| Index: runtime/vm/intrinsifier_arm64.cc
|
| ===================================================================
|
| --- runtime/vm/intrinsifier_arm64.cc (revision 36300)
|
| +++ runtime/vm/intrinsifier_arm64.cc (working copy)
|
| @@ -15,60 +15,260 @@
|
|
|
| namespace dart {
|
|
|
| +DECLARE_FLAG(bool, enable_type_checks);
|
| +
|
| #define __ assembler->
|
|
|
|
|
| void Intrinsifier::Array_getLength(Assembler* assembler) {
|
| - return;
|
| + __ ldr(R0, Address(SP, 0 * kWordSize));
|
| + __ ldr(R0, FieldAddress(R0, Array::length_offset()));
|
| + __ ret();
|
| }
|
|
|
|
|
| void Intrinsifier::ImmutableList_getLength(Assembler* assembler) {
|
| - return;
|
| + Array_getLength(assembler);
|
| }
|
|
|
|
|
| void Intrinsifier::Array_getIndexed(Assembler* assembler) {
|
| - return;
|
| + Label fall_through;
|
| +
|
| + __ ldr(R0, Address(SP, + 0 * kWordSize)); // Index
|
| + __ ldr(R1, Address(SP, + 1 * kWordSize)); // Array
|
| +
|
| + __ tsti(R0, kSmiTagMask);
|
| + __ b(&fall_through, NE); // Index is not an smi, fall through.
|
| +
|
| + // range check
|
| + __ ldr(R6, FieldAddress(R1, Array::length_offset()));
|
| + __ cmp(R0, Operand(R6));
|
| + __ b(&fall_through, CS);
|
| +
|
| + ASSERT(kSmiTagShift == 1);
|
| + // array element at R1 + R0*4 + Array::data_offset - 1
|
| + __ add(R6, R1, Operand(R0, LSL, 2));
|
| + __ ldr(R0, FieldAddress(R6, Array::data_offset()));
|
| + __ ret();
|
| + __ Bind(&fall_through);
|
| }
|
|
|
|
|
| void Intrinsifier::ImmutableList_getIndexed(Assembler* assembler) {
|
| - return;
|
| + Array_getIndexed(assembler);
|
| }
|
|
|
|
|
| +static intptr_t ComputeObjectArrayTypeArgumentsOffset() {
|
| + const Library& core_lib = Library::Handle(Library::CoreLibrary());
|
| + const Class& cls = Class::Handle(
|
| + core_lib.LookupClassAllowPrivate(Symbols::_List()));
|
| + ASSERT(!cls.IsNull());
|
| + ASSERT(cls.NumTypeArguments() == 1);
|
| + const intptr_t field_offset = cls.type_arguments_field_offset();
|
| + ASSERT(field_offset != Class::kNoTypeArguments);
|
| + return field_offset;
|
| +}
|
| +
|
| +
|
| +// Intrinsify only for Smi value and index. Non-smi values need a store buffer
|
| +// update. Array length is always a Smi.
|
| void Intrinsifier::Array_setIndexed(Assembler* assembler) {
|
| - return;
|
| + Label fall_through;
|
| +
|
| + if (FLAG_enable_type_checks) {
|
| + const intptr_t type_args_field_offset =
|
| + ComputeObjectArrayTypeArgumentsOffset();
|
| + // Inline simple tests (Smi, null), fallthrough if not positive.
|
| + Label checked_ok;
|
| + __ ldr(R2, Address(SP, 0 * kWordSize)); // Value.
|
| +
|
| + // Null value is valid for any type.
|
| + __ CompareObject(R2, Object::null_object(), PP);
|
| + __ b(&checked_ok, EQ);
|
| +
|
| + __ ldr(R1, Address(SP, 2 * kWordSize)); // Array.
|
| + __ ldr(R1, FieldAddress(R1, type_args_field_offset));
|
| +
|
| + // R1: Type arguments of array.
|
| + __ CompareObject(R1, Object::null_object(), PP);
|
| + __ b(&checked_ok, EQ);
|
| +
|
| + // Check if it's dynamic.
|
| + // Get type at index 0.
|
| + __ ldr(R0, FieldAddress(R1, TypeArguments::type_at_offset(0)));
|
| + __ CompareObject(R0, Type::ZoneHandle(Type::DynamicType()), PP);
|
| + __ b(&checked_ok, EQ);
|
| +
|
| + // Check for int and num.
|
| + __ tsti(R2, kSmiTagMask); // Value is Smi?
|
| + __ b(&fall_through, NE); // Non-smi value.
|
| + __ CompareObject(R0, Type::ZoneHandle(Type::IntType()), PP);
|
| + __ b(&checked_ok, EQ);
|
| + __ CompareObject(R0, Type::ZoneHandle(Type::Number()), PP);
|
| + __ b(&fall_through, NE);
|
| + __ Bind(&checked_ok);
|
| + }
|
| + __ ldr(R1, Address(SP, 1 * kWordSize)); // Index.
|
| + __ tsti(R1, kSmiTagMask);
|
| + // Index not Smi.
|
| + __ b(&fall_through, NE);
|
| + __ ldr(R0, Address(SP, 2 * kWordSize)); // Array.
|
| +
|
| + // Range check.
|
| + __ ldr(R3, FieldAddress(R0, Array::length_offset())); // Array length.
|
| + __ cmp(R1, Operand(R3));
|
| + // Runtime throws exception.
|
| + __ b(&fall_through, CS);
|
| +
|
| + // Note that R1 is Smi, i.e, times 2.
|
| + ASSERT(kSmiTagShift == 1);
|
| + __ ldr(R2, Address(SP, 0 * kWordSize)); // Value.
|
| + __ add(R1, R0, Operand(R1, LSL, 2)); // R1 is Smi.
|
| + __ StoreIntoObject(R0,
|
| + FieldAddress(R1, Array::data_offset()),
|
| + R2);
|
| + // Caller is responsible for preserving the value if necessary.
|
| + __ ret();
|
| + __ Bind(&fall_through);
|
| }
|
|
|
|
|
| // Allocate a GrowableObjectArray using the backing array specified.
|
| // On stack: type argument (+1), data (+0).
|
| void Intrinsifier::GrowableList_Allocate(Assembler* assembler) {
|
| - return;
|
| + // The newly allocated object is returned in R0.
|
| + const intptr_t kTypeArgumentsOffset = 1 * kWordSize;
|
| + const intptr_t kArrayOffset = 0 * kWordSize;
|
| + Label fall_through;
|
| +
|
| + // Compute the size to be allocated, it is based on the array length
|
| + // and is computed as:
|
| + // RoundedAllocationSize(sizeof(RawGrowableObjectArray)) +
|
| + intptr_t fixed_size = GrowableObjectArray::InstanceSize();
|
| +
|
| + Isolate* isolate = Isolate::Current();
|
| + Heap* heap = isolate->heap();
|
| +
|
| + __ LoadImmediate(R2, heap->TopAddress(), kNoPP);
|
| + __ ldr(R0, Address(R2, 0));
|
| + __ AddImmediate(R1, R0, fixed_size, kNoPP);
|
| +
|
| + // Check if the allocation fits into the remaining space.
|
| + // R0: potential new backing array object start.
|
| + // R1: potential next object start.
|
| + __ LoadImmediate(R3, heap->EndAddress(), kNoPP);
|
| + __ ldr(R3, Address(R3, 0));
|
| + __ cmp(R1, Operand(R3));
|
| + __ b(&fall_through, CS);
|
| +
|
| + // Successfully allocated the object(s), now update top to point to
|
| + // next object start and initialize the object.
|
| + __ str(R1, Address(R2, 0));
|
| + __ AddImmediate(R0, R0, kHeapObjectTag, kNoPP);
|
| +
|
| + // Initialize the tags.
|
| + // R0: new growable array object start as a tagged pointer.
|
| + const Class& cls = Class::Handle(
|
| + isolate->object_store()->growable_object_array_class());
|
| + uword tags = 0;
|
| + tags = RawObject::SizeTag::update(fixed_size, tags);
|
| + tags = RawObject::ClassIdTag::update(cls.id(), tags);
|
| + __ LoadImmediate(R1, tags, kNoPP);
|
| + __ str(R1, FieldAddress(R0, GrowableObjectArray::tags_offset()));
|
| +
|
| + // Store backing array object in growable array object.
|
| + __ ldr(R1, Address(SP, kArrayOffset)); // Data argument.
|
| + // R0 is new, no barrier needed.
|
| + __ StoreIntoObjectNoBarrier(
|
| + R0,
|
| + FieldAddress(R0, GrowableObjectArray::data_offset()),
|
| + R1);
|
| +
|
| + // R0: new growable array object start as a tagged pointer.
|
| + // Store the type argument field in the growable array object.
|
| + __ ldr(R1, Address(SP, kTypeArgumentsOffset)); // Type argument.
|
| + __ StoreIntoObjectNoBarrier(
|
| + R0,
|
| + FieldAddress(R0, GrowableObjectArray::type_arguments_offset()),
|
| + R1);
|
| +
|
| + // Set the length field in the growable array object to 0.
|
| + __ LoadImmediate(R1, 0, kNoPP);
|
| + __ str(R1, FieldAddress(R0, GrowableObjectArray::length_offset()));
|
| + __ UpdateAllocationStats(kGrowableObjectArrayCid, R1, kNoPP);
|
| + __ ret(); // Returns the newly allocated object in R0.
|
| +
|
| + __ Bind(&fall_through);
|
| }
|
|
|
|
|
| void Intrinsifier::GrowableList_getLength(Assembler* assembler) {
|
| - return;
|
| + __ ldr(R0, Address(SP, 0 * kWordSize));
|
| + __ ldr(R0, FieldAddress(R0, GrowableObjectArray::length_offset()));
|
| + __ ret();
|
| }
|
|
|
|
|
| void Intrinsifier::GrowableList_getCapacity(Assembler* assembler) {
|
| - return;
|
| + __ ldr(R0, Address(SP, 0 * kWordSize));
|
| + __ ldr(R0, FieldAddress(R0, GrowableObjectArray::data_offset()));
|
| + __ ldr(R0, FieldAddress(R0, Array::length_offset()));
|
| + __ ret();
|
| }
|
|
|
|
|
| void Intrinsifier::GrowableList_getIndexed(Assembler* assembler) {
|
| - return;
|
| + Label fall_through;
|
| +
|
| + __ ldr(R0, Address(SP, + 0 * kWordSize)); // Index
|
| + __ ldr(R1, Address(SP, + 1 * kWordSize)); // Array
|
| +
|
| + __ tsti(R0, kSmiTagMask);
|
| + __ b(&fall_through, NE); // Index is not an smi, fall through.
|
| +
|
| + // range check
|
| + __ ldr(R6, FieldAddress(R1, GrowableObjectArray::length_offset()));
|
| + __ cmp(R0, Operand(R6));
|
| + __ b(&fall_through, CS);
|
| +
|
| + ASSERT(kSmiTagShift == 1);
|
| + // array element at R6 + R0 * 4 + Array::data_offset - 1
|
| + __ ldr(R6, FieldAddress(R1, GrowableObjectArray::data_offset())); // Data
|
| + __ add(R6, R6, Operand(R0, LSL, 2));
|
| + __ ldr(R0, FieldAddress(R6, Array::data_offset()));
|
| + __ ret();
|
| + __ Bind(&fall_through);
|
| }
|
|
|
|
|
| // Set value into growable object array at specified index.
|
| // On stack: growable array (+2), index (+1), value (+0).
|
| void Intrinsifier::GrowableList_setIndexed(Assembler* assembler) {
|
| - return;
|
| + if (FLAG_enable_type_checks) {
|
| + return;
|
| + }
|
| + Label fall_through;
|
| + __ ldr(R1, Address(SP, 1 * kWordSize)); // Index.
|
| + __ ldr(R0, Address(SP, 2 * kWordSize)); // GrowableArray.
|
| + __ tsti(R1, kSmiTagMask);
|
| + __ b(&fall_through, NE); // Non-smi index.
|
| + // Range check using _length field.
|
| + __ ldr(R2, FieldAddress(R0, GrowableObjectArray::length_offset()));
|
| + __ cmp(R1, Operand(R2));
|
| + // Runtime throws exception.
|
| + __ b(&fall_through, CS);
|
| + __ ldr(R0, FieldAddress(R0, GrowableObjectArray::data_offset())); // data.
|
| + __ ldr(R2, Address(SP, 0 * kWordSize)); // Value.
|
| + // Note that R1 is Smi, i.e, times 2.
|
| + ASSERT(kSmiTagShift == 1);
|
| + __ add(R1, R0, Operand(R1, LSL, 2));
|
| + __ StoreIntoObject(R0,
|
| + FieldAddress(R1, Array::data_offset()),
|
| + R2);
|
| + __ ret();
|
| + __ Bind(&fall_through);
|
| }
|
|
|
|
|
| @@ -76,69 +276,315 @@
|
| // be greater than the length of the data container.
|
| // On stack: growable array (+1), length (+0).
|
| void Intrinsifier::GrowableList_setLength(Assembler* assembler) {
|
| - return;
|
| + Label fall_through;
|
| + __ ldr(R0, Address(SP, 1 * kWordSize)); // Growable array.
|
| + __ ldr(R1, Address(SP, 0 * kWordSize)); // Length value.
|
| + __ tsti(R1, kSmiTagMask); // Check for Smi.
|
| + __ b(&fall_through, NE);
|
| + __ str(R1, FieldAddress(R0, GrowableObjectArray::length_offset()));
|
| + __ ret();
|
| + __ Bind(&fall_through);
|
| + // Fall through on non-Smi.
|
| }
|
|
|
|
|
| // Set data of growable object array.
|
| // On stack: growable array (+1), data (+0).
|
| void Intrinsifier::GrowableList_setData(Assembler* assembler) {
|
| - return;
|
| + if (FLAG_enable_type_checks) {
|
| + return;
|
| + }
|
| + Label fall_through;
|
| + __ ldr(R1, Address(SP, 0 * kWordSize)); // Data.
|
| + // Check that data is an ObjectArray.
|
| + __ tsti(R1, kSmiTagMask);
|
| + __ b(&fall_through, EQ); // Data is Smi.
|
| + __ CompareClassId(R1, kArrayCid, kNoPP);
|
| + __ b(&fall_through, NE);
|
| + __ ldr(R0, Address(SP, 1 * kWordSize)); // Growable array.
|
| + __ StoreIntoObject(R0,
|
| + FieldAddress(R0, GrowableObjectArray::data_offset()),
|
| + R1);
|
| + __ ret();
|
| + __ Bind(&fall_through);
|
| }
|
|
|
|
|
| +// Add an element to growable array if it doesn't need to grow, otherwise
|
| +// call into regular code.
|
| +// On stack: growable array (+1), value (+0).
|
| void Intrinsifier::GrowableList_add(Assembler* assembler) {
|
| - return;
|
| + // In checked mode we need to type-check the incoming argument.
|
| + if (FLAG_enable_type_checks) {
|
| + return;
|
| + }
|
| + Label fall_through;
|
| + // R0: Array.
|
| + __ ldr(R0, Address(SP, 1 * kWordSize));
|
| + // R1: length.
|
| + __ ldr(R1, FieldAddress(R0, GrowableObjectArray::length_offset()));
|
| + // R2: data.
|
| + __ ldr(R2, FieldAddress(R0, GrowableObjectArray::data_offset()));
|
| + // R3: capacity.
|
| + __ ldr(R3, FieldAddress(R2, Array::length_offset()));
|
| + // Compare length with capacity.
|
| + __ cmp(R1, Operand(R3));
|
| + __ b(&fall_through, EQ); // Must grow data.
|
| + const int64_t value_one = reinterpret_cast<int64_t>(Smi::New(1));
|
| + // len = len + 1;
|
| + __ add(R3, R1, Operand(value_one));
|
| + __ str(R3, FieldAddress(R0, GrowableObjectArray::length_offset()));
|
| + __ ldr(R0, Address(SP, 0 * kWordSize)); // Value.
|
| + ASSERT(kSmiTagShift == 1);
|
| + __ add(R1, R2, Operand(R1, LSL, 2));
|
| + __ StoreIntoObject(R2,
|
| + FieldAddress(R1, Array::data_offset()),
|
| + R0);
|
| + __ LoadObject(R0, Object::null_object(), PP);
|
| + __ ret();
|
| + __ Bind(&fall_through);
|
| }
|
|
|
|
|
| // Gets the length of a TypedData.
|
| void Intrinsifier::TypedData_getLength(Assembler* assembler) {
|
| - return;
|
| + __ ldr(R0, Address(SP, 0 * kWordSize));
|
| + __ ldr(R0, FieldAddress(R0, TypedData::length_offset()));
|
| + __ ret();
|
| }
|
|
|
|
|
| +static int GetScaleFactor(intptr_t size) {
|
| + switch (size) {
|
| + case 1: return 0;
|
| + case 2: return 1;
|
| + case 4: return 2;
|
| + case 8: return 3;
|
| + case 16: return 4;
|
| + }
|
| + UNREACHABLE();
|
| + return -1;
|
| +}
|
| +
|
| +
|
| +#define TYPED_ARRAY_ALLOCATION(type_name, cid, max_len, scale_shift) \
|
| + Label fall_through; \
|
| + const intptr_t kArrayLengthStackOffset = 0 * kWordSize; \
|
| + __ ldr(R2, Address(SP, kArrayLengthStackOffset)); /* Array length. */ \
|
| + /* Check that length is a positive Smi. */ \
|
| + /* R2: requested array length argument. */ \
|
| + __ tsti(R2, kSmiTagMask); \
|
| + __ b(&fall_through, NE); \
|
| + __ CompareRegisters(R2, ZR); \
|
| + __ b(&fall_through, LT); \
|
| + __ SmiUntag(R2); \
|
| + /* Check for maximum allowed length. */ \
|
| + /* R2: untagged array length. */ \
|
| + __ CompareImmediate(R2, max_len, kNoPP); \
|
| + __ b(&fall_through, GT); \
|
| + __ Lsl(R2, R2, scale_shift); \
|
| + const intptr_t fixed_size = sizeof(Raw##type_name) + kObjectAlignment - 1; \
|
| + __ AddImmediate(R2, R2, fixed_size, kNoPP); \
|
| + __ andi(R2, R2, ~(kObjectAlignment - 1)); \
|
| + Heap* heap = Isolate::Current()->heap(); \
|
| + \
|
| + __ LoadImmediate(R0, heap->TopAddress(), kNoPP); \
|
| + __ ldr(R0, Address(R0, 0)); \
|
| + \
|
| + /* R2: allocation size. */ \
|
| + __ add(R1, R0, Operand(R2)); \
|
| + __ b(&fall_through, VS); \
|
| + \
|
| + /* Check if the allocation fits into the remaining space. */ \
|
| + /* R0: potential new object start. */ \
|
| + /* R1: potential next object start. */ \
|
| + /* R2: allocation size. */ \
|
| + __ LoadImmediate(R3, heap->EndAddress(), kNoPP); \
|
| + __ ldr(R3, Address(R3, 0)); \
|
| + __ cmp(R1, Operand(R3)); \
|
| + __ b(&fall_through, CS); \
|
| + \
|
| + /* Successfully allocated the object(s), now update top to point to */ \
|
| + /* next object start and initialize the object. */ \
|
| + __ LoadImmediate(R3, heap->TopAddress(), kNoPP); \
|
| + __ str(R1, Address(R3, 0)); \
|
| + __ AddImmediate(R0, R0, kHeapObjectTag, kNoPP); \
|
| + __ UpdateAllocationStatsWithSize(cid, R2, R4, kNoPP); \
|
| + /* Initialize the tags. */ \
|
| + /* R0: new object start as a tagged pointer. */ \
|
| + /* R1: new object end address. */ \
|
| + /* R2: allocation size. */ \
|
| + { \
|
| + __ CompareImmediate(R2, RawObject::SizeTag::kMaxSizeTag, kNoPP); \
|
| + __ Lsl(R2, R2, RawObject::kSizeTagPos - kObjectAlignmentLog2); \
|
| + __ csel(R2, ZR, R2, HI); \
|
| + \
|
| + /* Get the class index and insert it into the tags. */ \
|
| + __ LoadImmediate(TMP, RawObject::ClassIdTag::encode(cid), kNoPP); \
|
| + __ orr(R2, R2, Operand(TMP)); \
|
| + __ str(R2, FieldAddress(R0, type_name::tags_offset())); /* Tags. */ \
|
| + } \
|
| + /* Set the length field. */ \
|
| + /* R0: new object start as a tagged pointer. */ \
|
| + /* R1: new object end address. */ \
|
| + __ ldr(R2, Address(SP, kArrayLengthStackOffset)); /* Array length. */ \
|
| + __ StoreIntoObjectNoBarrier(R0, \
|
| + FieldAddress(R0, type_name::length_offset()), \
|
| + R2); \
|
| + /* Initialize all array elements to 0. */ \
|
| + /* R0: new object start as a tagged pointer. */ \
|
| + /* R1: new object end address. */ \
|
| + /* R2: iterator which initially points to the start of the variable */ \
|
| + /* R3: scratch register. */ \
|
| + /* data area to be initialized. */ \
|
| + __ mov(R3, ZR); \
|
| + __ AddImmediate(R2, R0, sizeof(Raw##type_name) - 1, kNoPP); \
|
| + Label init_loop, done; \
|
| + __ Bind(&init_loop); \
|
| + __ cmp(R2, Operand(R1)); \
|
| + __ b(&done, CS); \
|
| + __ str(R3, Address(R2, 0)); \
|
| + __ add(R2, R2, Operand(kWordSize)); \
|
| + __ b(&init_loop); \
|
| + __ Bind(&done); \
|
| + \
|
| + __ ret(); \
|
| + __ Bind(&fall_through); \
|
| +
|
| +
|
| #define TYPED_DATA_ALLOCATOR(clazz) \
|
| void Intrinsifier::TypedData_##clazz##_new(Assembler* assembler) { \
|
| - return; \
|
| + intptr_t size = TypedData::ElementSizeInBytes(kTypedData##clazz##Cid); \
|
| + intptr_t max_len = TypedData::MaxElements(kTypedData##clazz##Cid); \
|
| + int shift = GetScaleFactor(size); \
|
| + TYPED_ARRAY_ALLOCATION(TypedData, kTypedData##clazz##Cid, max_len, shift); \
|
| } \
|
| void Intrinsifier::TypedData_##clazz##_factory(Assembler* assembler) { \
|
| - return; \
|
| + intptr_t size = TypedData::ElementSizeInBytes(kTypedData##clazz##Cid); \
|
| + intptr_t max_len = TypedData::MaxElements(kTypedData##clazz##Cid); \
|
| + int shift = GetScaleFactor(size); \
|
| + TYPED_ARRAY_ALLOCATION(TypedData, kTypedData##clazz##Cid, max_len, shift); \
|
| }
|
| CLASS_LIST_TYPED_DATA(TYPED_DATA_ALLOCATOR)
|
| #undef TYPED_DATA_ALLOCATOR
|
|
|
|
|
| +// Loads args from stack into R0 and R1
|
| +// Tests if they are smis, jumps to label not_smi if not.
|
| +static void TestBothArgumentsSmis(Assembler* assembler, Label* not_smi) {
|
| + __ ldr(R0, Address(SP, + 0 * kWordSize));
|
| + __ ldr(R1, Address(SP, + 1 * kWordSize));
|
| + __ orr(TMP, R0, Operand(R1));
|
| + __ tsti(TMP, kSmiTagMask);
|
| + __ b(not_smi, NE);
|
| +}
|
| +
|
| +
|
| void Intrinsifier::Integer_addFromInteger(Assembler* assembler) {
|
| - return;
|
| + Label fall_through;
|
| + TestBothArgumentsSmis(assembler, &fall_through); // Checks two smis.
|
| + __ adds(R0, R0, Operand(R1)); // Adds.
|
| + __ b(&fall_through, VS); // Fall-through on overflow.
|
| + __ ret();
|
| + __ Bind(&fall_through);
|
| }
|
|
|
|
|
| void Intrinsifier::Integer_add(Assembler* assembler) {
|
| - return;
|
| + Integer_addFromInteger(assembler);
|
| }
|
|
|
|
|
| void Intrinsifier::Integer_subFromInteger(Assembler* assembler) {
|
| - return;
|
| + Label fall_through;
|
| + TestBothArgumentsSmis(assembler, &fall_through);
|
| + __ subs(R0, R0, Operand(R1)); // Subtract.
|
| + __ b(&fall_through, VS); // Fall-through on overflow.
|
| + __ ret();
|
| + __ Bind(&fall_through);
|
| }
|
|
|
|
|
| void Intrinsifier::Integer_sub(Assembler* assembler) {
|
| - return;
|
| + Label fall_through;
|
| + TestBothArgumentsSmis(assembler, &fall_through);
|
| + __ subs(R0, R1, Operand(R0)); // Subtract.
|
| + __ b(&fall_through, VS); // Fall-through on overflow.
|
| + __ ret();
|
| + __ Bind(&fall_through);
|
| }
|
|
|
|
|
| void Intrinsifier::Integer_mulFromInteger(Assembler* assembler) {
|
| - return;
|
| + Label fall_through;
|
| +
|
| + TestBothArgumentsSmis(assembler, &fall_through); // checks two smis
|
| + __ SmiUntag(R0); // Untags R6. We only want result shifted by one.
|
| +
|
| + __ mul(TMP, R0, R1);
|
| + __ smulh(TMP2, R0, R1);
|
| + // TMP: result bits 64..127.
|
| + __ cmp(TMP2, Operand(TMP, ASR, 63));
|
| + __ b(&fall_through, NE);
|
| + __ mov(R0, TMP);
|
| + __ ret();
|
| + __ Bind(&fall_through);
|
| }
|
|
|
|
|
| void Intrinsifier::Integer_mul(Assembler* assembler) {
|
| - return;
|
| + Integer_mulFromInteger(assembler);
|
| }
|
|
|
|
|
| +// Optimizations:
|
| +// - result is 0 if:
|
| +// - left is 0
|
| +// - left equals right
|
| +// - result is left if
|
| +// - left > 0 && left < right
|
| +// R1: Tagged left (dividend).
|
| +// R0: Tagged right (divisor).
|
| +// Returns with result in R0, OR:
|
| +// R1: Untagged result (remainder).
|
| +static void EmitRemainderOperation(Assembler* assembler) {
|
| + Label return_zero, modulo;
|
| + const Register left = R1;
|
| + const Register right = R0;
|
| + const Register result = R1;
|
| + const Register tmp = R2;
|
| + ASSERT(left == result);
|
| +
|
| + // Check for quick zero results.
|
| + __ CompareRegisters(left, ZR);
|
| + __ b(&return_zero, EQ);
|
| + __ CompareRegisters(left, right);
|
| + __ b(&return_zero, EQ);
|
| +
|
| + // Check if result should be left.
|
| + __ CompareRegisters(left, ZR);
|
| + __ b(&modulo, LT);
|
| + // left is positive.
|
| + __ CompareRegisters(left, right);
|
| + // left is less than right, result is left.
|
| + __ b(&modulo, GT);
|
| + __ mov(R0, left);
|
| + __ ret();
|
| +
|
| + __ Bind(&return_zero);
|
| + __ mov(R0, ZR);
|
| + __ ret();
|
| +
|
| + __ Bind(&modulo);
|
| + // result <- left - right * (left / right)
|
| + __ SmiUntag(left);
|
| + __ SmiUntag(right);
|
| +
|
| + __ sdiv(tmp, left, right);
|
| + __ msub(result, right, tmp, left); // result <- left - right * tmp
|
| +}
|
| +
|
| +
|
| // Implementation:
|
| // res = left % right;
|
| // if (res < 0) {
|
| @@ -149,180 +595,518 @@
|
| // }
|
| // }
|
| void Intrinsifier::Integer_moduloFromInteger(Assembler* assembler) {
|
| - return;
|
| + // Check to see if we have integer division
|
| + Label neg_remainder, fall_through;
|
| + __ ldr(R1, Address(SP, + 0 * kWordSize));
|
| + __ ldr(R0, Address(SP, + 1 * kWordSize));
|
| + __ orr(TMP, R0, Operand(R1));
|
| + __ tsti(TMP, kSmiTagMask);
|
| + __ b(&fall_through, NE);
|
| + // R1: Tagged left (dividend).
|
| + // R0: Tagged right (divisor).
|
| + // Check if modulo by zero -> exception thrown in main function.
|
| + __ CompareRegisters(R0, ZR);
|
| + __ b(&fall_through, EQ);
|
| + EmitRemainderOperation(assembler);
|
| + // Untagged right in R0. Untagged remainder result in R1.
|
| +
|
| + __ CompareRegisters(R1, ZR);
|
| + __ b(&neg_remainder, LT);
|
| + __ Lsl(R0, R1, 1); // Tag and move result to R0.
|
| + __ ret();
|
| +
|
| + __ Bind(&neg_remainder);
|
| + // Result is negative, adjust it.
|
| + __ CompareRegisters(R0, ZR);
|
| + __ sub(TMP, R1, Operand(R0));
|
| + __ add(TMP2, R1, Operand(R0));
|
| + __ csel(R0, TMP2, TMP, GE);
|
| + __ SmiTag(R0);
|
| + __ ret();
|
| +
|
| + __ Bind(&fall_through);
|
| }
|
|
|
|
|
| void Intrinsifier::Integer_truncDivide(Assembler* assembler) {
|
| - return;
|
| + // Check to see if we have integer division
|
| + Label fall_through;
|
| +
|
| + TestBothArgumentsSmis(assembler, &fall_through);
|
| + __ CompareRegisters(R0, ZR);
|
| + __ b(&fall_through, EQ); // If b is 0, fall through.
|
| +
|
| + __ SmiUntag(R0);
|
| + __ SmiUntag(R1);
|
| +
|
| + __ sdiv(R0, R1, R0);
|
| +
|
| + // Check the corner case of dividing the 'MIN_SMI' with -1, in which case we
|
| + // cannot tag the result.
|
| + __ CompareImmediate(R0, 0x4000000000000000, kNoPP);
|
| + __ b(&fall_through, EQ);
|
| + __ SmiTag(R0); // Not equal. Okay to tag and return.
|
| + __ ret(); // Return.
|
| + __ Bind(&fall_through);
|
| }
|
|
|
|
|
| void Intrinsifier::Integer_negate(Assembler* assembler) {
|
| - return;
|
| + Label fall_through;
|
| + __ ldr(R0, Address(SP, + 0 * kWordSize)); // Grab first argument.
|
| + __ tsti(R0, kSmiTagMask); // Test for Smi.
|
| + __ b(&fall_through, NE);
|
| + __ negs(R0, R0);
|
| + __ b(&fall_through, VS);
|
| + __ ret();
|
| + __ Bind(&fall_through);
|
| }
|
|
|
|
|
| void Intrinsifier::Integer_bitAndFromInteger(Assembler* assembler) {
|
| - return;
|
| + Label fall_through;
|
| + TestBothArgumentsSmis(assembler, &fall_through); // Checks two smis.
|
| + __ and_(R0, R0, Operand(R1));
|
| + __ ret();
|
| + __ Bind(&fall_through);
|
| }
|
|
|
|
|
| void Intrinsifier::Integer_bitAnd(Assembler* assembler) {
|
| - return;
|
| + Integer_bitAndFromInteger(assembler);
|
| }
|
|
|
|
|
| void Intrinsifier::Integer_bitOrFromInteger(Assembler* assembler) {
|
| - return;
|
| + Label fall_through;
|
| + TestBothArgumentsSmis(assembler, &fall_through); // Checks two smis.
|
| + __ orr(R0, R0, Operand(R1));
|
| + __ ret();
|
| + __ Bind(&fall_through);
|
| }
|
|
|
|
|
| void Intrinsifier::Integer_bitOr(Assembler* assembler) {
|
| - return;
|
| + Integer_bitOrFromInteger(assembler);
|
| }
|
|
|
|
|
| void Intrinsifier::Integer_bitXorFromInteger(Assembler* assembler) {
|
| - return;
|
| + Label fall_through;
|
| +
|
| + TestBothArgumentsSmis(assembler, &fall_through); // Checks two smis.
|
| + __ eor(R0, R0, Operand(R1));
|
| + __ ret();
|
| + __ Bind(&fall_through);
|
| }
|
|
|
|
|
| void Intrinsifier::Integer_bitXor(Assembler* assembler) {
|
| - return;
|
| + Integer_bitXorFromInteger(assembler);
|
| }
|
|
|
|
|
| void Intrinsifier::Integer_shl(Assembler* assembler) {
|
| - return;
|
| + ASSERT(kSmiTagShift == 1);
|
| + ASSERT(kSmiTag == 0);
|
| + const Register right = R0;
|
| + const Register left = R1;
|
| + const Register temp = R2;
|
| + const Register result = R0;
|
| + Label fall_through;
|
| +
|
| + TestBothArgumentsSmis(assembler, &fall_through);
|
| + __ CompareImmediate(
|
| + right, reinterpret_cast<int64_t>(Smi::New(Smi::kBits)), PP);
|
| + __ b(&fall_through, CS);
|
| +
|
| + // Left is not a constant.
|
| + // Check if count too large for handling it inlined.
|
| + __ Asr(TMP, right, kSmiTagSize); // SmiUntag right into TMP.
|
| + // Overflow test (preserve left, right, and TMP);
|
| + __ lslv(temp, left, TMP);
|
| + __ asrv(TMP2, temp, TMP);
|
| + __ CompareRegisters(left, TMP2);
|
| + __ b(&fall_through, NE); // Overflow.
|
| + // Shift for result now we know there is no overflow.
|
| + __ lslv(result, left, TMP);
|
| + __ ret();
|
| + __ Bind(&fall_through);
|
| }
|
|
|
|
|
| +static void CompareIntegers(Assembler* assembler, Condition true_condition) {
|
| + Label fall_through, true_label;
|
| + TestBothArgumentsSmis(assembler, &fall_through);
|
| + // R0 contains the right argument, R1 the left.
|
| + __ CompareRegisters(R1, R0);
|
| + __ LoadObject(R0, Bool::False(), PP);
|
| + __ LoadObject(TMP, Bool::True(), PP);
|
| + __ csel(R0, TMP, R0, true_condition);
|
| + __ ret();
|
| + __ Bind(&fall_through);
|
| +}
|
| +
|
| +
|
| void Intrinsifier::Integer_greaterThanFromInt(Assembler* assembler) {
|
| - return;
|
| + CompareIntegers(assembler, LT);
|
| }
|
|
|
|
|
| void Intrinsifier::Integer_lessThan(Assembler* assembler) {
|
| - return;
|
| + Integer_greaterThanFromInt(assembler);
|
| }
|
|
|
|
|
| void Intrinsifier::Integer_greaterThan(Assembler* assembler) {
|
| - return;
|
| + CompareIntegers(assembler, GT);
|
| }
|
|
|
|
|
| void Intrinsifier::Integer_lessEqualThan(Assembler* assembler) {
|
| - return;
|
| + CompareIntegers(assembler, LE);
|
| }
|
|
|
|
|
| void Intrinsifier::Integer_greaterEqualThan(Assembler* assembler) {
|
| - return;
|
| + CompareIntegers(assembler, GE);
|
| }
|
|
|
|
|
| // This is called for Smi, Mint and Bigint receivers. The right argument
|
| // can be Smi, Mint, Bigint or double.
|
| void Intrinsifier::Integer_equalToInteger(Assembler* assembler) {
|
| - return;
|
| + Label fall_through, true_label, check_for_mint;
|
| + // For integer receiver '===' check first.
|
| + __ ldr(R0, Address(SP, 0 * kWordSize));
|
| + __ ldr(R1, Address(SP, 1 * kWordSize));
|
| + __ cmp(R0, Operand(R1));
|
| + __ b(&true_label, EQ);
|
| +
|
| + __ orr(R2, R0, Operand(R1));
|
| + __ tsti(R2, kSmiTagMask);
|
| + __ b(&check_for_mint, NE); // If R0 or R1 is not a smi do Mint checks.
|
| +
|
| + // Both arguments are smi, '===' is good enough.
|
| + __ LoadObject(R0, Bool::False(), PP);
|
| + __ ret();
|
| + __ Bind(&true_label);
|
| + __ LoadObject(R0, Bool::True(), PP);
|
| + __ ret();
|
| +
|
| + // At least one of the arguments was not Smi.
|
| + Label receiver_not_smi;
|
| + __ Bind(&check_for_mint);
|
| +
|
| + __ tsti(R1, kSmiTagMask); // Check receiver.
|
| + __ b(&receiver_not_smi, NE);
|
| +
|
| + // Left (receiver) is Smi, return false if right is not Double.
|
| + // Note that an instance of Mint or Bigint never contains a value that can be
|
| + // represented by Smi.
|
| +
|
| + __ CompareClassId(R0, kDoubleCid, kNoPP);
|
| + __ b(&fall_through, EQ);
|
| + __ LoadObject(R0, Bool::False(), PP); // Smi == Mint -> false.
|
| + __ ret();
|
| +
|
| + __ Bind(&receiver_not_smi);
|
| + // R1: receiver.
|
| +
|
| + __ CompareClassId(R1, kMintCid, kNoPP);
|
| + __ b(&fall_through, NE);
|
| + // Receiver is Mint, return false if right is Smi.
|
| + __ tsti(R0, kSmiTagMask);
|
| + __ b(&fall_through, NE);
|
| + __ LoadObject(R0, Bool::False(), PP);
|
| + __ ret();
|
| + // TODO(srdjan): Implement Mint == Mint comparison.
|
| +
|
| + __ Bind(&fall_through);
|
| }
|
|
|
|
|
| void Intrinsifier::Integer_equal(Assembler* assembler) {
|
| - return;
|
| + Integer_equalToInteger(assembler);
|
| }
|
|
|
|
|
| void Intrinsifier::Integer_sar(Assembler* assembler) {
|
| - return;
|
| + Label fall_through;
|
| +
|
| + TestBothArgumentsSmis(assembler, &fall_through);
|
| + // Shift amount in R0. Value to shift in R1.
|
| +
|
| + // Fall through if shift amount is negative.
|
| + __ SmiUntag(R0);
|
| + __ CompareRegisters(R0, ZR);
|
| + __ b(&fall_through, LT);
|
| +
|
| + // If shift amount is bigger than 63, set to 63.
|
| + __ LoadImmediate(TMP, 0x3F, kNoPP);
|
| + __ CompareRegisters(R0, TMP);
|
| + __ csel(R0, TMP, R0, GT);
|
| + __ SmiUntag(R1);
|
| + __ asrv(R0, R1, R0);
|
| + __ SmiTag(R0);
|
| + __ ret();
|
| + __ Bind(&fall_through);
|
| }
|
|
|
|
|
| void Intrinsifier::Smi_bitNegate(Assembler* assembler) {
|
| - return;
|
| + __ ldr(R0, Address(SP, 0 * kWordSize));
|
| + __ mvn(R0, R0);
|
| + __ andi(R0, R0, ~kSmiTagMask); // Remove inverted smi-tag.
|
| + __ ret();
|
| }
|
|
|
|
|
| void Intrinsifier::Smi_bitLength(Assembler* assembler) {
|
| - return;
|
| + // TODO(sra): Implement as word-length - CLZ.
|
| }
|
|
|
|
|
| +// Check if the last argument is a double, jump to label 'is_smi' if smi
|
| +// (easy to convert to double), otherwise jump to label 'not_double_smi',
|
| +// Returns the last argument in R0.
|
| +static void TestLastArgumentIsDouble(Assembler* assembler,
|
| + Label* is_smi,
|
| + Label* not_double_smi) {
|
| + __ ldr(R0, Address(SP, 0 * kWordSize));
|
| + __ tsti(R0, kSmiTagMask);
|
| + __ b(is_smi, EQ);
|
| + __ CompareClassId(R0, kDoubleCid, kNoPP);
|
| + __ b(not_double_smi, NE);
|
| + // Fall through with Double in R0.
|
| +}
|
| +
|
| +
|
| +// Both arguments on stack, arg0 (left) is a double, arg1 (right) is of unknown
|
| +// type. Return true or false object in the register R0. Any NaN argument
|
| +// returns false. Any non-double arg1 causes control flow to fall through to the
|
| +// slow case (compiled method body).
|
| +static void CompareDoubles(Assembler* assembler, Condition true_condition) {
|
| + Label fall_through, is_smi, double_op, not_nan;
|
| +
|
| + TestLastArgumentIsDouble(assembler, &is_smi, &fall_through);
|
| + // Both arguments are double, right operand is in R0.
|
| +
|
| + __ LoadDFieldFromOffset(V1, R0, Double::value_offset(), kNoPP);
|
| + __ Bind(&double_op);
|
| + __ ldr(R0, Address(SP, 1 * kWordSize)); // Left argument.
|
| + __ LoadDFieldFromOffset(V0, R0, Double::value_offset(), kNoPP);
|
| +
|
| + __ fcmpd(V0, V1);
|
| + __ LoadObject(R0, Bool::False(), PP);
|
| + // Return false if D0 or D1 was NaN before checking true condition.
|
| + __ b(¬_nan, VC);
|
| + __ ret();
|
| + __ Bind(¬_nan);
|
| + __ LoadObject(TMP, Bool::True(), PP);
|
| + __ csel(R0, TMP, R0, true_condition);
|
| + __ ret();
|
| +
|
| + __ Bind(&is_smi); // Convert R0 to a double.
|
| + __ SmiUntag(R0);
|
| + __ scvtfd(V1, R0);
|
| + __ b(&double_op); // Then do the comparison.
|
| + __ Bind(&fall_through);
|
| +}
|
| +
|
| +
|
| void Intrinsifier::Double_greaterThan(Assembler* assembler) {
|
| - return;
|
| + CompareDoubles(assembler, HI);
|
| }
|
|
|
|
|
| void Intrinsifier::Double_greaterEqualThan(Assembler* assembler) {
|
| - return;
|
| + CompareDoubles(assembler, CS);
|
| }
|
|
|
|
|
| void Intrinsifier::Double_lessThan(Assembler* assembler) {
|
| - return;
|
| + CompareDoubles(assembler, CC);
|
| }
|
|
|
|
|
| void Intrinsifier::Double_equal(Assembler* assembler) {
|
| - return;
|
| + CompareDoubles(assembler, EQ);
|
| }
|
|
|
|
|
| void Intrinsifier::Double_lessEqualThan(Assembler* assembler) {
|
| - return;
|
| + CompareDoubles(assembler, LS);
|
| }
|
|
|
|
|
| +// Expects left argument to be double (receiver). Right argument is unknown.
|
| +// Both arguments are on stack.
|
| +static void DoubleArithmeticOperations(Assembler* assembler, Token::Kind kind) {
|
| + Label fall_through;
|
| +
|
| + TestLastArgumentIsDouble(assembler, &fall_through, &fall_through);
|
| + // Both arguments are double, right operand is in R0.
|
| + __ LoadDFieldFromOffset(V1, R0, Double::value_offset(), kNoPP);
|
| + __ ldr(R0, Address(SP, 1 * kWordSize)); // Left argument.
|
| + __ LoadDFieldFromOffset(V0, R0, Double::value_offset(), kNoPP);
|
| + switch (kind) {
|
| + case Token::kADD: __ faddd(V0, V0, V1); break;
|
| + case Token::kSUB: __ fsubd(V0, V0, V1); break;
|
| + case Token::kMUL: __ fmuld(V0, V0, V1); break;
|
| + case Token::kDIV: __ fdivd(V0, V0, V1); break;
|
| + default: UNREACHABLE();
|
| + }
|
| + const Class& double_class = Class::Handle(
|
| + Isolate::Current()->object_store()->double_class());
|
| + __ TryAllocate(double_class, &fall_through, R0, R1, kNoPP);
|
| + __ StoreDFieldToOffset(V0, R0, Double::value_offset(), kNoPP);
|
| + __ ret();
|
| + __ Bind(&fall_through);
|
| +}
|
| +
|
| +
|
| void Intrinsifier::Double_add(Assembler* assembler) {
|
| - return;
|
| + DoubleArithmeticOperations(assembler, Token::kADD);
|
| }
|
|
|
|
|
| void Intrinsifier::Double_mul(Assembler* assembler) {
|
| - return;
|
| + DoubleArithmeticOperations(assembler, Token::kMUL);
|
| }
|
|
|
|
|
| void Intrinsifier::Double_sub(Assembler* assembler) {
|
| - return;
|
| + DoubleArithmeticOperations(assembler, Token::kSUB);
|
| }
|
|
|
|
|
| void Intrinsifier::Double_div(Assembler* assembler) {
|
| - return;
|
| + DoubleArithmeticOperations(assembler, Token::kDIV);
|
| }
|
|
|
|
|
| // Left is double right is integer (Bigint, Mint or Smi)
|
| void Intrinsifier::Double_mulFromInteger(Assembler* assembler) {
|
| - return;
|
| + Label fall_through;
|
| + // Only smis allowed.
|
| + __ ldr(R0, Address(SP, 0 * kWordSize));
|
| + __ tsti(R0, kSmiTagMask);
|
| + __ b(&fall_through, NE);
|
| + // Is Smi.
|
| + __ SmiUntag(R0);
|
| + __ scvtfd(V1, R0);
|
| + __ ldr(R0, Address(SP, 1 * kWordSize));
|
| + __ LoadDFieldFromOffset(V0, R0, Double::value_offset(), kNoPP);
|
| + __ fmuld(V0, V0, V1);
|
| + const Class& double_class = Class::Handle(
|
| + Isolate::Current()->object_store()->double_class());
|
| + __ TryAllocate(double_class, &fall_through, R0, R1, kNoPP);
|
| + __ StoreDFieldToOffset(V0, R0, Double::value_offset(), kNoPP);
|
| + __ ret();
|
| + __ Bind(&fall_through);
|
| }
|
|
|
|
|
| void Intrinsifier::Double_fromInteger(Assembler* assembler) {
|
| - return;
|
| + Label fall_through;
|
| +
|
| + __ ldr(R0, Address(SP, 0 * kWordSize));
|
| + __ tsti(R0, kSmiTagMask);
|
| + __ b(&fall_through, NE);
|
| + // Is Smi.
|
| + __ SmiUntag(R0);
|
| + __ scvtfd(V0, R0);
|
| + const Class& double_class = Class::Handle(
|
| + Isolate::Current()->object_store()->double_class());
|
| + __ TryAllocate(double_class, &fall_through, R0, R1, kNoPP);
|
| + __ StoreDFieldToOffset(V0, R0, Double::value_offset(), kNoPP);
|
| + __ ret();
|
| + __ Bind(&fall_through);
|
| }
|
|
|
|
|
| void Intrinsifier::Double_getIsNaN(Assembler* assembler) {
|
| - return;
|
| + Label is_true;
|
| + __ ldr(R0, Address(SP, 0 * kWordSize));
|
| + __ LoadDFieldFromOffset(V0, R0, Double::value_offset(), kNoPP);
|
| + __ fcmpd(V0, V0);
|
| + __ LoadObject(TMP, Bool::False(), PP);
|
| + __ LoadObject(R0, Bool::True(), PP);
|
| + __ csel(R0, TMP, R0, VC);
|
| + __ ret();
|
| }
|
|
|
|
|
| void Intrinsifier::Double_getIsNegative(Assembler* assembler) {
|
| - return;
|
| + const Register false_reg = R0;
|
| + const Register true_reg = R2;
|
| + Label is_false, is_true, is_zero;
|
| +
|
| + __ ldr(R0, Address(SP, 0 * kWordSize));
|
| + __ LoadDFieldFromOffset(V0, R0, Double::value_offset(), kNoPP);
|
| + __ fcmpdz(V0);
|
| + __ LoadObject(true_reg, Bool::True(), PP);
|
| + __ LoadObject(false_reg, Bool::False(), PP);
|
| + __ b(&is_false, VS); // NaN -> false.
|
| + __ b(&is_zero, EQ); // Check for negative zero.
|
| + __ b(&is_false, CS); // >= 0 -> false.
|
| +
|
| + __ Bind(&is_true);
|
| + __ mov(R0, true_reg);
|
| +
|
| + __ Bind(&is_false);
|
| + __ ret();
|
| +
|
| + __ Bind(&is_zero);
|
| + // Check for negative zero by looking at the sign bit.
|
| + __ fmovrd(R1, V0);
|
| + __ Lsr(R1, R1, 63);
|
| + __ tsti(R1, 1);
|
| + __ csel(R0, true_reg, false_reg, NE); // Sign bit set.
|
| + __ ret();
|
| }
|
|
|
|
|
| void Intrinsifier::Double_toInt(Assembler* assembler) {
|
| - return;
|
| + Label fall_through;
|
| +
|
| + __ ldr(R0, Address(SP, 0 * kWordSize));
|
| + __ LoadDFieldFromOffset(V0, R0, Double::value_offset(), kNoPP);
|
| +
|
| + // Explicit NaN check, since ARM gives an FPU exception if you try to
|
| + // convert NaN to an int.
|
| + __ fcmpd(V0, V0);
|
| + __ b(&fall_through, VS);
|
| +
|
| + __ fcvtzds(R0, V0);
|
| + // Overflow is signaled with minint.
|
| + // Check for overflow and that it fits into Smi.
|
| + __ CompareImmediate(R0, 0xC000000000000000, kNoPP);
|
| + __ b(&fall_through, MI);
|
| + __ SmiTag(R0);
|
| + __ ret();
|
| + __ Bind(&fall_through);
|
| }
|
|
|
|
|
| void Intrinsifier::Math_sqrt(Assembler* assembler) {
|
| - return;
|
| + Label fall_through, is_smi, double_op;
|
| + TestLastArgumentIsDouble(assembler, &is_smi, &fall_through);
|
| + // Argument is double and is in R0.
|
| + __ LoadDFieldFromOffset(V1, R0, Double::value_offset(), kNoPP);
|
| + __ Bind(&double_op);
|
| + __ fsqrtd(V0, V1);
|
| + const Class& double_class = Class::Handle(
|
| + Isolate::Current()->object_store()->double_class());
|
| + __ TryAllocate(double_class, &fall_through, R0, R1, kNoPP);
|
| + __ StoreDFieldToOffset(V0, R0, Double::value_offset(), kNoPP);
|
| + __ ret();
|
| + __ Bind(&is_smi);
|
| + __ SmiUntag(R0);
|
| + __ scvtfd(V1, R0);
|
| + __ b(&double_op);
|
| + __ Bind(&fall_through);
|
| }
|
|
|
|
|
| @@ -330,87 +1114,446 @@
|
| // _state[kSTATE_LO] = state & _MASK_32;
|
| // _state[kSTATE_HI] = state >> 32;
|
| void Intrinsifier::Random_nextState(Assembler* assembler) {
|
| - return;
|
| + const Library& math_lib = Library::Handle(Library::MathLibrary());
|
| + ASSERT(!math_lib.IsNull());
|
| + const Class& random_class = Class::Handle(
|
| + math_lib.LookupClassAllowPrivate(Symbols::_Random()));
|
| + ASSERT(!random_class.IsNull());
|
| + const Field& state_field = Field::ZoneHandle(
|
| + random_class.LookupInstanceField(Symbols::_state()));
|
| + ASSERT(!state_field.IsNull());
|
| + const Field& random_A_field = Field::ZoneHandle(
|
| + random_class.LookupStaticField(Symbols::_A()));
|
| + ASSERT(!random_A_field.IsNull());
|
| + ASSERT(random_A_field.is_const());
|
| + const Instance& a_value = Instance::Handle(random_A_field.value());
|
| + const int64_t a_int_value = Integer::Cast(a_value).AsInt64Value();
|
| +
|
| + __ ldr(R0, Address(SP, 0 * kWordSize)); // Receiver.
|
| + __ ldr(R1, FieldAddress(R0, state_field.Offset())); // Field '_state'.
|
| +
|
| + // Addresses of _state[0].
|
| + const int64_t disp =
|
| + FlowGraphCompiler::DataOffsetFor(kTypedDataUint32ArrayCid) -
|
| + kHeapObjectTag;
|
| +
|
| + __ LoadImmediate(R0, a_int_value, kNoPP);
|
| + __ LoadFromOffset(R2, R1, disp, kNoPP);
|
| + __ Lsr(R3, R2, 32);
|
| + __ andi(R2, R2, 0xffffffff);
|
| + __ mul(R2, R0, R2);
|
| + __ add(R2, R2, Operand(R3));
|
| + __ StoreToOffset(R2, R1, disp, kNoPP);
|
| + __ ret();
|
| }
|
|
|
|
|
| void Intrinsifier::Object_equal(Assembler* assembler) {
|
| - return;
|
| + __ ldr(R0, Address(SP, 0 * kWordSize));
|
| + __ ldr(R1, Address(SP, 1 * kWordSize));
|
| + __ cmp(R0, Operand(R1));
|
| + __ LoadObject(R0, Bool::False(), PP);
|
| + __ LoadObject(TMP, Bool::True(), PP);
|
| + __ csel(R0, TMP, R0, EQ);
|
| + __ ret();
|
| }
|
|
|
|
|
| void Intrinsifier::String_getHashCode(Assembler* assembler) {
|
| - return;
|
| + Label fall_through;
|
| + __ ldr(R0, Address(SP, 0 * kWordSize));
|
| + __ ldr(R0, FieldAddress(R0, String::hash_offset()));
|
| + __ CompareRegisters(R0, ZR);
|
| + __ b(&fall_through, EQ);
|
| + __ ret();
|
| + // Hash not yet computed.
|
| + __ Bind(&fall_through);
|
| }
|
|
|
|
|
| void Intrinsifier::String_getLength(Assembler* assembler) {
|
| - return;
|
| + __ ldr(R0, Address(SP, 0 * kWordSize));
|
| + __ ldr(R0, FieldAddress(R0, String::length_offset()));
|
| + __ ret();
|
| }
|
|
|
|
|
| void Intrinsifier::String_codeUnitAt(Assembler* assembler) {
|
| - return;
|
| + Label fall_through, try_two_byte_string;
|
| +
|
| + __ ldr(R1, Address(SP, 0 * kWordSize)); // Index.
|
| + __ ldr(R0, Address(SP, 1 * kWordSize)); // String.
|
| + __ tsti(R1, kSmiTagMask);
|
| + __ b(&fall_through, NE); // Index is not a Smi.
|
| + // Range check.
|
| + __ ldr(R2, FieldAddress(R0, String::length_offset()));
|
| + __ cmp(R1, Operand(R2));
|
| + __ b(&fall_through, CS); // Runtime throws exception.
|
| + __ CompareClassId(R0, kOneByteStringCid, kNoPP);
|
| + __ b(&try_two_byte_string, NE);
|
| + __ SmiUntag(R1);
|
| + __ AddImmediate(R0, R0, OneByteString::data_offset() - kHeapObjectTag, kNoPP);
|
| + __ ldr(R0, Address(R0, R1), kUnsignedByte);
|
| + __ SmiTag(R0);
|
| + __ ret();
|
| +
|
| + __ Bind(&try_two_byte_string);
|
| + __ CompareClassId(R0, kTwoByteStringCid, kNoPP);
|
| + __ b(&fall_through, NE);
|
| + ASSERT(kSmiTagShift == 1);
|
| + __ AddImmediate(R0, R0, TwoByteString::data_offset() - kHeapObjectTag, kNoPP);
|
| + __ ldr(R0, Address(R0, R1), kUnsignedHalfword);
|
| + __ SmiTag(R0);
|
| + __ ret();
|
| +
|
| + __ Bind(&fall_through);
|
| }
|
|
|
|
|
| void Intrinsifier::String_getIsEmpty(Assembler* assembler) {
|
| - return;
|
| + __ ldr(R0, Address(SP, 0 * kWordSize));
|
| + __ ldr(R0, FieldAddress(R0, String::length_offset()));
|
| + __ cmp(R0, Operand(Smi::RawValue(0)));
|
| + __ LoadObject(R0, Bool::True(), PP);
|
| + __ LoadObject(TMP, Bool::False(), PP);
|
| + __ csel(R0, TMP, R0, NE);
|
| + __ ret();
|
| }
|
|
|
|
|
| void Intrinsifier::OneByteString_getHashCode(Assembler* assembler) {
|
| - return;
|
| + Label compute_hash;
|
| + __ ldr(R1, Address(SP, 0 * kWordSize)); // OneByteString object.
|
| + __ ldr(R0, FieldAddress(R1, String::hash_offset()));
|
| + __ CompareRegisters(R0, ZR);
|
| + __ b(&compute_hash, EQ);
|
| + __ ret(); // Return if already computed.
|
| +
|
| + __ Bind(&compute_hash);
|
| + __ ldr(R2, FieldAddress(R1, String::length_offset()));
|
| + __ SmiUntag(R2);
|
| +
|
| + Label done;
|
| + // If the string is empty, set the hash to 1, and return.
|
| + __ CompareRegisters(R2, ZR);
|
| + __ b(&done, EQ);
|
| +
|
| + __ mov(R3, ZR);
|
| + __ AddImmediate(R6, R1, OneByteString::data_offset() - kHeapObjectTag, kNoPP);
|
| + // R1: Instance of OneByteString.
|
| + // R2: String length, untagged integer.
|
| + // R3: Loop counter, untagged integer.
|
| + // R6: String data.
|
| + // R0: Hash code, untagged integer.
|
| +
|
| + Label loop;
|
| + // Add to hash code: (hash_ is uint32)
|
| + // hash_ += ch;
|
| + // hash_ += hash_ << 10;
|
| + // hash_ ^= hash_ >> 6;
|
| + // Get one characters (ch).
|
| + __ Bind(&loop);
|
| + __ ldr(R7, Address(R6, R3), kUnsignedByte);
|
| + // R7: ch.
|
| + __ add(R3, R3, Operand(1));
|
| + __ addw(R0, R0, Operand(R7));
|
| + __ addw(R0, R0, Operand(R0, LSL, 10));
|
| + __ eorw(R0, R0, Operand(R0, LSR, 6));
|
| + __ cmp(R3, Operand(R2));
|
| + __ b(&loop, NE);
|
| +
|
| + // Finalize.
|
| + // hash_ += hash_ << 3;
|
| + // hash_ ^= hash_ >> 11;
|
| + // hash_ += hash_ << 15;
|
| + __ addw(R0, R0, Operand(R0, LSL, 3));
|
| + __ eorw(R0, R0, Operand(R0, LSR, 11));
|
| + __ addw(R0, R0, Operand(R0, LSL, 15));
|
| + // hash_ = hash_ & ((static_cast<intptr_t>(1) << bits) - 1);
|
| + __ AndImmediate(
|
| + R0, R0, (static_cast<intptr_t>(1) << String::kHashBits) - 1, kNoPP);
|
| + __ CompareRegisters(R0, ZR);
|
| + // return hash_ == 0 ? 1 : hash_;
|
| + __ Bind(&done);
|
| + __ csinc(R0, R0, ZR, NE); // R0 <- (R0 != 0) ? R0 : (ZR + 1).
|
| + __ SmiTag(R0);
|
| + __ str(R0, FieldAddress(R1, String::hash_offset()));
|
| + __ ret();
|
| }
|
|
|
|
|
| +// Allocates one-byte string of length 'end - start'. The content is not
|
| +// initialized.
|
| +// 'length-reg' (R2) contains tagged length.
|
| +// Returns new string as tagged pointer in R0.
|
| +static void TryAllocateOnebyteString(Assembler* assembler,
|
| + Label* ok,
|
| + Label* failure) {
|
| + const Register length_reg = R2;
|
| + Label fail;
|
| +
|
| + __ mov(R6, length_reg); // Save the length register.
|
| + __ SmiUntag(length_reg);
|
| + const intptr_t fixed_size = sizeof(RawString) + kObjectAlignment - 1;
|
| + __ AddImmediate(length_reg, length_reg, fixed_size, kNoPP);
|
| + __ andi(length_reg, length_reg, ~(kObjectAlignment - 1));
|
| +
|
| + Isolate* isolate = Isolate::Current();
|
| + Heap* heap = isolate->heap();
|
| +
|
| + __ LoadImmediate(R3, heap->TopAddress(), kNoPP);
|
| + __ ldr(R0, Address(R3));
|
| +
|
| + // length_reg: allocation size.
|
| + __ adds(R1, R0, Operand(length_reg));
|
| + __ b(&fail, VS); // Fail on overflow.
|
| +
|
| + // Check if the allocation fits into the remaining space.
|
| + // R0: potential new object start.
|
| + // R1: potential next object start.
|
| + // R2: allocation size.
|
| + // R3: heap->Top->Address().
|
| + __ LoadImmediate(R7, heap->EndAddress(), kNoPP);
|
| + __ ldr(R7, Address(R7));
|
| + __ cmp(R1, Operand(R7));
|
| + __ b(&fail, CS);
|
| +
|
| + // Successfully allocated the object(s), now update top to point to
|
| + // next object start and initialize the object.
|
| + __ str(R1, Address(R3));
|
| + __ AddImmediate(R0, R0, kHeapObjectTag, kNoPP);
|
| + __ UpdateAllocationStatsWithSize(kOneByteStringCid, R2, R3, kNoPP);
|
| +
|
| + // Initialize the tags.
|
| + // R0: new object start as a tagged pointer.
|
| + // R1: new object end address.
|
| + // R2: allocation size.
|
| + {
|
| + const intptr_t shift = RawObject::kSizeTagPos - kObjectAlignmentLog2;
|
| + const Class& cls =
|
| + Class::Handle(isolate->object_store()->one_byte_string_class());
|
| +
|
| + __ CompareImmediate(R2, RawObject::SizeTag::kMaxSizeTag, kNoPP);
|
| + __ Lsl(R2, R2, shift);
|
| + __ csel(R2, R2, ZR, LS);
|
| +
|
| + // Get the class index and insert it into the tags.
|
| + // R2: size and bit tags.
|
| + __ LoadImmediate(TMP, RawObject::ClassIdTag::encode(cls.id()), kNoPP);
|
| + __ orr(R2, R2, Operand(TMP));
|
| + __ str(R2, FieldAddress(R0, String::tags_offset())); // Store tags.
|
| + }
|
| +
|
| + // Set the length field using the saved length (R6).
|
| + __ StoreIntoObjectNoBarrier(R0,
|
| + FieldAddress(R0, String::length_offset()),
|
| + R6);
|
| + // Clear hash.
|
| + __ mov(TMP, ZR);
|
| + __ str(TMP, FieldAddress(R0, String::hash_offset()));
|
| + __ b(ok);
|
| +
|
| + __ Bind(&fail);
|
| + __ b(failure);
|
| +}
|
| +
|
| +
|
| // Arg0: OneByteString (receiver).
|
| // Arg1: Start index as Smi.
|
| // Arg2: End index as Smi.
|
| // The indexes must be valid.
|
| void Intrinsifier::OneByteString_substringUnchecked(Assembler* assembler) {
|
| - return;
|
| + const intptr_t kStringOffset = 2 * kWordSize;
|
| + const intptr_t kStartIndexOffset = 1 * kWordSize;
|
| + const intptr_t kEndIndexOffset = 0 * kWordSize;
|
| + Label fall_through, ok;
|
| +
|
| + __ ldr(R2, Address(SP, kEndIndexOffset));
|
| + __ ldr(TMP, Address(SP, kStartIndexOffset));
|
| + __ orr(R3, R2, Operand(TMP));
|
| + __ tsti(R3, kSmiTagMask);
|
| + __ b(&fall_through, NE); // 'start', 'end' not Smi.
|
| +
|
| + __ sub(R2, R2, Operand(TMP));
|
| + TryAllocateOnebyteString(assembler, &ok, &fall_through);
|
| + __ Bind(&ok);
|
| + // R0: new string as tagged pointer.
|
| + // Copy string.
|
| + __ ldr(R3, Address(SP, kStringOffset));
|
| + __ ldr(R1, Address(SP, kStartIndexOffset));
|
| + __ SmiUntag(R1);
|
| + __ add(R3, R3, Operand(R1));
|
| + // Calculate start address and untag (- 1).
|
| + __ AddImmediate(R3, R3, OneByteString::data_offset() - 1, kNoPP);
|
| +
|
| + // R3: Start address to copy from (untagged).
|
| + // R1: Untagged start index.
|
| + __ ldr(R2, Address(SP, kEndIndexOffset));
|
| + __ SmiUntag(R2);
|
| + __ sub(R2, R2, Operand(R1));
|
| +
|
| + // R3: Start address to copy from (untagged).
|
| + // R2: Untagged number of bytes to copy.
|
| + // R0: Tagged result string.
|
| + // R6: Pointer into R3.
|
| + // R7: Pointer into R0.
|
| + // R1: Scratch register.
|
| + Label loop, done;
|
| + __ cmp(R2, Operand(0));
|
| + __ b(&done, LE);
|
| + __ mov(R6, R3);
|
| + __ mov(R7, R0);
|
| + __ Bind(&loop);
|
| + __ ldr(R1, Address(R6), kUnsignedByte);
|
| + __ AddImmediate(R6, R6, 1, kNoPP);
|
| + __ sub(R2, R2, Operand(1));
|
| + __ cmp(R2, Operand(0));
|
| + __ str(R1, FieldAddress(R7, OneByteString::data_offset()), kUnsignedByte);
|
| + __ AddImmediate(R7, R7, 1, kNoPP);
|
| + __ b(&loop, GT);
|
| +
|
| + __ Bind(&done);
|
| + __ ret();
|
| + __ Bind(&fall_through);
|
| }
|
|
|
|
|
| void Intrinsifier::OneByteString_setAt(Assembler* assembler) {
|
| - return;
|
| + __ ldr(R2, Address(SP, 0 * kWordSize)); // Value.
|
| + __ ldr(R1, Address(SP, 1 * kWordSize)); // Index.
|
| + __ ldr(R0, Address(SP, 2 * kWordSize)); // OneByteString.
|
| + __ SmiUntag(R1);
|
| + __ SmiUntag(R2);
|
| + __ AddImmediate(R3, R0, OneByteString::data_offset() - kHeapObjectTag, kNoPP);
|
| + __ str(R2, Address(R3, R1), kUnsignedByte);
|
| + __ ret();
|
| }
|
|
|
|
|
| void Intrinsifier::OneByteString_allocate(Assembler* assembler) {
|
| - return;
|
| + Label fall_through, ok;
|
| +
|
| + __ ldr(R2, Address(SP, 0 * kWordSize)); // Length.
|
| + TryAllocateOnebyteString(assembler, &ok, &fall_through);
|
| +
|
| + __ Bind(&ok);
|
| + __ ret();
|
| +
|
| + __ Bind(&fall_through);
|
| }
|
|
|
|
|
| // TODO(srdjan): Add combinations (one-byte/two-byte/external strings).
|
| void StringEquality(Assembler* assembler, intptr_t string_cid) {
|
| - return;
|
| + Label fall_through, is_true, is_false, loop;
|
| + __ ldr(R0, Address(SP, 1 * kWordSize)); // This.
|
| + __ ldr(R1, Address(SP, 0 * kWordSize)); // Other.
|
| +
|
| + // Are identical?
|
| + __ cmp(R0, Operand(R1));
|
| + __ b(&is_true, EQ);
|
| +
|
| + // Is other OneByteString?
|
| + __ tsti(R1, kSmiTagMask);
|
| + __ b(&fall_through, EQ);
|
| + __ CompareClassId(R1, string_cid, kNoPP);
|
| + __ b(&fall_through, NE);
|
| +
|
| + // Have same length?
|
| + __ ldr(R2, FieldAddress(R0, String::length_offset()));
|
| + __ ldr(R3, FieldAddress(R1, String::length_offset()));
|
| + __ cmp(R2, Operand(R3));
|
| + __ b(&is_false, NE);
|
| +
|
| + // Check contents, no fall-through possible.
|
| + // TODO(zra): try out other sequences.
|
| + ASSERT((string_cid == kOneByteStringCid) ||
|
| + (string_cid == kTwoByteStringCid));
|
| + const intptr_t offset = (string_cid == kOneByteStringCid) ?
|
| + OneByteString::data_offset() : TwoByteString::data_offset();
|
| + __ AddImmediate(R0, R0, offset - kHeapObjectTag, kNoPP);
|
| + __ AddImmediate(R1, R1, offset - kHeapObjectTag, kNoPP);
|
| + __ SmiUntag(R2);
|
| + __ Bind(&loop);
|
| + __ AddImmediate(R2, R2, -1, kNoPP);
|
| + __ CompareRegisters(R2, ZR);
|
| + __ b(&is_true, LT);
|
| + if (string_cid == kOneByteStringCid) {
|
| + __ ldr(R3, Address(R0), kUnsignedByte);
|
| + __ ldr(R4, Address(R1), kUnsignedByte);
|
| + __ AddImmediate(R0, R0, 1, kNoPP);
|
| + __ AddImmediate(R1, R1, 1, kNoPP);
|
| + } else if (string_cid == kTwoByteStringCid) {
|
| + __ ldr(R3, Address(R0), kUnsignedHalfword);
|
| + __ ldr(R4, Address(R1), kUnsignedHalfword);
|
| + __ AddImmediate(R0, R0, 2, kNoPP);
|
| + __ AddImmediate(R1, R1, 2, kNoPP);
|
| + } else {
|
| + UNIMPLEMENTED();
|
| + }
|
| + __ cmp(R3, Operand(R4));
|
| + __ b(&is_false, NE);
|
| + __ b(&loop);
|
| +
|
| + __ Bind(&is_true);
|
| + __ LoadObject(R0, Bool::True(), PP);
|
| + __ ret();
|
| +
|
| + __ Bind(&is_false);
|
| + __ LoadObject(R0, Bool::False(), PP);
|
| + __ ret();
|
| +
|
| + __ Bind(&fall_through);
|
| }
|
|
|
|
|
| void Intrinsifier::OneByteString_equality(Assembler* assembler) {
|
| - return;
|
| + StringEquality(assembler, kOneByteStringCid);
|
| }
|
|
|
|
|
| void Intrinsifier::TwoByteString_equality(Assembler* assembler) {
|
| - return;
|
| + StringEquality(assembler, kTwoByteStringCid);
|
| }
|
|
|
|
|
| +// On stack: user tag (+0).
|
| void Intrinsifier::UserTag_makeCurrent(Assembler* assembler) {
|
| - return;
|
| + // R1: Isolate.
|
| + Isolate* isolate = Isolate::Current();
|
| + __ LoadImmediate(R1, reinterpret_cast<uword>(isolate), kNoPP);
|
| + // R0: Current user tag.
|
| + __ ldr(R0, Address(R1, Isolate::current_tag_offset()));
|
| + // R2: UserTag.
|
| + __ ldr(R2, Address(SP, + 0 * kWordSize));
|
| + // Set Isolate::current_tag_.
|
| + __ str(R2, Address(R1, Isolate::current_tag_offset()));
|
| + // R2: UserTag's tag.
|
| + __ ldr(R2, FieldAddress(R2, UserTag::tag_offset()));
|
| + // Set Isolate::user_tag_.
|
| + __ str(R2, Address(R1, Isolate::user_tag_offset()));
|
| + __ ret();
|
| }
|
|
|
|
|
| -void Intrinsifier::Profiler_getCurrentTag(Assembler* assembler) {
|
| - return;
|
| +void Intrinsifier::UserTag_defaultTag(Assembler* assembler) {
|
| + Isolate* isolate = Isolate::Current();
|
| + // Set return value to default tag address.
|
| + __ LoadImmediate(R0,
|
| + reinterpret_cast<uword>(isolate->object_store()) +
|
| + ObjectStore::default_tag_offset(), kNoPP);
|
| + __ ldr(R0, Address(R0));
|
| + __ ret();
|
| }
|
|
|
|
|
| -void Intrinsifier::UserTag_defaultTag(Assembler* assembler) {
|
| - return;
|
| +void Intrinsifier::Profiler_getCurrentTag(Assembler* assembler) {
|
| + // R1: Default tag address.
|
| + Isolate* isolate = Isolate::Current();
|
| + __ LoadImmediate(R1, reinterpret_cast<uword>(isolate), kNoPP);
|
| + // Set return value to Isolate::current_tag_.
|
| + __ ldr(R0, Address(R1, Isolate::current_tag_offset()));
|
| + __ ret();
|
| }
|
|
|
| } // namespace dart
|
|
|