is unknown. |
+// Both arguments are on stack. |
+static void DoubleArithmeticOperations(Assembler* assembler, Token::Kind kind) { |
+ Label fall_through; |
+ |
+ TestLastArgumentIsDouble(assembler, &fall_through, &fall_through); |
+ // Both arguments are double, right operand is in R0. |
+ __ LoadDFieldFromOffset(V1, R0, Double::value_offset(), kNoPP); |
+ __ ldr(R0, Address(SP, 1 * kWordSize)); // Left argument. |
+ __ LoadDFieldFromOffset(V0, R0, Double::value_offset(), kNoPP); |
+ switch (kind) { |
+ case Token::kADD: __ faddd(V0, V0, V1); break; |
+ case Token::kSUB: __ fsubd(V0, V0, V1); break; |
+ case Token::kMUL: __ fmuld(V0, V0, V1); break; |
+ case Token::kDIV: __ fdivd(V0, V0, V1); break; |
+ default: UNREACHABLE(); |
+ } |
+ const Class& double_class = Class::Handle( |
+ Isolate::Current()->object_store()->double_class()); |
+ __ TryAllocate(double_class, &fall_through, R0, R1, kNoPP); |
+ __ StoreDFieldToOffset(V0, R0, Double::value_offset(), kNoPP); |
+ __ ret(); |
+ __ Bind(&fall_through); |
+} |
+ |
+ |
void Intrinsifier::Double_add(Assembler* assembler) { |
- return; |
+ DoubleArithmeticOperations(assembler, Token::kADD); |
} |
void Intrinsifier::Double_mul(Assembler* assembler) { |
- return; |
+ DoubleArithmeticOperations(assembler, Token::kMUL); |
} |
void Intrinsifier::Double_sub(Assembler* assembler) { |
- return; |
+ DoubleArithmeticOperations(assembler, Token::kSUB); |
} |
void Intrinsifier::Double_div(Assembler* assembler) { |
- return; |
+ DoubleArithmeticOperations(assembler, Token::kDIV); |
} |
// Left is double right is integer (Bigint, Mint or Smi) |
void Intrinsifier::Double_mulFromInteger(Assembler* assembler) { |
- return; |
+ Label fall_through; |
+ // Only smis allowed. |
+ __ ldr(R0, Address(SP, 0 * kWordSize)); |
+ __ tsti(R0, kSmiTagMask); |
+ __ b(&fall_through, NE); |
+ // Is Smi. |
+ __ SmiUntag(R0); |
+ __ scvtfd(V1, R0); |
+ __ ldr(R0, Address(SP, 1 * kWordSize)); |
+ __ LoadDFieldFromOffset(V0, R0, Double::value_offset(), kNoPP); |
+ __ fmuld(V0, V0, V1); |
+ const Class& double_class = Class::Handle( |
+ Isolate::Current()->object_store()->double_class()); |
+ __ TryAllocate(double_class, &fall_through, R0, R1, kNoPP); |
+ __ StoreDFieldToOffset(V0, R0, Double::value_offset(), kNoPP); |
+ __ ret(); |
+ __ Bind(&fall_through); |
} |
void Intrinsifier::Double_fromInteger(Assembler* assembler) { |
- return; |
+ Label fall_through; |
+ |
+ __ ldr(R0, Address(SP, 0 * kWordSize)); |
+ __ tsti(R0, kSmiTagMask); |
+ __ b(&fall_through, NE); |
+ // Is Smi. |
+ __ SmiUntag(R0); |
+ __ scvtfd(V0, R0); |
+ const Class& double_class = Class::Handle( |
+ Isolate::Current()->object_store()->double_class()); |
+ __ TryAllocate(double_class, &fall_through, R0, R1, kNoPP); |
+ __ StoreDFieldToOffset(V0, R0, Double::value_offset(), kNoPP); |
+ __ ret(); |
+ __ Bind(&fall_through); |
} |
void Intrinsifier::Double_getIsNaN(Assembler* assembler) { |
- return; |
+ Label is_true; |
+ __ ldr(R0, Address(SP, 0 * kWordSize)); |
+ __ LoadDFieldFromOffset(V0, R0, Double::value_offset(), kNoPP); |
+ __ fcmpd(V0, V0); |
+ __ LoadObject(TMP, Bool::False(), PP); |
+ __ LoadObject(R0, Bool::True(), PP); |
+ __ csel(R0, TMP, R0, VC); |
+ __ ret(); |
} |
void Intrinsifier::Double_getIsNegative(Assembler* assembler) { |
- return; |
+ const Register false_reg = R0; |
+ const Register true_reg = R2; |
+ Label is_false, is_true, is_zero; |
+ |
+ __ ldr(R0, Address(SP, 0 * kWordSize)); |
+ __ LoadDFieldFromOffset(V0, R0, Double::value_offset(), kNoPP); |
+ __ fcmpdz(V0); |
+ __ LoadObject(true_reg, Bool::True(), PP); |
+ __ LoadObject(false_reg, Bool::False(), PP); |
+ __ b(&is_false, VS); // NaN -> false. |
+ __ b(&is_zero, EQ); // Check for negative zero. |
+ __ b(&is_false, CS); // >= 0 -> false. |
+ |
+ __ Bind(&is_true); |
+ __ mov(R0, true_reg); |
+ |
+ __ Bind(&is_false); |
+ __ ret(); |
+ |
+ __ Bind(&is_zero); |
+ // Check for negative zero by looking at the sign bit. |
+ __ fmovrd(R1, V0); |
+ __ Lsr(R1, R1, 63); |
+ __ tsti(R1, 1); |
+ __ csel(R0, true_reg, false_reg, NE); // Sign bit set. |
+ __ ret(); |
} |
void Intrinsifier::Double_toInt(Assembler* assembler) { |
- return; |
+ Label fall_through; |
+ |
+ __ ldr(R0, Address(SP, 0 * kWordSize)); |
+ __ LoadDFieldFromOffset(V0, R0, Double::value_offset(), kNoPP); |
+ |
+ // Explicit NaN check, since ARM gives an FPU exception if you try to |
+ // convert NaN to an int. |
+ __ fcmpd(V0, V0); |
+ __ b(&fall_through, VS); |
+ |
+ __ fcvtzds(R0, V0); |
+ // Overflow is signaled with minint. |
+ // Check for overflow and that it fits into Smi. |
+ __ CompareImmediate(R0, 0xC000000000000000, kNoPP); |
+ __ b(&fall_through, MI); |
+ __ SmiTag(R0); |
+ __ ret(); |
+ __ Bind(&fall_through); |
} |
void Intrinsifier::Math_sqrt(Assembler* assembler) { |
- return; |
+ Label fall_through, is_smi, double_op; |
+ TestLastArgumentIsDouble(assembler, &is_smi, &fall_through); |
+ // Argument is double and is in R0. |
+ __ LoadDFieldFromOffset(V1, R0, Double::value_offset(), kNoPP); |
+ __ Bind(&double_op); |
+ __ fsqrtd(V0, V1); |
+ const Class& double_class = Class::Handle( |
+ Isolate::Current()->object_store()->double_class()); |
+ __ TryAllocate(double_class, &fall_through, R0, R1, kNoPP); |
+ __ StoreDFieldToOffset(V0, R0, Double::value_offset(), kNoPP); |
+ __ ret(); |
+ __ Bind(&is_smi); |
+ __ SmiUntag(R0); |
+ __ scvtfd(V1, R0); |
+ __ b(&double_op); |
+ __ Bind(&fall_through); |
} |
@@ -330,87 +1114,446 @@ |
// _state[kSTATE_LO] = state & _MASK_32; |
// _state[kSTATE_HI] = state >> 32; |
void Intrinsifier::Random_nextState(Assembler* assembler) { |
- return; |
+ const Library& math_lib = Library::Handle(Library::MathLibrary()); |
+ ASSERT(!math_lib.IsNull()); |
+ const Class& random_class = Class::Handle( |
+ math_lib.LookupClassAllowPrivate(Symbols::_Random())); |
+ ASSERT(!random_class.IsNull()); |
+ const Field& state_field = Field::ZoneHandle( |
+ random_class.LookupInstanceField(Symbols::_state())); |
+ ASSERT(!state_field.IsNull()); |
+ const Field& random_A_field = Field::ZoneHandle( |
+ random_class.LookupStaticField(Symbols::_A())); |
+ ASSERT(!random_A_field.IsNull()); |
+ ASSERT(random_A_field.is_const()); |
+ const Instance& a_value = Instance::Handle(random_A_field.value()); |
+ const int64_t a_int_value = Integer::Cast(a_value).AsInt64Value(); |
+ |
+ __ ldr(R0, Address(SP, 0 * kWordSize)); // Receiver. |
+ __ ldr(R1, FieldAddress(R0, state_field.Offset())); // Field '_state'. |
+ |
+ // Addresses of _state[0]. |
+ const int64_t disp = |
+ FlowGraphCompiler::DataOffsetFor(kTypedDataUint32ArrayCid) - |
+ kHeapObjectTag; |
+ |
+ __ LoadImmediate(R0, a_int_value, kNoPP); |
+ __ LoadFromOffset(R2, R1, disp, kNoPP); |
+ __ Lsr(R3, R2, 32); |
+ __ andi(R2, R2, 0xffffffff); |
+ __ mul(R2, R0, R2); |
+ __ add(R2, R2, Operand(R3)); |
+ __ StoreToOffset(R2, R1, disp, kNoPP); |
+ __ ret(); |
} |
void Intrinsifier::Object_equal(Assembler* assembler) { |
- return; |
+ __ ldr(R0, Address(SP, 0 * kWordSize)); |
+ __ ldr(R1, Address(SP, 1 * kWordSize)); |
+ __ cmp(R0, Operand(R1)); |
+ __ LoadObject(R0, Bool::False(), PP); |
+ __ LoadObject(TMP, Bool::True(), PP); |
+ __ csel(R0, TMP, R0, EQ); |
+ __ ret(); |
} |
void Intrinsifier::String_getHashCode(Assembler* assembler) { |
- return; |
+ Label fall_through; |
+ __ ldr(R0, Address(SP, 0 * kWordSize)); |
+ __ ldr(R0, FieldAddress(R0, String::hash_offset())); |
+ __ CompareRegisters(R0, ZR); |
+ __ b(&fall_through, EQ); |
+ __ ret(); |
+ // Hash not yet computed. |
+ __ Bind(&fall_through); |
} |
void Intrinsifier::String_getLength(Assembler* assembler) { |
- return; |
+ __ ldr(R0, Address(SP, 0 * kWordSize)); |
+ __ ldr(R0, FieldAddress(R0, String::length_offset())); |
+ __ ret(); |
} |
void Intrinsifier::String_codeUnitAt(Assembler* assembler) { |
- return; |
+ Label fall_through, try_two_byte_string; |
+ |
+ __ ldr(R1, Address(SP, 0 * kWordSize)); // Index. |
+ __ ldr(R0, Address(SP, 1 * kWordSize)); // String. |
+ __ tsti(R1, kSmiTagMask); |
+ __ b(&fall_through, NE); // Index is not a Smi. |
+ // Range check. |
+ __ ldr(R2, FieldAddress(R0, String::length_offset())); |
+ __ cmp(R1, Operand(R2)); |
+ __ b(&fall_through, CS); // Runtime throws exception. |
+ __ CompareClassId(R0, kOneByteStringCid, kNoPP); |
+ __ b(&try_two_byte_string, NE); |
+ __ SmiUntag(R1); |
+ __ AddImmediate(R0, R0, OneByteString::data_offset() - kHeapObjectTag, kNoPP); |
+ __ ldr(R0, Address(R0, R1), kUnsignedByte); |
+ __ SmiTag(R0); |
+ __ ret(); |
+ |
+ __ Bind(&try_two_byte_string); |
+ __ CompareClassId(R0, kTwoByteStringCid, kNoPP); |
+ __ b(&fall_through, NE); |
+ ASSERT(kSmiTagShift == 1); |
+ __ AddImmediate(R0, R0, TwoByteString::data_offset() - kHeapObjectTag, kNoPP); |
+ __ ldr(R0, Address(R0, R1), kUnsignedHalfword); |
+ __ SmiTag(R0); |
+ __ ret(); |
+ |
+ __ Bind(&fall_through); |
} |
void Intrinsifier::String_getIsEmpty(Assembler* assembler) { |
- return; |
+ __ ldr(R0, Address(SP, 0 * kWordSize)); |
+ __ ldr(R0, FieldAddress(R0, String::length_offset())); |
+ __ cmp(R0, Operand(Smi::RawValue(0))); |
+ __ LoadObject(R0, Bool::True(), PP); |
+ __ LoadObject(TMP, Bool::False(), PP); |
+ __ csel(R0, TMP, R0, NE); |
+ __ ret(); |
} |
void Intrinsifier::OneByteString_getHashCode(Assembler* assembler) { |
- return; |
+ Label compute_hash; |
+ __ ldr(R1, Address(SP, 0 * kWordSize)); // OneByteString object. |
+ __ ldr(R0, FieldAddress(R1, String::hash_offset())); |
+ __ CompareRegisters(R0, ZR); |
+ __ b(&compute_hash, EQ); |
+ __ ret(); // Return if already computed. |
+ |
+ __ Bind(&compute_hash); |
+ __ ldr(R2, FieldAddress(R1, String::length_offset())); |
+ __ SmiUntag(R2); |
+ |
+ Label done; |
+ // If the string is empty, set the hash to 1, and return. |
+ __ CompareRegisters(R2, ZR); |
+ __ b(&done, EQ); |
+ |
+ __ mov(R3, ZR); |
+ __ AddImmediate(R6, R1, OneByteString::data_offset() - kHeapObjectTag, kNoPP); |
+ // R1: Instance of OneByteString. |
+ // R2: String length, untagged integer. |
+ // R3: Loop counter, untagged integer. |
+ // R6: String data. |
+ // R0: Hash code, untagged integer. |
+ |
+ Label loop; |
+ // Add to hash code: (hash_ is uint32) |
+ // hash_ += ch; |
+ // hash_ += hash_ << 10; |
+ // hash_ ^= hash_ >> 6; |
+ // Get one characters (ch). |
+ __ Bind(&loop); |
+ __ ldr(R7, Address(R6, R3), kUnsignedByte); |
+ // R7: ch. |
+ __ add(R3, R3, Operand(1)); |
+ __ addw(R0, R0, Operand(R7)); |
+ __ addw(R0, R0, Operand(R0, LSL, 10)); |
+ __ eorw(R0, R0, Operand(R0, LSR, 6)); |
+ __ cmp(R3, Operand(R2)); |
+ __ b(&loop, NE); |
+ |
+ // Finalize. |
+ // hash_ += hash_ << 3; |
+ // hash_ ^= hash_ >> 11; |
+ // hash_ += hash_ << 15; |
+ __ addw(R0, R0, Operand(R0, LSL, 3)); |
+ __ eorw(R0, R0, Operand(R0, LSR, 11)); |
+ __ addw(R0, R0, Operand(R0, LSL, 15)); |
+ // hash_ = hash_ & ((static_cast<intptr_t>(1) << bits) - 1); |
+ __ AndImmediate( |
+ R0, R0, (static_cast<intptr_t>(1) << String::kHashBits) - 1, kNoPP); |
+ __ CompareRegisters(R0, ZR); |
+ // return hash_ == 0 ? 1 : hash_; |
+ __ Bind(&done); |
+ __ csinc(R0, R0, ZR, NE); // R0 <- (R0 != 0) ? R0 : (ZR + 1). |
+ __ SmiTag(R0); |
+ __ str(R0, FieldAddress(R1, String::hash_offset())); |
+ __ ret(); |
} |
+// Allocates one-byte string of length 'end - start'. The content is not |
+// initialized. |
+// 'length-reg' (R2) contains tagged length. |
+// Returns new string as tagged pointer in R0. |
+static void TryAllocateOnebyteString(Assembler* assembler, |
+ Label* ok, |
+ Label* failure) { |
+ const Register length_reg = R2; |
+ Label fail; |
+ |
+ __ mov(R6, length_reg); // Save the length register. |
+ __ SmiUntag(length_reg); |
+ const intptr_t fixed_size = sizeof(RawString) + kObjectAlignment - 1; |
+ __ AddImmediate(length_reg, length_reg, fixed_size, kNoPP); |
+ __ andi(length_reg, length_reg, ~(kObjectAlignment - 1)); |
+ |
+ Isolate* isolate = Isolate::Current(); |
+ Heap* heap = isolate->heap(); |
+ |
+ __ LoadImmediate(R3, heap->TopAddress(), kNoPP); |
+ __ ldr(R0, Address(R3)); |
+ |
+ // length_reg: allocation size. |
+ __ adds(R1, R0, Operand(length_reg)); |
+ __ b(&fail, VS); // Fail on overflow. |
+ |
+ // Check if the allocation fits into the remaining space. |
+ // R0: potential new object start. |
+ // R1: potential next object start. |
+ // R2: allocation size. |
+ // R3: heap->Top->Address(). |
+ __ LoadImmediate(R7, heap->EndAddress(), kNoPP); |
+ __ ldr(R7, Address(R7)); |
+ __ cmp(R1, Operand(R7)); |
+ __ b(&fail, CS); |
+ |
+ // Successfully allocated the object(s), now update top to point to |
+ // next object start and initialize the object. |
+ __ str(R1, Address(R3)); |
+ __ AddImmediate(R0, R0, kHeapObjectTag, kNoPP); |
+ __ UpdateAllocationStatsWithSize(kOneByteStringCid, R2, R3, kNoPP); |
+ |
+ // Initialize the tags. |
+ // R0: new object start as a tagged pointer. |
+ // R1: new object end address. |
+ // R2: allocation size. |
+ { |
+ const intptr_t shift = RawObject::kSizeTagPos - kObjectAlignmentLog2; |
+ const Class& cls = |
+ Class::Handle(isolate->object_store()->one_byte_string_class()); |
+ |
+ __ CompareImmediate(R2, RawObject::SizeTag::kMaxSizeTag, kNoPP); |
+ __ Lsl(R2, R2, shift); |
+ __ csel(R2, R2, ZR, LS); |
+ |
+ // Get the class index and insert it into the tags. |
+ // R2: size and bit tags. |
+ __ LoadImmediate(TMP, RawObject::ClassIdTag::encode(cls.id()), kNoPP); |
+ __ orr(R2, R2, Operand(TMP)); |
+ __ str(R2, FieldAddress(R0, String::tags_offset())); // Store tags. |
+ } |
+ |
+ // Set the length field using the saved length (R6). |
+ __ StoreIntoObjectNoBarrier(R0, |
+ FieldAddress(R0, String::length_offset()), |
+ R6); |
+ // Clear hash. |
+ __ mov(TMP, ZR); |
+ __ str(TMP, FieldAddress(R0, String::hash_offset())); |
+ __ b(ok); |
+ |
+ __ Bind(&fail); |
+ __ b(failure); |
+} |
+ |
+ |
// Arg0: OneByteString (receiver). |
// Arg1: Start index as Smi. |
// Arg2: End index as Smi. |
// The indexes must be valid. |
void Intrinsifier::OneByteString_substringUnchecked(Assembler* assembler) { |
- return; |
+ const intptr_t kStringOffset = 2 * kWordSize; |
+ const intptr_t kStartIndexOffset = 1 * kWordSize; |
+ const intptr_t kEndIndexOffset = 0 * kWordSize; |
+ Label fall_through, ok; |
+ |
+ __ ldr(R2, Address(SP, kEndIndexOffset)); |
+ __ ldr(TMP, Address(SP, kStartIndexOffset)); |
+ __ orr(R3, R2, Operand(TMP)); |
+ __ tsti(R3, kSmiTagMask); |
+ __ b(&fall_through, NE); // 'start', 'end' not Smi. |
+ |
+ __ sub(R2, R2, Operand(TMP)); |
+ TryAllocateOnebyteString(assembler, &ok, &fall_through); |
+ __ Bind(&ok); |
+ // R0: new string as tagged pointer. |
+ // Copy string. |
+ __ ldr(R3, Address(SP, kStringOffset)); |
+ __ ldr(R1, Address(SP, kStartIndexOffset)); |
+ __ SmiUntag(R1); |
+ __ add(R3, R3, Operand(R1)); |
+ // Calculate start address and untag (- 1). |
+ __ AddImmediate(R3, R3, OneByteString::data_offset() - 1, kNoPP); |
+ |
+ // R3: Start address to copy from (untagged). |
+ // R1: Untagged start index. |
+ __ ldr(R2, Address(SP, kEndIndexOffset)); |
+ __ SmiUntag(R2); |
+ __ sub(R2, R2, Operand(R1)); |
+ |
+ // R3: Start address to copy from (untagged). |
+ // R2: Untagged number of bytes to copy. |
+ // R0: Tagged result string. |
+ // R6: Pointer into R3. |
+ // R7: Pointer into R0. |
+ // R1: Scratch register. |
+ Label loop, done; |
+ __ cmp(R2, Operand(0)); |
+ __ b(&done, LE); |
+ __ mov(R6, R3); |
+ __ mov(R7, R0); |
+ __ Bind(&loop); |
+ __ ldr(R1, Address(R6), kUnsignedByte); |
+ __ AddImmediate(R6, R6, 1, kNoPP); |
+ __ sub(R2, R2, Operand(1)); |
+ __ cmp(R2, Operand(0)); |
+ __ str(R1, FieldAddress(R7, OneByteString::data_offset()), kUnsignedByte); |
+ __ AddImmediate(R7, R7, 1, kNoPP); |
+ __ b(&loop, GT); |
+ |
+ __ Bind(&done); |
+ __ ret(); |
+ __ Bind(&fall_through); |
} |
void Intrinsifier::OneByteString_setAt(Assembler* assembler) { |
- return; |
+ __ ldr(R2, Address(SP, 0 * kWordSize)); // Value. |
+ __ ldr(R1, Address(SP, 1 * kWordSize)); // Index. |
+ __ ldr(R0, Address(SP, 2 * kWordSize)); // OneByteString. |
+ __ SmiUntag(R1); |
+ __ SmiUntag(R2); |
+ __ AddImmediate(R3, R0, OneByteString::data_offset() - kHeapObjectTag, kNoPP); |
+ __ str(R2, Address(R3, R1), kUnsignedByte); |
+ __ ret(); |
} |
void Intrinsifier::OneByteString_allocate(Assembler* assembler) { |
- return; |
+ Label fall_through, ok; |
+ |
+ __ ldr(R2, Address(SP, 0 * kWordSize)); // Length. |
+ TryAllocateOnebyteString(assembler, &ok, &fall_through); |
+ |
+ __ Bind(&ok); |
+ __ ret(); |
+ |
+ __ Bind(&fall_through); |
} |
// TODO(srdjan): Add combinations (one-byte/two-byte/external strings). |
void StringEquality(Assembler* assembler, intptr_t string_cid) { |
- return; |
+ Label fall_through, is_true, is_false, loop; |
+ __ ldr(R0, Address(SP, 1 * kWordSize)); // This. |
+ __ ldr(R1, Address(SP, 0 * kWordSize)); // Other. |
+ |
+ // Are identical? |
+ __ cmp(R0, Operand(R1)); |
+ __ b(&is_true, EQ); |
+ |
+ // Is other OneByteString? |
+ __ tsti(R1, kSmiTagMask); |
+ __ b(&fall_through, EQ); |
+ __ CompareClassId(R1, string_cid, kNoPP); |
+ __ b(&fall_through, NE); |
+ |
+ // Have same length? |
+ __ ldr(R2, FieldAddress(R0, String::length_offset())); |
+ __ ldr(R3, FieldAddress(R1, String::length_offset())); |
+ __ cmp(R2, Operand(R3)); |
+ __ b(&is_false, NE); |
+ |
+ // Check contents, no fall-through possible. |
+ // TODO(zra): try out other sequences. |
+ ASSERT((string_cid == kOneByteStringCid) || |
+ (string_cid == kTwoByteStringCid)); |
+ const intptr_t offset = (string_cid == kOneByteStringCid) ? |
+ OneByteString::data_offset() : TwoByteString::data_offset(); |
+ __ AddImmediate(R0, R0, offset - kHeapObjectTag, kNoPP); |
+ __ AddImmediate(R1, R1, offset - kHeapObjectTag, kNoPP); |
+ __ SmiUntag(R2); |
+ __ Bind(&loop); |
+ __ AddImmediate(R2, R2, -1, kNoPP); |
+ __ CompareRegisters(R2, ZR); |
+ __ b(&is_true, LT); |
+ if (string_cid == kOneByteStringCid) { |
+ __ ldr(R3, Address(R0), kUnsignedByte); |
+ __ ldr(R4, Address(R1), kUnsignedByte); |
+ __ AddImmediate(R0, R0, 1, kNoPP); |
+ __ AddImmediate(R1, R1, 1, kNoPP); |
+ } else if (string_cid == kTwoByteStringCid) { |
+ __ ldr(R3, Address(R0), kUnsignedHalfword); |
+ __ ldr(R4, Address(R1), kUnsignedHalfword); |
+ __ AddImmediate(R0, R0, 2, kNoPP); |
+ __ AddImmediate(R1, R1, 2, kNoPP); |
+ } else { |
+ UNIMPLEMENTED(); |
+ } |
+ __ cmp(R3, Operand(R4)); |
+ __ b(&is_false, NE); |
+ __ b(&loop); |
+ |
+ __ Bind(&is_true); |
+ __ LoadObject(R0, Bool::True(), PP); |
+ __ ret(); |
+ |
+ __ Bind(&is_false); |
+ __ LoadObject(R0, Bool::False(), PP); |
+ __ ret(); |
+ |
+ __ Bind(&fall_through); |
} |
void Intrinsifier::OneByteString_equality(Assembler* assembler) { |
- return; |
+ StringEquality(assembler, kOneByteStringCid); |
} |
void Intrinsifier::TwoByteString_equality(Assembler* assembler) { |
- return; |
+ StringEquality(assembler, kTwoByteStringCid); |
} |
+// On stack: user tag (+0). |
void Intrinsifier::UserTag_makeCurrent(Assembler* assembler) { |
- return; |
+ // R1: Isolate. |
+ Isolate* isolate = Isolate::Current(); |
+ __ LoadImmediate(R1, reinterpret_cast<uword>(isolate), kNoPP); |
+ // R0: Current user tag. |
+ __ ldr(R0, Address(R1, Isolate::current_tag_offset())); |
+ // R2: UserTag. |
+ __ ldr(R2, Address(SP, + 0 * kWordSize)); |
+ // Set Isolate::current_tag_. |
+ __ str(R2, Address(R1, Isolate::current_tag_offset())); |
+ // R2: UserTag's tag. |
+ __ ldr(R2, FieldAddress(R2, UserTag::tag_offset())); |
+ // Set Isolate::user_tag_. |
+ __ str(R2, Address(R1, Isolate::user_tag_offset())); |
+ __ ret(); |
} |
-void Intrinsifier::Profiler_getCurrentTag(Assembler* assembler) { |
- return; |
+void Intrinsifier::UserTag_defaultTag(Assembler* assembler) { |
+ Isolate* isolate = Isolate::Current(); |
+ // Set return value to default tag address. |
+ __ LoadImmediate(R0, |
+ reinterpret_cast<uword>(isolate->object_store()) + |
+ ObjectStore::default_tag_offset(), kNoPP); |
+ __ ldr(R0, Address(R0)); |
+ __ ret(); |
} |
-void Intrinsifier::UserTag_defaultTag(Assembler* assembler) { |
- return; |
+void Intrinsifier::Profiler_getCurrentTag(Assembler* assembler) { |
+ // R1: Default tag address. |
+ Isolate* isolate = Isolate::Current(); |
+ __ LoadImmediate(R1, reinterpret_cast<uword>(isolate), kNoPP); |
+ // Set return value to Isolate::current_tag_. |
+ __ ldr(R0, Address(R1, Isolate::current_tag_offset())); |
+ __ ret(); |
} |
} // namespace dart |